Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The case for periodontitis in the pathogenesis of rheumatoid arthritis

Key Points

  • Periodontitis and rheumatoid arthritis (RA) are closely linked, and periodontitis often precedes the development of RA

  • Periodontitis correlates with levels of anti-citrullinated protein antibodies in healthy individuals, suggesting that periodontitis could trigger the autoimmune response that leads to RA

  • Hypercitrullination of proteins at chronically inflamed sites of periodontitis could constitute the mechanistic link between periodontitis and RA

  • The major periodontal pathogens Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans are directly implicated in the breakdown of immune tolerance to citrullinated epitopes

  • Further well-designed mechanistic and epidemiological studies into the links between periodontitis and RA are needed to elucidate the mechanisms involved

Abstract

Rheumatoid arthritis (RA), an autoimmune disease that affects 1% of the human population, is driven by autoantibodies that target modified self-epitopes, whereas 11% of the global adult population are affected by severe chronic periodontitis, a disease in which the commensal microflora on the tooth surface is replaced by a dysbiotic consortium of bacteria that promote the chronic inflammatory destruction of periodontal tissue. Despite differences in aetiology, RA and periodontitis are similar in terms of pathogenesis; both diseases involve chronic inflammation fuelled by pro-inflammatory cytokines, connective tissue breakdown and bone erosion. The two diseases also share risk factors such as smoking and ageing, and have strong epidemiological, serological and clinical associations. In light of the ground-breaking discovery that Porphyromonas gingivalis, a pivotal periodontal pathogen, is the only human pathogen known to express peptidylarginine deiminase, an enzyme that generates citrullinated epitopes that are recognized by anti-citrullinated protein antibodies, a new paradigm is emerging. In this Review, the clinical and experimental evidence supporting this paradigm is discussed and the potential mechanisms involved in linking periodontitis to RA are presented.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Clinical and microbiological aspects of periodontitis.
Figure 2: Protein citrullination catalysed by human peptidylarginine deiminases.
Figure 3: Proposed mechanisms underlying the links between periodontal disease and the pathogenesis of rheumatoid arthritis.
Figure 4: C-Terminal protein citrullination catalysed by Porphyromonas gingivalis peptidylarginine deiminase (PPAD).

Similar content being viewed by others

References

  1. Listl, S., Galloway, J., Mossey, P. A. & Marcenes, W. Global economic impact of dental diseases. J. Dent. Res. 94, 1355–1361 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. Kassebaum, N. J. et al. Global burden of severe periodontitis in 1990-2010: a systematic review and meta-regression. J. Dent. Res. 93, 1045–1053 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Eke, P. I. et al. Update on prevalence of periodontitis in adults in the United States: NHANES. J. Periodontol. 86, 611–622 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kobayashi, T. & Yoshie, H. Host responses in the link between periodontitis and rheumatoid arthritis. Curr. Oral Health Rep. 2, 1–8 (2015).

    Article  PubMed  Google Scholar 

  5. Zenobia, C. & Hajishengallis, G. Basic biology and role of interleukin-17 in immunity and inflammation. Periodontol. 2000 69, 142–159 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Paraskevas, S., Huizinga, J. D. & Loos, B. G. A systematic review and meta-analyses on C-reactive protein in relation to periodontitis. J. Clin. Periodontol. 35, 277–290 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Rhodes, B., Fürnrohr, B. G. & Vyse, T. J. C-Reactive protein in rheumatology: biology and genetics. Nat. Rev. Rheumatol. 7, 282–289 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. de Pablo, P., Chapple, I. L., Buckley, C. D. & Dietrich, T. Periodontitis in systemic rheumatic diseases. Nat. Rev. Rheumatol. 5, 218–224 (2009).

    Article  PubMed  Google Scholar 

  9. Wegner, N. et al. Peptidylarginine deiminase from Porphyromonas gingivalis citrullinates human fibrinogen and α-enolase: implications for autoimmunity in rheumatoid arthritis. Arthritis Rheum. 62, 2662–2672 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rosenstein, E. D., Greenwald, R. A., Kushner, L. J. & Weissmann, G. Hypothesis: the humoral immune response to oral bacteria provides a stimulus for the development of rheumatoid arthritis. Inflammation 28, 311–318 (2004).

    Article  PubMed  Google Scholar 

  11. Hajishengallis, G. Immunomicrobial pathogenesis of periodontitis: keystones, pathobionts, and host response. Trends Immunol. 35, 3–11 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Hajishengallis, G. & Lamont, R. J. Beyond the red complex and into more complexity: the polymicrobial synergy and dysbiosis (PSD) model of periodontal disease etiology. Mol. Oral Microbiol. 27, 409–219 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gomes, M. S. et al. Can apical periodontitis modify systemic levels of inflammatory markers? A systematic review and meta-analysis. J. Endod. 39, 1205–1217 (2013).

    Article  PubMed  Google Scholar 

  14. Hajishengallis, G., Chavakis, T., Hajishengallis, E. & Lambris, J. D. Neutrophil homeostasis and inflammation: novel paradigms from studying periodontitis. J. Leukoc. Biol. 98, 539–548 (2016).

    Article  CAS  Google Scholar 

  15. Silman, A. J. & Pearson, J. E. Epidemiology and genetics of rheumatoid arthritis. Arthritis Res. 4 (Suppl. 3), S265–S272 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Mikuls, T. R., Payne, J. B., Deane, K. D. & Thiele, G. M. Autoimmunity of the lung and oral mucosa in a multisystem inflammatory disease: The spark that lights the fire in rheumatoid arthritis? J. Allergy Clin. Immunol. 137, 28–34 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Rosenbaum, J. T. & Asquith, M. J. The microbiome: a revolution in treatment for rheumatic diseases? Curr. Rheumatol. Rep. 18, 62 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Mankia, K. & Emery, P. Is localized autoimmunity the trigger for rheumatoid arthritis? Unravelling new targets for prevention. Discov. Med. 20, 129–135 (2015).

    PubMed  Google Scholar 

  19. Smolen, J. S., Aletaha, D. and McInnes, I. B. Rheumatoid arthritis. Lancet 388, 2023–2038 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. Klareskog, L., Lundberg, K. & Malmström, V. Autoimmunity in rheumatoid arthritis: citrulline immunity and beyond. Adv. Immunol. 118, 129–158 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Viatte, S., Plant, D. & Raychaudhuri, S. Genetics and epigenetics of rheumatoid arthritis. Nat. Rev. Rheumatol. 9, 141–153 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Muller, S. & Radic, M. Citrullinated autoantigens: from diagnostic markers to pathogenetic mechanisms. Clin. Rev. Allergy Immunol. 49, 232–239 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Trouw, L. A., Rispens, T. & Toes, R. E. M. Beyond citrullination: other post-translational protein modifications in rheumatoid arthritis. Nat. Rev. Rheumatol. 13, 331–339 (2017).

    Article  CAS  PubMed  Google Scholar 

  24. Wang, S. & Wang, Y. Peptidylarginine deiminases in citrullination, gene regulation, health and pathogenesis. Biochim. Biophys. Acta 1829, 1126–1135 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Baka, Z. et al. Citrullination: a posttranslational modification in health and disease. Int. J. Biochem. Cell Biol. 38, 1662–1677 (2006).

    Article  CAS  Google Scholar 

  26. Vossenaar, E. R., Zendman, A. J., van Venrooij, W. J. & Pruijn, G. J. PAD, a growing family of citrullinating enzymes: genes, features and involvement in disease. Bioessays 25, 1106–1118 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Arita, K. et al. Structural basis for Ca2+-induced activation of human PAD4. Nat. Struct. Mol. Biol. 11, 777–783 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Robertson, W. G. et al. Ionised calcium in body fluids. Crit. Rev. Clin. Lab. Sci. 15, 85–125 (1981).

    Article  CAS  PubMed  Google Scholar 

  29. Darrah, E. et al. Erosive rheumatoid arthritis is associated with antibodies that activate PAD4 by increasing calcium sensitivity. Sci. Transl. Med. 5, 186ra65 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Auger, I., Martin, M., Balandraud, N. & Roudier, J. Rheumatoid arthritis-specific autoantibodies to peptidyl arginine deiminase type 4 inhibit citrullination of fibrinogen. Arthritis Rheum. 62, 126–131 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Makrygiannakis, D. et al. Smoking increases peptidylarginine deiminase 2 enzyme expression in human lungs and increases citrullination in BAL cells. Ann. Rheum. Dis. 67, 1488–1492 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Nesse, W. et al. The periodontium of periodontitis patients contains citrullinated proteins which may play a role in ACPA (anti-citrullinated protein antibody) formation. J. Clin. Periodontol. 39, 599–607 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Bennike, T. B. et al. Proteome analysis of rheumatoid arthritis gut mucosa. J. Proteome Res. 16, 346–354 (2017).

    Article  CAS  PubMed  Google Scholar 

  34. Konig, M. F. et al. Aggregatibacter actinomycetemcomitans-induced hypercitrullination links periodontal infection to autoimmunity in rheumatoid arthritis. Sci. Transl. Med. 8, 369ra176 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Scher, J. U. et al. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. eLife 2, e01202 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Teng, F. et al. Gut microbiota drive autoimmune arthritis by promoting differentiation and migration of Peyer's Patch T follicular helper cells. Immunity 44, 875–888 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Maeda, Y. et al. Dysbiosis contributes to arthritis development via activation of autoreactive T cells in the intestine. Arthritis Rheumatol. 68, 2646–2661 (2016).

    Article  CAS  PubMed  Google Scholar 

  38. Zhang, X. et al. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nat. Med. 21, 895–905 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Suzuki, A. et al. Functional haplotypes of PADI4, encoding citrullinating enzyme peptidylarginine deiminase 4, are associated with rheumatoid arthritis. Nat. Genet. 34, 395–402 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Heasman, L. S. F., Preshaw, P. M., McCracken, G. I., Hepburn, S. & Heasman, P. A. The effect of smoking on periodontal treatment response: a review of clinical evidence. J. Clin. Periodontol. 33, 241–253 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. de Pablo, P., Dietrich, T. & McAlindon, T. E. Association of periodontal disease and tooth loss with rheumatoid arthritis in the US population. J. Rheumatol. 35, 70–76 (2008).

    PubMed  Google Scholar 

  42. Marotte, H. et al. The association between periodontal disease and joint destruction in rheumatoid arthritis extends the link between the HLA-DR shared epitope and severity of bone destruction. Ann. Rheum. Dis. 65, 905–909 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Berthelot, J. M. & Le Goff, B. Rheumatoid arthritis and periodontal disease. Joint Bone Spine 77, 537–541 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Detert, J., Pischon, N., Burmester, G. R. & Buttgereit, F. The association between rheumatoid arthritis and periodontal disease. Arthritis Res. Ther. 12, 218 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Mikuls, T. R. et al. Periodontitis and Porphyromonas gingivalis in patients with rheumatoid arthritis. Arthritis Rheum. 66, 1090–1100 (2014).

    Article  Google Scholar 

  46. Eriksson, K. et al. Prevalence of periodontitis in patients with established rheumatoid arthritis: a Swedish population based case-control study. PLoS ONE 11, e0155956 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kharlamova, N. et al. Antibodies to Porphyromonas gingivalis indicate interaction between oral infection, smoking, and risk genes in rheumatoid arthritis etiology. Arthritis Rheum. 68, 604–613 (2016).

    Article  CAS  Google Scholar 

  48. Mikuls, T. et al. Antibody responses to Porphyromonas gingivalis (P. gingivalis) in subjects with rheumatoid arthritis and periodontitis. Int. Immunopharmacol. 9, 38–42 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Hitchon, C. et al. Antibodies to Porphyromonas gingivalis are associated with anticitrullinated protein antibodies in patients with rheumatoid arthritis and their relatives. J. Rheumatol. 37, 1105–1112 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Shimada, A. et al. Expression of anti-Porphyromonas gingivalis peptidylarginine deiminase immunoglobulin G and peptidylarginine deiminase-4 in patients with rheumatoid arthritis and periodontitis. J. Periodontal. Res. 51, 103–111 (2016).

    Article  CAS  PubMed  Google Scholar 

  51. Kobayashi, T. et al. Serum immunoglobulin G levels to Porphyromonas gingivalis peptidylarginine deiminase affect clinical response to biological disease-modifying antirheumatic drug in rheumatoid arthritis. PLoS ONE 11, e0154182 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Johansson, L. et al. Concentration of antibodies against Porphyromonas gingivalis is increased before the onset of symptoms of rheumatoid arthritis. Arthritis Res. Ther. 18, 201 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bello-Gualtero, J. M. et al. Periodontal disease in individuals with a genetic risk of developing arthritis and early rheumatoid arthritis: a cross-sectional study. J. Periodontol. 87, 346–356 (2016).

    Article  CAS  PubMed  Google Scholar 

  54. Terao, C. et al. Significant association of periodontal disease with anti-citrullinated peptide antibody in a Japanese healthy population - The Nagahama study. J. Autoimmun. 59, 85–90 (2015).

    Article  CAS  PubMed  Google Scholar 

  55. Golub, L. M., Payne, J. B., Reinhardt, R. A. & Nieman, G. Can systemic diseases co-induce (not just exacerbate) periodontitis? A hypothetical “two-hit” model. J. Dent. Res. 85, 102–105 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Maresz, K. J. et al. Porphyromonas gingivalis facilitates the development and progression of destructive arthritis through its unique bacterial peptidylarginine deiminase (PAD). PLoS Pathog. 9, e1003627 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Marchesan, J. T. et al. Porphyromonas gingivalis oral infection exacerbates the development and severity of collagen-induced arthritis. Arthritis Res. Ther. 15, R186 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Chukkapalli, S. et al. Periodontal bacterial colonization in synovial tissues exacerbates collagen-induced arthritis in B10. RIII mice. Arthritis Res. Ther. 18, 161 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sandal, I. et al. Bone loss and aggravated autoimmune arthritis in HLA-DRβ1-bearing humanized mice following oral challenge with Porphyromonas gingivalis. Arthritis Res. Ther. 18, 249 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gully, N. et al. Porphyromonas gingivalis peptidylarginine deiminase, a key contributor in the pathogenesis of experimental periodontal disease and experimental arthritis. PLoS ONE 9, e100838 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yamakawa, M. et al. Porphyromonas gingivalis infection exacerbates the onset of rheumatoid arthritis in SKG mice. Clin. Exp. Immunol. 186, 177–189 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. de Aquino, S. G. et al. Periodontal pathogens directly promote autoimmune experimental arthritis by inducing a TLR2- and IL-1-driven Th17 response. J. Immunol. 192, 4103–4111 (2014).

    Article  CAS  PubMed  Google Scholar 

  63. Eriksson, K. et al. Effects by periodontitis on pristane-induced arthritis in rats. J. Transl Med. 14, 311 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. de Aquino, S. G. et al. The aggravation of arthritis by periodontitis is dependent of IL-17 receptor A activation. J. Clin. Periodontol. http://dx.doi.org/10.1111/jcpe.12743 (2017).

  65. Corrêa, M. G. et al. Periodontitis increases rheumatic factor serum levels and citrullinated proteins in gingival tissues and alter cytokine balance in arthritic rats. PLoS ONE 12, e0174442 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Cirano, F. R. et al. Effect of resveratrol on periodontal pathogens during experimental periodontitis in rats. Braz. Oral Res. 30, e128 (2016).

    Article  PubMed  Google Scholar 

  67. Sakaguchi, S., Takahashi, T., Hata, H., Nomura, T. & Sakaguchi, N. SKG mice, a new genetic model of rheumatoid arthritis. Arthritis Res. Ther. 5 (Suppl. 3), 10 (2003).

    Article  PubMed Central  Google Scholar 

  68. Schwenzer, A. et al. Identification of an immunodominant peptide from citrullinated tenascin-C as a major target for autoantibodies in rheumatoid arthritis. Ann. Rheum. Dis. 75, 1876–1883 (2016).

    Article  CAS  PubMed  Google Scholar 

  69. Di Benedetto, A., Gigante, I., Colucci, S. & Grano, M. Periodontal disease: linking the primary inflammation to bone loss. Clin. Dev. Immunol. 2013, 503754 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Uehara, A., Imamura, T., Potempa, J., Travis, J. & Takada, H. Gingipains from Porphyromonas gingivalis synergistically induce the production of proinflammatory cytokines through protease-activated receptors with Toll-like receptor and NOD1/2 ligands in human monocytic cells. Cell. Microbiol. 10, 1181–1189 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Akitsu, A. et al. IL-1 receptor antagonist-deficient mice develop autoimmune arthritis due to intrinsic activation of IL-17-producing CCR2+Vγ6+γδ T cells. Nat. Commun. 6, 7464 (2015).

    Article  CAS  PubMed  Google Scholar 

  72. Schett, G., Dayer, J. M. & Manger, B. Interleukin-1 function and role in rheumatic disease. Nat. Rev. Rheumatol. 12, 14–24 (2016).

    Article  CAS  PubMed  Google Scholar 

  73. Gaffen, S. L. & Hajishengallis, G. A new inflammatory cytokine on the block: re-thinking periodontal disease and the Th1/Th2 paradigm in the context of Th17 cells and IL-17. J. Dent. Res. 87, 817–828 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Quirke, A. M., Fisher, B. A., Kinloch, A. J. & Venables, P. J. Citrullination of autoantigens: upstream of TNFα in the pathogenesis of rheumatoid arthritis. FEBS Lett. 585, 3681–3688 (2011).

    Article  CAS  PubMed  Google Scholar 

  75. Harvey, G. P. et al. Expression of peptidylarginine deiminase-2 and -4, citrullinated proteins and anti-citrullinated protein antibodies in human gingiva. J. Periodontal. Res. 48, 252–261 (2013).

    Article  CAS  PubMed  Google Scholar 

  76. Opdenakker, G. & Van Damme, J. Cytokine-regulated proteases in autoimmune diseases. Immunol. Today 15, 103–107 (1994).

    Article  CAS  PubMed  Google Scholar 

  77. Van den Steen, P. E. et al. Cleavage of denatured natural collagen type II by neutrophil gelatinase B reveals enzyme specificity, post-translational modifications in the substrate, and the formation of remnant epitopes in rheumatoid arthritis. FASEB J. 16, 379–389 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Nazar Majeed, Z., Philip, K., Alabsi, A. M., Pushparajan, S. & Swaminathan, D. Identification of gingival crevicular fluid sampling, analytical methods, and oral biomarkers for the diagnosis and monitoring of periodontal diseases: a systematic review. Dis. Markers. 2016, 1804727 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Opdenakker, G., Proost, P. & Van Damme, J. Microbiomic and posttranslational modifications as preludes to autoimmune diseases. Trends Mol. Med. 22, 746–757 (2016).

    Article  CAS  PubMed  Google Scholar 

  80. Guentsch, A. et al. Cleavage of IgG1 in gingival crevicular fluid is associated with the presence of Porphyromonas gingivalis. J. Periodontal. Res. 48, 458–465 (2013).

    Article  CAS  PubMed  Google Scholar 

  81. Lundberg, K. et al. Antibodies to citrullinated α-enolase peptide 1 are specific for rheumatoid arthritis and cross-react with bacterial enolase. Arthritis. Rheum. 58, 3009–3019 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. Kinloch, A. J. et al. Immunization with Porphyromonas gingivalis enolase induces autoimmunity to mammalian α-enolase and arthritis in DR4-IE-transgenic mice. Arthritis Rheum. 63, 3818–3823 (2011).

    Article  CAS  PubMed  Google Scholar 

  83. Jeong, E., Lee, J. Y., Kim, S. J. & Choi, J. Predominant immunoreactivity of Porphyromonas gingivalis heat shock protein in autoimmune diseases. J. Periodontal. Res. 47, 811–816 (2012).

    Article  CAS  PubMed  Google Scholar 

  84. Quirke, A. M. et al. Heightened immune response to autocitrullinated Porphyromonas gingivalis peptidylarginine deiminase: a potential mechanism for breaching immunologic tolerance in rheumatoid arthritis. Ann. Rheum. Dis. 73, 263–269 (2014).

    Article  CAS  PubMed  Google Scholar 

  85. Bicker, K. L. & Thompson, P. R. The protein arginine deiminases: Structure, function, inhibition, and disease. Biopolymers 99, 155–163 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Laugisch, O. et al. Citrullination in the periodontium - a possible link between periodontitis and rheumatoid arthritis. Clin. Oral Investig. 20, 675–683 (2016).

    Article  PubMed  Google Scholar 

  87. Guentsch, A. et al. Comparison of gingival crevicular fluid sampling methods in patients with severe chronic periodontitis. J. Periodontol. 82, 1051–1060 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Konig, M. F. et al. Defining the role of Porphyromonas gingivalis peptidylarginine deiminase (PPAD) in rheumatoid arthritis through the study of PPAD biology. Ann. Rheum. Dis. 74, 2054–2061 (2015).

    Article  CAS  PubMed  Google Scholar 

  89. McGraw, W. T., Potempa, J., Farley, D. & Travis, J. Purification, characterization, and sequence analysis of a potential virulence factor from Porphyromonas gingivalis, peptidylarginine deiminase. Infect. Immun. 67, 3248–3256 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Bielecka, E. et al. Peptidyl arginine deiminase from Porphyromonas gingivalis abolishes anaphylatoxin C5a activity. J. Biol. Chem. 289, 32481–33247 (2004).

    Article  CAS  Google Scholar 

  91. Pyrc, K. et al. Inactivation of epidermal growth factor by Porphyromonas gingivalis as a potential mechanism for periodontal tissue damage. Infect. Immun. 81, 55–64 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Gawron, K. et al. Peptidylarginine deiminase from Porphyromonas gingivalis contributes to infection of gingival fibroblasts and induction of prostaglandin E2-signaling pathway. Mol. Oral Microbiol. 29, 321–332 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Corsiero, E., Pratesi, F., Prediletto, E., Bombardieri, M. & Migliorini, P. NETosis as source of autoantigens in rheumatoid arthritis. Front. Immunol. 7, 485 (2016).

    PubMed  PubMed Central  Google Scholar 

  94. Konig, M. F. & Andrade, F. A. Critical reappraisal of neutrophil extracellular traps and NETosis mimics based on differential requirements for protein citrullination. Front. Immunol. 7, 461 (2016).

    PubMed  PubMed Central  Google Scholar 

  95. Pratesi, F. et al. Antibodies from patients with rheumatoid arthritis target citrullinated histone 4 contained in neutrophils extracellular traps. Ann. Rheum. Dis. 73, 1414–1422 (2014).

    Article  CAS  PubMed  Google Scholar 

  96. Alemán, O. R., Mora, N., Cortes-Vieyra, R., Uribe-Querol, E. & Rosales, C. Differential use of human neutrophil Fcγ receptors for inducing neutrophil extracellular trap formation. J. Immunol. Res. 2016, 2908034 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Hirschfeld, J. et al. Neutrophil extracellular trap formation in supragingival biofilms. Int. J. Med. Microbiol. 305, 453–463 (2015).

    Article  CAS  PubMed  Google Scholar 

  98. Vitkov, L., Klappacher, M., Hannig, M. & Krautgartner, W. D. Neutrophil fate in gingival crevicular fluid. Ultrastruct. Pathol. 34, 25–30 (2010).

    Article  PubMed  Google Scholar 

  99. Fullerton, J. N., O'Brien, A. J. & Gilroy, D. W. Pathways mediating resolution of inflammation: when enough is too much. J. Pathol. 231, 8–20 (2013).

    Article  PubMed  Google Scholar 

  100. Davidovich, P., Kearney, C. J. & Martin, S. J. Inflammatory outcomes of apoptosis, necrosis and necroptosis. Biol. Chem. 395, 1163–1171 (2014).

    Article  CAS  PubMed  Google Scholar 

  101. Nefla, M., Holzinger, D., Berenbaum, F. & Jacques, C. The danger from within: alarmins in arthritis. Nat. Rev. Rheumatol. 12, 669–683 (2016).

    Article  CAS  PubMed  Google Scholar 

  102. Malcolm, J. et al. IL-33 exacerbates periodontal disease through induction of RANKL. J. Dent. Res. 94, 968–975 (2015).

    Article  CAS  PubMed  Google Scholar 

  103. Charoonpatrapong, K. et al. HMGB1 expression and release by bone cells. J. Cell. Physiol. 207, 480–490 (2006).

    Article  CAS  PubMed  Google Scholar 

  104. Luo, L. et al. Expression of HMGB1 and HMGN2 in gingival tissues, GCF and PICF of periodontitis patients and peri-implantitis. Arch. Oral Biol. 56, 1106–1111 (2011).

    Article  CAS  PubMed  Google Scholar 

  105. Theoharides, T. C., Petra, A. I., Taracanova, A., Panagiotidou, S. & Conti, P. Targeting IL-33 in autoimmunity and inflammation. J. Pharmacol. Exp. Ther. 354, 24–31 (2015).

    Article  CAS  PubMed  Google Scholar 

  106. Xu, D. et al. IL-33 exacerbates antigen-induced arthritis by activating mast cells. Proc. Natl Acad. Sci. USA 105, 10913–10918 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Tada, H. et al. Porphyromonas gingivalis gingipain-dependently enhances IL-33 production in human gingival epithelial cells. PLoS ONE 11, e0152794 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Rosier, B. T., De Jager, M., Zaura, E. & Krom, B. P. Historical and contemporary hypotheses on the development of oral diseases: are we there yet? Front. Cell. Infect. Microbiol. 4, 92 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Theilade, E. The non-specific theory in microbial etiology of inflammatory periodontal diseases. J. Clin. Periodontol. 13, 905–911 (1986).

    Article  CAS  PubMed  Google Scholar 

  110. Loesche, W. J. Chemotherapy of dental plaque infections. Oral Sci. Rev. 9, 65–107 (1976).

    CAS  PubMed  Google Scholar 

  111. Slots, J. & Genco, R. J. Black-pigmented Bacteroides species. Capnocytophaga species, and Actinobacillus actinomycetemcomitans in human periodontal disease: virulence factors in colonization, survival, and tissue destruction. J. Dent. Res. 63, 412–421 (1984).

    Article  CAS  PubMed  Google Scholar 

  112. Loesche, W. J. The antimicrobial treatment of periodontal disease: changing the treatment paradigm. Crit. Rev. Oral Biol. Med. 10, 245–275 (1999).

    Article  CAS  PubMed  Google Scholar 

  113. Socransky, S. S. Microbiology of periodontal disease – present status and future considerations. J. Periodontol. 48, 497–504 (1977).

    Article  CAS  PubMed  Google Scholar 

  114. Socransky, S. S., Haffajee, A. D., Cugini, M. A., Smith, C. & Kent, R. L. Jr. Microbial complexes in subgingival plaque. J. Clin. Periodontol. 25, 134–144 (1998).

    Article  CAS  PubMed  Google Scholar 

  115. Rickard, A. H., Gilbert, P., High, N. J., Kolenbrander, P. E. & Handley, P. S. Bacterial coaggregation: an integral process in the development of multi-species biofilms. Trends Microbiol. 11, 94–100 (2003).

    Article  CAS  PubMed  Google Scholar 

  116. Socransky, S. S. & Haffajee, A. D. Periodontal microbial ecology. Periodontol. 2000 38, 135–187 (2005).

    Article  PubMed  Google Scholar 

  117. Griffen, A. L. et al. Distinct and complex bacterial profiles in human periodontitis and health revealed by 16S pyrosequencing. ISME J. 6, 1176–1185 (2012).

    Article  CAS  PubMed  Google Scholar 

  118. Hajishengallis, G. et al. Low-abundance biofilm species orchestrates inflammatory periodontal disease through the commensal microbiota and complement. Cell. Host Microbe. 10, 497–506 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Lamont, R. J. & Hajishengallis, G. Polymicrobial synergy and dysbiosis in inflammatory disease. Trends Mol. Med. 21, 172–183 (2015).

    Article  CAS  PubMed  Google Scholar 

  120. Goulas, T. et al. Structure and mechanism of a bacterial host-protein citrullinating virulence factor. Porphyromonas gingivalis peptidylarginine deiminase. Sci. Rep. 5, 11969 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Schmickler, J. et al. Cross-sectional evaluation of periodontal status, microbiological and rheumatoid parameters in a large cohort of patients with rheumatoid arthritis. J. Periodontol. 88, 368–379 (2017).

    Article  PubMed  Google Scholar 

  122. Khare, N. et al. Nonsurgical periodontal therapy decreases the severity of rheumatoid arthritis: a case-control study. J. Contemp. Dent. Pract. 17, 484–488 (2016).

    Article  PubMed  Google Scholar 

  123. Kurgan, Ş. et al. Gingival crevicular fluid tissue/blood vessel-type plasminogen activator and plasminogen activator inhibitor-2 levels in patients with rheumatoid arthritis: effects of nonsurgical periodontal therapy. J. Periodontal. Res. 52, 574–581 (2017).

    Article  CAS  PubMed  Google Scholar 

  124. Äyräväinen, L. et al. Periodontitis in early and chronic rheumatoid arthritis: a prospective follow-up study in Finnish population. BMJ Open 7, e011916 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Romero-Sanchez, C. et al. Is the treatment with biological or non-biological DMARDS a modifier of periodontal condition in patients with rheumatoid arthritis? Curr. Rheumatol. Rev. http://dx.doi.org/10.2174/1573397113666170407161520 (2017).

  126. Kirchner, A. et al. Active matrix metalloproteinase-8 and periodontal bacteria depending on periodontal status in patients with rheumatoid arthritis. J. Periodontal. Res. http://dx.doi.org/10.1111/jre.12443 (2017).

  127. Janssen, K. M. J. et al. Autoantibodies against citrullinated histone H3 in rheumatoid arthritis and periodontitis patients. J. Clin. Periodontol. http://dx.doi.org/10.1111/jcpe.12727 (2017).

  128. Reichert, S. et al. Association of levels of antibodies against citrullinated cyclic peptides and citrullinated α-enolase in chronic and aggressive periodontitis as a risk factor of rheumatoid arthritis: a case control study. J. Transl Med. 13, 283 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Seror, R. et al. Association of anti-Porphyromonas gingivalis antibody titers with nonsmoking status in early rheumatoid arthritis: Results from the prospective French cohort of patients with early rheumatoid arthritis. Arthritis Rheumatol. 67, 1729–1737 (2015).

    Article  CAS  PubMed  Google Scholar 

  130. Silosi, I. et al. Significance of circulating and crevicular matrix metalloproteinase-9 in rheumatoid arthritis-chronic periodontitis association. J. Immunol. Res. 2015, 218060 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Kurgan, Ş. et al. The effects of periodontal therapy on gingival crevicular fluid matrix metalloproteinase-8, interleukin-6 and prostaglandin E2 levels in patients with rheumatoid arthritis. J. Periodontal. Res. 51, 586–955 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge financial support in the form of grants from the National Institute of Dental and Craniofacial Research (R01 DE022597 to J.P.), the European Commission's 7th Framework Programme (FP7-HEALTH-2012-306029-2 'TRIGGER' to P.M. and J.P.), the Polish Ministry of Science and Higher Education (MNiSW) (2975/7.PR/13/2014/2 to J.P.), and the Polish National Science Centre (2016/22/E/NZ6/00336 to J.K.). The Faculty of Biochemistry, Biophysics and Biotechnology at Jagiellonian University in Krakow, Poland is a partner of the Leading National Research Center (KNOW) supported by the Polish Ministry of Science and Higher Education.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched the data for the article, provided substantial contributions to discussions of its content, wrote the article and undertook review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Jan Potempa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Potempa, J., Mydel, P. & Koziel, J. The case for periodontitis in the pathogenesis of rheumatoid arthritis. Nat Rev Rheumatol 13, 606–620 (2017). https://doi.org/10.1038/nrrheum.2017.132

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2017.132

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing