Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Global epidemiology of gout: prevalence, incidence and risk factors

Key Points

  • Gout is the most common form of inflammatory arthritis and is caused by the deposition of monosodium urate crystals in and around the joints

  • The reported prevalence of gout worldwide ranges from 0.1% to approximately 10%, and the incidence from 0.3 to 6 cases per 1,000 person-years

  • Both prevalence and incidence of gout are increasing in many developed countries

  • The prevalence and incidence of gout is highly variable across various regions of the world, with developed countries generally having higher prevalence than developing countries

  • A combination of genetic and environmental factors contribute to the development of gout

  • Major risk factors for gout include hyperuricaemia, genetics, dietary factors, medications, comorbidities and exposure to lead

Abstract

Gout is a crystal-deposition disease that results from chronic elevation of uric acid levels above the saturation point for monosodium urate (MSU) crystal formation. Initial presentation is mainly severely painful episodes of peripheral joint synovitis (acute self-limiting 'attacks') but joint damage and deformity, chronic usage-related pain and subcutaneous tophus deposition can eventually develop. The global burden of gout is substantial and seems to be increasing in many parts of the world over the past 50 years. However, methodological differences impair the comparison of gout epidemiology between countries. In this comprehensive Review, data from epidemiological studies from diverse regions of the world are synthesized to depict the geographic variation in gout prevalence and incidence. Key advances in the understanding of factors associated with increased risk of gout are also summarized. The collected data indicate that the distribution of gout is uneven across the globe, with prevalence being highest in Pacific countries. Developed countries tend to have a higher burden of gout than developing countries, and seem to have increasing prevalence and incidence of the disease. Some ethnic groups are particularly susceptible to gout, supporting the importance of genetic predisposition. Socioeconomic and dietary factors, as well as comorbidities and medications that can influence uric acid levels and/or facilitate MSU crystal formation, are also important in determining the risk of developing clinically evident gout.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The estimated prevalence of gout across the world.
Figure 2: Prevalence of gout in seven representative countries.
Figure 3: Age-specific and sex-specific incidence of gout in the UK in 2012.

Similar content being viewed by others

References

  1. Kuo, C. F., Grainge, M. J., Mallen, C., Zhang, W. & Doherty, M. Comorbidities in patients with gout prior to and following diagnosis: case-control study. Ann. Rheum. Dis. http://dx.doi.org/10.1136/annrheumdis-2014-206410.

  2. Puig, J. G. & Martinez, M. A. Hyperuricemia, gout and the metabolic syndrome. Curr. Opin. Rheumatol. 20, 187–191 (2008).

    CAS  PubMed  Google Scholar 

  3. Abbott, R. D., Brand, F. N., Kannel, W. B. & Castelli, W. P. Gout and coronary heart disease: the Framingham Study. J. Clin. Epidemiol. 41, 237–242 (1988).

    CAS  PubMed  Google Scholar 

  4. De Vera, M. A., Rahman, M. M., Bhole, V., Kopec, J. A. & Choi, H. K. Independent impact of gout on the risk of acute myocardial infarction among elderly women: a population-based study. Ann. Rheum. Dis. 69, 1162–1164 (2010).

    PubMed  Google Scholar 

  5. Krishnan, E., Baker, J. F., Furst, D. E. & Schumacher, H. R. Gout and the risk of acute myocardial infarction. Arthritis Rheum. 54, 2688–2696 (2006).

    CAS  PubMed  Google Scholar 

  6. Kuo, C. F. et al. Risk of myocardial infarction among patients with gout: a nationwide population-based study. Rheumatology (Oxford) 52, 111–117 (2013).

    Google Scholar 

  7. Yu, K. H. et al. Risk of end-stage renal disease associated with gout: a nationwide population study. Arthritis Res. Ther. 14, R83 (2012).

    PubMed  PubMed Central  Google Scholar 

  8. So, A. Epidemiology: Gout—bad for the heart as well as the joint. Nat. Rev. Rheumatol. 6, 386–387 (2010).

    PubMed  Google Scholar 

  9. Community Oriented Program for Control of Rheumatic Diseases (COPCORD). COPCORD Website[online], (2015).

  10. Roddy, E., Zhang, W. & Doherty, M. The changing epidemiology of gout. Nat. Clin. Pract. Rheumatol. 3, 443–449 (2007).

    PubMed  Google Scholar 

  11. Doherty, M. et al. Gout: why is this curable disease so seldom cured? Ann. Rheum. Dis. 71, 1765–1770 (2012).

    PubMed  Google Scholar 

  12. Chang, S. J. et al. High prevalence of gout and related risk factors in Taiwan's Aborigines. J. Rheumatol. 24, 1364–1369 (1997).

    CAS  PubMed  Google Scholar 

  13. Chou, C. T. & Lai, J. S. The epidemiology of hyperuricaemia and gout in Taiwan aborigines. Br. J. Rheumatol. 37, 258–262 (1998).

    CAS  PubMed  Google Scholar 

  14. Tu, F. Y. et al. Prevalence of gout with comorbidity aggregations in southern Taiwan. Joint Bone Spine 82, 45–51 (2015).

    PubMed  Google Scholar 

  15. Rose, B. S. & Prior, I. A. A surgery of rheumatism in a rural New Zealand Maori community. Ann. Rheum. Dis. 22, 410–415 (1963).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Brauer, G. W. & Prior, I. A. A prospective study of gout in New Zealand Maoris. Ann. Rheum. Dis. 37, 466–472 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Klemp, P., Stansfield, S. A., Castle, B. & Robertson, M. C. Gout is on the increase in New Zealand. Ann. Rheum. Dis. 56, 22–26 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Pascart, T., Oehler, E. & Flipo, R. M. Gout in French Polynesia: a survey of common practices. Joint Bone Spine 81, 374–375 (2014).

    PubMed  Google Scholar 

  19. Khaltaev, N. & Benevolenskaya, L. I. in The Primary Prevention of Rheumatic Diseases (Ed. Wigley, R. D.) 11–20 (Parthenon Publishing Group, 1994).

    Google Scholar 

  20. Obregon-Ponce, A., Iraheta, I., Garcia-Ferrer, H., Mejia, B. & Garcia-Kutzbach, A. Prevalence of musculoskeletal diseases in Guatemala, Central America: the COPCORD study of 2 populations. J. Clin. Rheumatol. 18, 170–174 (2012).

    PubMed  Google Scholar 

  21. Davatchi, F. et al. WHO–ILAR COPCORD Study (stage 1, urban study) in Iran. J. Rheumatol. 35, 1384 (2008).

    PubMed  Google Scholar 

  22. Sandoughi, M. et al. Prevalence of musculoskeletal disorders in southeastern Iran: a WHO–ILAR COPCORD study (stage 1, urban study). Int. J. Rheum. Dis. 16, 509–517 (2013).

    PubMed  Google Scholar 

  23. Forghanizadeh, J. et al. Prevalence of rheumatic disease in Fasham. Razi Journal of Medical Sciences 3, 182–191 (1995).

    Google Scholar 

  24. Moghimi, N. et al. WHO–ILAR COPCORD study (stage 1, urban study) in Sanandaj, Iran. Clin. Rheumatol. 34, 535–543 (2013).

    PubMed  Google Scholar 

  25. Davatchi, F. et al. Effect of ethnic origin (Caucasians versus Turks) on the prevalence of rheumatic diseases: a WHO–ILAR COPCORD urban study in Iran. Clin. Rheumatol. 28, 1275–1282 (2009).

    PubMed  Google Scholar 

  26. Veerapen, K., Wigley, R. D. & Valkenburg, H. Musculoskeletal pain in Malaysia: a COPCORD survey. J. Rheumatol. 34, 207–213 (2007).

    PubMed  Google Scholar 

  27. Dans, L. F., Tankeh-Torres, S., Amante, C. M. & Penserga, E. G. The prevalence of rheumatic diseases in a Filipino urban population: a WHO–ILAR COPCORD Study. World Health Organization. International League of Associations for Rheumatology. Community Oriented Programme for the Control of the Rheumatic Diseases. J. Rheumatol. 24, 1814–1819 (1997).

    CAS  PubMed  Google Scholar 

  28. Al-Arfaj, A. S. Hyperuricemia in Saudi Arabia. Rheumatol. Int. 20, 61–64 (2001).

    CAS  PubMed  Google Scholar 

  29. Cakir, N. et al. The prevalences of some rheumatic diseases in western Turkey: Havsa study. Rheumatol. Int. 32, 895–908 (2012).

    PubMed  Google Scholar 

  30. Muller, A. S. Population Studies on the Prevalence of Rheumatic Diseases in Liberia and Nigeria. Thesis, University of Leiden (1970).

    Google Scholar 

  31. Beighton, P., Soskolne, C. L., Solomon, L. & Sweet, B. Serum uric-acid levels in a Nama (Hottentot) community in South-West-Africa. S. Afr. J. Sci. 70, 281–283 (1974).

    Google Scholar 

  32. Beighton, P., Daynes, G. & Soskolne, C. L. Serum uric acid concentrations in a Xhosa community in the Transkei of Southern Africa. Ann. Rheum. Dis. 35, 77–80 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Lutalo, S. K. Chronic inflammatory rheumatic diseases in black Zimbabweans. Ann. Rheum. Dis. 44, 121–125 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Beighton, P., Solomon, L., Soskolne, C. L. & Sweet, M. B. Rheumatic disorders in the South African Negro. Part IV. Gout and hyperuricaemia. S. Afr. Med. J. 51, 969–972 (1977).

    CAS  PubMed  Google Scholar 

  35. Wijnands, J. M. et al. Determinants of the prevalence of gout in the general population: a systematic review and meta-regression. Eur. J. Epidemiol. (2014).

  36. Zhu, Y., Pandya, B. J. & Choi, H. K. Prevalence of gout and hyperuricemia in the US general population: the National Health and Nutrition Examination Survey 2007–2008 Arthritis Rheum. 63, 3136–3141 (2011).

    PubMed  Google Scholar 

  37. Badley E. D. M. Arthritis in Canada: an ongoing challenge (Health Canada, Ottawa, 2003).

  38. Anagnostopoulos, I. et al. The prevalence of rheumatic diseases in central Greece: a population survey. BMC Musculoskelet. Disord. 11, 98 (2010).

    PubMed  PubMed Central  Google Scholar 

  39. Kuo, C. F., Grainge, M. J., Mallen, C., Zhang, W. & Doherty, M. Rising burden of gout in the UK but continuing suboptimal management: a nationwide population study. Ann. Rheum. Dis. http://dx.doi.org/10.1136/annrheumdis-2013-204463.

  40. Sicras-Mainar, A., Navarro-Artieda, R. & Ibanez-Nolla, J. Resource use and economic impact of patients with gout: a multicenter, population-wide study [article in English, Spanish]. Reumatol. Clin. 9, 94–100 (2013).

    PubMed  Google Scholar 

  41. Picavet, H. S. & Hazes, J. M. Prevalence of self reported musculoskeletal diseases is high. Ann. Rheum. Dis. 62, 644–650 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Annemans, L. et al. Gout in the UK and Germany: prevalence, comorbidities and management in general practice 2000–2005 Ann. Rheum. Dis. 67, 960–966 (2008).

    CAS  PubMed  Google Scholar 

  43. Bardin, T. et al. Prevalence of gout in the adult population of France in 2013 [abstract]. Ann. Rheum. Dis. 73 (Suppl. 2), 787–788 (2014).

    Google Scholar 

  44. Trifiro, G. et al. Epidemiology of gout and hyperuricaemia in Italy during the years 2005–2009: a nationwide population-based study. Ann. Rheum. Dis. 72, 694–700 (2013).

    CAS  PubMed  Google Scholar 

  45. Reis, C. & Viana Queiroz, M. Prevalence of self-reported rheumatic diseases in a Portuguese population. Acta Reumatol. Port. 39, 54–59 (2014).

    PubMed  Google Scholar 

  46. Hanova, P., Pavelka, K., Dostal, C., Holcatova, I. & Pikhart, H. Epidemiology of rheumatoid arthritis, juvenile idiopathic arthritis and gout in two regions of the Czech Republic in a descriptive population-based survey in 2002–2003. Clin. Exp. Rheumatol. 24, 499–507 (2006).

    CAS  PubMed  Google Scholar 

  47. Minaur, N., Sawyers, S., Parker, J. & Darmawan, J. Rheumatic disease in an Australian Aboriginal community in North Queensland, Australia. A WHO–ILAR COPCORD survey. J. Rheumatol. 31, 965–972 (2004).

    PubMed  Google Scholar 

  48. Australian Bureau of Statistics. National Health Survey, summary of results, Australia, 1995 (Australian Bureau of Statistics, Canberra, 1996).

  49. Winnard, D. et al. National prevalence of gout derived from administrative health data in Aotearoa New Zealand. Rheumatology (Oxford) 51, 901–909 (2012).

    Google Scholar 

  50. Kawasaki T. S. K. Epidemiology survey of gout using residents' health checks. Gou t and Nucleic Acid Metabolism 30, 66 (2006).

    Google Scholar 

  51. Lee, C. H. & Sung, N. Y. The prevalence and features of Korean gout patients using the National Health Insurance Corporation Database. J. Korean Rheum. Assoc. 18, 94–100 (2011).

    Google Scholar 

  52. Census and Statistics Department. Special Topics Report No. 27 on Social Statistics: persons with disabilities and chronic diseases (Government of Hong Kong Special Adminstrative Region, 2001).

  53. Teng, G. G. et al. Mortality due to coronary heart disease and kidney disease among middle-aged and elderly men and women with gout in the Singapore Chinese Health Study. Ann. Rheum. Dis. 71, 924–928 (2012).

    PubMed  Google Scholar 

  54. Kuo, C. F. et al. Familial aggregation of gout and relative genetic and environmental contributions: a nationwide population study in Taiwan. Ann. Rheum. Dis. 74, 369–374 (2015).

    PubMed  Google Scholar 

  55. Isomäki, H. A. & Takkunen, H. Gout and hyperuricemia in a Finnish rural population. Acta Rheumatol. Scand. 15, 112–120 (1969).

    PubMed  Google Scholar 

  56. Popert, A. J. & Hewitt, J. V. Gout and hyperuricaemia in rural and urban populations. Ann. Rheum. Dis. 21, 154–163 (1962).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Mikuls, T. R. et al. Gout epidemiology: results from the UK General Practice Research Database, 1990–1999 Ann. Rheum. Dis. 64, 267–72 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Robinson, P. C., Taylor, W. J. & Merriman, T. R. Systematic review of the prevalence of gout and hyperuricaemia in Australia. Intern. Med. J. 42, 997–1007 (2012).

    CAS  PubMed  Google Scholar 

  59. Chou, C. T. et al. Prevalence of rheumatic diseases in Taiwan: a population study of urban, suburban, rural differences. J. Rheumatol. 21, 302–306 (1994).

    CAS  PubMed  Google Scholar 

  60. Lin, K. C., Lin, H. Y. & Chou, P. Community based epidemiological study on hyperuricemia and gout in Kin-Hu, Kinmen. J. Rheumatol. 27, 1045–1050 (2000).

    CAS  PubMed  Google Scholar 

  61. Chang, H. Y., Pan, W. H., Yeh, W. T. & Tsai, K. S. Hyperuricemia and gout in Taiwan: results from the Nutritional and Health Survey in Taiwan (1993–1996). J. Rheumatol. 28, 1640–1646 (2001).

    CAS  PubMed  Google Scholar 

  62. Chuang, S. Y., Lee, S. C., Hsieh, Y. T. & Pan, W. H. Trends in hyperuricemia and gout prevalence: Nutrition and Health Survey in Taiwan from 1993–1996 to 2005–2008 Asia Pac. J. Clin. Nutr. 20, 301–8 (2011).

    CAS  PubMed  Google Scholar 

  63. Kuo, C. F. et al. Epidemiology and management of gout in Taiwan: a nationwide population study. Arthritis Res. Ther. 17, 13 (2015).

    PubMed  PubMed Central  Google Scholar 

  64. Pfleger, B. Burden and control of musculoskeletal conditions in developing countries: a joint WHO/ILAR/BJD meeting report. Clin. Rheumatol. 26, 1217–1227 (2007).

    PubMed  Google Scholar 

  65. Cardiel, M. H. & Rojas-Serrano, J. Community based study to estimate prevalence, burden of illness and help seeking behavior in rheumatic diseases in Mexico City. A COPCORD study. Clin. Exp. Rheumatol. 20, 617–624 (2002).

    CAS  PubMed  Google Scholar 

  66. Pelaez-Ballestas, I. et al. Epidemiology of the rheumatic diseases in Mexico. A study of 5 regions based on the COPCORD methodology. J. Rheumatol. Suppl. 86, 3–8 (2011).

    PubMed  Google Scholar 

  67. Reyes-Llerena, G. A. et al. Community-based study to estimate prevalence and burden of illness of rheumatic diseases in Cuba: a COPCORD study. J. Clin. Rheumatol. 15, 51–55 (2009).

    PubMed  Google Scholar 

  68. Granados, Y. et al. Prevalence of musculoskeletal disorders and rheumatic diseases in an urban community in Monagas State, Venezuela: a COPCORD study. Clin. Rheumatol. (2014).

  69. Bremner, J. M. & Lawrence, J. S. Population studies of serum uric acid. Proc. R. Soc. Med. 59, 319–325 (1966).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Darmawan, J., Valkenburg, H. A., Muirden, K. D. & Wigley, R. D. The epidemiology of gout and hyperuricemia in a rural population of Java. J. Rheumatol. 19, 1595–1599 (1992).

    CAS  PubMed  Google Scholar 

  71. Haq, S. A. et al. Prevalence of rheumatic diseases and associated outcomes in rural and urban communities in Bangladesh: a COPCORD study. J. Rheumatol. 32, 348–353 (2005).

    PubMed  Google Scholar 

  72. Dai, S. M. et al. Prevalence of rheumatic symptoms, rheumatoid arthritis, ankylosing spondylitis, and gout in Shanghai, China: a COPCORD study. J. Rheumatol. 30, 2245–2251 (2003).

    PubMed  Google Scholar 

  73. Chen, S., Du, H., Wang, Y. & Xu, L. The epidemiology study of hyperuricemia and gout in a community population of Huangpu District in Shanghai. Chin. Med. J. (Engl.) 111, 228–230 (1998).

    CAS  Google Scholar 

  74. Chopra, A. et al. Prevalence of rheumatic diseases in a rural population in western India: a WHO–ILAR COPCORD Study. J. Assoc. Physicians India 49, 240–246 (2001).

    CAS  PubMed  Google Scholar 

  75. Farooqi, A. & Gibson, T. Prevalence of the major rheumatic disorders in the adult population of north Pakistan. Br. J. Rheumatol. 37, 491–495 (1998).

    CAS  PubMed  Google Scholar 

  76. Chaiamnuay, P., Darmawan, J., Muirden, K. D. & Assawatanabodee, P. Epidemiology of rheumatic disease in rural Thailand: a WHO–ILAR COPCORD study. Community Oriented Programme for the Control of Rheumatic Disease. J. Rheumatol. 25, 1382–1387 (1998).

    CAS  PubMed  Google Scholar 

  77. Minh Hoa, T. T. et al. Prevalence of the rheumatic diseases in urban Vietnam: a WHO–ILAR COPCORD study. J. Rheumatol. 30, 2252–2256 (2003).

    PubMed  Google Scholar 

  78. Miao, Z. et al. Dietary and lifestyle changes associated with high prevalence of hyperuricemia and gout in the Shandong coastal cities of Eastern China. J. Rheumatol. 35, 1859–1864 (2008).

    PubMed  Google Scholar 

  79. Nan, H. et al. The prevalence of hyperuricemia in a population of the coastal city of Qingdao, China. J. Rheumatol. 33, 1346–1350 (2006).

    PubMed  Google Scholar 

  80. Zeng, Q. et al. Primary gout in Shantou: a clinical and epidemiological study. Chin. Med. J. (Engl.) 116, 66–69 (2003).

    Google Scholar 

  81. Li, R. et al. Epidemiology of eight common rheumatic diseases in China: a large-scale cross-sectional survey in Beijing. Rheumatology (Oxford) 51, 721–729 (2012).

    Google Scholar 

  82. Mahajan, A., Jasrotia, D. S., Manhas, A. S. & Jamwal, S. S. Prevalence of major rheumatic disorders in Jammu. J. Med. Educ. Res. (2003).

  83. Tsitlanadze, V. G., Kartvelishvili, E., Shakulashvili, N. A. & Shalamberidze, L. P. Incidence and various risk factors for gout in the Georgian SSR [article in Russian]. Ter. Arkh. 59, 18–20 (1987).

    CAS  PubMed  Google Scholar 

  84. Sagna, Y. et al. Prevalence and associated risk factors of diabetes and impaired fasting glucose in urban population; a study from Burkina Faso. J. Diabetol. 2, 4 (2014).

    Google Scholar 

  85. Mijiyawa, M. & Oniankitan, O. Risk factors for gout in Togolese patients. Joint Bone Spine 67, 441–445 (2000).

    CAS  PubMed  Google Scholar 

  86. Burch, T. A., O'Brien, W. M., Need, R. & Kurland, L. T. Hyperuricaemia and gout in the Mariana Islands. Ann. Rheum. Dis. 25, 114–116 (1966).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Bennett, P. H. & Wood, P. H. N. Population studies of the rheumatic diseases: proceedings of the third international symposium, New York, June 5th–10th, 1966 (Excerpta Medica Foundation, 1968).

  88. Prior, I. A., Rose, B. S., Harvey, H. P. & Davidson, F. Hyperuricaemia, gout, and diabetic abnormality in Polynesian people. Lancet 1, 333–338 (1966).

    CAS  PubMed  Google Scholar 

  89. Zimmet, P. Z., Whitehouse, S., Jackson, L. & Thoma, K. High prevalence of hyperuricaemia and gout in an urbanised Micronesian population. Br. Med. J. 1, 1237–1239 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Jackson, L. et al. Hyperuricaemia and gout in Western Samoans. J. Chronic Dis. 34, 65–75 (1981).

    CAS  PubMed  Google Scholar 

  91. O'Sullivan, J. B. Gout in a New England town: a prevalence study in Sudbury, Massachusetts. Ann. Rheum. Dis. 31, 166–169 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Maynard, J. W. et al. Racial differences in gout incidence in a population-based cohort: Atherosclerosis Risk in Communities Study. Am. J. Epidemiol. 179, 576–583 (2014).

    PubMed  Google Scholar 

  93. Arromdee, E., Michet, C. J., Crowson, C. S., O'Fallon, W. M. & Gabriel, S. E. Epidemiology of gout: is the incidence rising? J. Rheumatol. 29, 2403–2406 (2002).

    PubMed  Google Scholar 

  94. Stewart, O. J. & Silman, A. J. Review of UK data on the rheumatic diseases--4. Gout. Br. J. Rheumatol. 29, 485–488 (1990).

    CAS  PubMed  Google Scholar 

  95. Elliot, A. J., Cross, K. W. & Fleming, D. M. Seasonality and trends in the incidence and prevalence of gout in England and Wales 1994–2007 Ann. Rheum. Dis. 68, 1728–1733 (2009).

    CAS  PubMed  Google Scholar 

  96. Hall, A. P., Barry, P. E., Dawber, T. R. & McNamara, P. M. Epidemiology of gout and hyperuricemia. A long-term population study. Am. J. Med. 42, 27–37 (1967).

    CAS  PubMed  Google Scholar 

  97. Kippen, I., Klinenberg, J. R., Weinberger, A. & Wilcox, W. R. Factors affecting urate solubility in vitro. Ann. Rheum. Dis. 33, 313–317 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Lin, K. C., Lin, H. Y. & Chou, P. The interaction between uric acid level and other risk factors on the development of gout among asymptomatic hyperuricemic men in a prospective study. J. Rheumatol. 27, 1501–1505 (2000).

    CAS  PubMed  Google Scholar 

  99. Duskin-Bitan, H. et al. The degree of asymptomatic hyperuricemia and the risk of gout. A retrospective analysis of a large cohort. Clin. Rheumatol. 33, 549–553 (2014).

    PubMed  Google Scholar 

  100. Zalokar, J., Lellouch, J., Claude, J. R. & Kuntz, D. Serum uric acid in 23,923 men and gout in a subsample of 4,257 men in France. J Chronic Dis. 25, 305–312 (1972).

    CAS  PubMed  Google Scholar 

  101. Campion, E. W., Glynn, R. J. & DeLabry, L. O. Asymptomatic hyperuricemia. Risks and consequences in the Normative Aging Study. Am. J. Med. 82, 421–426 (1987).

    CAS  PubMed  Google Scholar 

  102. Mituszova, M., Judak, A., Poor, G., Gyodi, E. & Stenszky, V. Clinical and family studies in Hungarian patients with gout. Rheumatol. Int. 12, 165–168 (1992).

    CAS  PubMed  Google Scholar 

  103. Blumberg, B. S. Heredity of gout and hyperuricemia. Arthritis Rheum. 8, 627–647 (1965).

    CAS  PubMed  Google Scholar 

  104. Emmerson, B. T. Heredity in primary gout. Australas. Ann. Med. 9, 168–175 (1960).

    CAS  PubMed  Google Scholar 

  105. Hauge, M. & Harvald, B. Heredity in gout and hyperuricemia. Acta Med. Scand. 152, 247–257 (1955).

    CAS  PubMed  Google Scholar 

  106. Smyth, C. J., Cotterman, C. W. & Freyberg, R. H. The genetics of gout and hyperuricaemia. Ann. Rheum. Dis. 7, 248 (1948).

    CAS  PubMed  Google Scholar 

  107. Grahame, R. & Scott, J. T. Clinical survey of 354 patients with gout. Ann. Rheum. Dis. 29, 461–468 (1970).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Copeman, W. S. C. A short history of the gout and the rheumatic diseases (University of California Press, 1964).

    Google Scholar 

  109. Smyth, C. J., Cotterman, C. W. & Freyberg, R. H. The genetics of gout and hyperuricaemia; an analysis of 19 families. J. Clin. Invest. 27, 749–759 (1948).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Cobb, S. The frequency of the rheumatic diseases (Harvard University Press, 1971).

    Google Scholar 

  111. Prior, I. A., Welby, T. J., Ostbye, T., Salmond, C. E. & Stokes, Y. M. Migration and gout: the Tokelau Island migrant study. Br. Med. J. (Clin. Res. Ed.) 295, 457–461 (1987).

    CAS  Google Scholar 

  112. Choi, H. K., Zhu, Y. & Mount, D. B. Genetics of gout. Curr. Opin. Rheumatol. 22, 144–151 (2010).

    PubMed  Google Scholar 

  113. Turner, J. J. et al. UROMODULIN mutations cause familial juvenile hyperuricemic nephropathy. J. Clin. Endocrinol. Metab. 88, 1398–1401 (2003).

    CAS  PubMed  Google Scholar 

  114. Kottgen, A. et al. Genome-wide association analyses identify 18 new loci associated with serum urate concentrations. Nat. Genet. 45, 145–154 (2013).

    PubMed  Google Scholar 

  115. Phipps-Green, A. J. et al. Twenty-eight loci that influence serum urate levels: analysis of association with gout. Ann. Rheum. Dis. http://dx.doi.org/10.1136/annrheumdis-2014-205877.

  116. Rice, T. et al. Heterogeneity in the familial aggregation of fasting serum uric acid level in five North American populations: the Lipid Research Clinics Family Study. Am. J. Med. Genet. 36, 219–225 (1990).

    CAS  PubMed  Google Scholar 

  117. Nath, S. D. et al. Genome scan for determinants of serum uric acid variability. J. Am. Soc. Nephrol. 18, 3156–3163 (2007).

    CAS  PubMed  Google Scholar 

  118. Wilk, J. B. et al. Segregation analysis of serum uric acid in the NHLBI Family Heart Study. Hum. Genet. 106, 355–359 (2000).

    CAS  PubMed  Google Scholar 

  119. Hak, A. E., Curhan, G. C., Grodstein, F. & Choi, H. K. Menopause, postmenopausal hormone use and risk of incident gout. Ann. Rheum. Dis. 69, 1305–1309 (2010).

    PubMed  Google Scholar 

  120. Royal College of General Practitioners, Office of Population Censuses and Surveys & Department of Health and Social Security. Morbidity statistics from general practice 1970–1971: socio-economic analyses (H. M. S. O., 1982).

  121. Zollner, N. & Griebsch, A. Diet and gout. Adv. Exp. Med. Biol. 41, 435–442 (1974).

    CAS  PubMed  Google Scholar 

  122. Gordon, T. & Kannel, W. B. Drinking and its relation to smoking, BP, blood lipids, and uric acid. The Framingham study. Arch. Intern. Med. 143, 1366–1374 (1983).

    CAS  PubMed  Google Scholar 

  123. Choi, H. K., Atkinson, K., Karlson, E. W., Willett, W. & Curhan, G. Purine-rich foods, dairy and protein intake, and the risk of gout in men. N. Engl. J. Med. 350, 1093–1103 (2004).

    CAS  PubMed  Google Scholar 

  124. Choi, H. K., Atkinson, K., Karlson, E. W., Willett, W. & Curhan, G. Alcohol intake and risk of incident gout in men: a prospective study. Lancet 363, 1277–1281 (2004).

    PubMed  Google Scholar 

  125. Choi, H. K. & Curhan, G. Soft drinks, fructose consumption, and the risk of gout in men: prospective cohort study. BMJ 336, 309–312 (2008).

    PubMed  PubMed Central  Google Scholar 

  126. Perheentupa, J. & Raivio, K. Fructose-induced hyperuricaemia. Lancet 2, 528–531 (1967).

    CAS  PubMed  Google Scholar 

  127. Batt, C. et al. Sugar-sweetened beverage consumption: a risk factor for prevalent gout with SLC2A9 genotype-specific effects on serum urate and risk of gout. Ann. Rheum. Dis. 73, 2101–2106 (2014).

    PubMed  Google Scholar 

  128. Choi, H. K., Willett, W. & Curhan, G. Coffee consumption and risk of incident gout in men: a prospective study. Arthritis Rheum. 56, 2049–2055 (2007).

    CAS  PubMed  Google Scholar 

  129. Zhang, Y. et al. Cherry consumption and decreased risk of recurrent gout attacks. Arthritis Rheum. 64, 4004–4011 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Choi, H. K., Gao, X. & Curhan, G. Vitamin C intake and the risk of gout in men: a prospective study. Arch. Intern. Med. 169, 502–507 (2009).

    PubMed  PubMed Central  Google Scholar 

  131. Maynard, J. W. et al. Incident gout in women and association with obesity in the Atherosclerosis Risk in Communities (ARIC) Study. Am. J. Med. 125, 717.e9–717.e17 (2012).

    Google Scholar 

  132. McAdams-DeMarco, M. A., Maynard, J. W., Baer, A. N. & Coresh, J. Hypertension and the risk of incident gout in a population-based study: the atherosclerosis risk in communities cohort. J. Clin. Hypertens. (Greenwich) 14, 675–679 (2012).

    Google Scholar 

  133. Rho, Y. H. et al. The prevalence of metabolic syndrome in patients with gout: a multicenter study. J. Korean Med. Sci. 20, 1029–1033 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Cea Soriano, L., Rothenbacher, D., Choi, H. K. & Garcia Rodriguez, L. A. Contemporary epidemiology of gout in the UK general population. Arthritis Res. Ther. 13, R39 (2011).

    PubMed  PubMed Central  Google Scholar 

  135. Domrongkitchaiporn, S. et al. Risk factors for development of decreased kidney function in a southeast Asian population: a 12-year cohort study. J. Am. Soc. Nephrol. 16, 791–799 (2005).

    PubMed  Google Scholar 

  136. Obermayr, R. P. et al. Predictors of new-onset decline in kidney function in a general middle-European population. Nephrol. Dial. Transplant. 23, 1265–1273 (2008).

    PubMed  Google Scholar 

  137. Obermayr, R. P. et al. Elevated uric acid increases the risk for kidney disease. J. Am. Soc. Nephrol. 19, 2407–2413 (2008).

    PubMed  PubMed Central  Google Scholar 

  138. Krishnan, E. Chronic kidney disease and the risk of incident gout among middle-aged men: a seven-year prospective observational study. Arthritis Rheum. 65, 3271–3278 (2013).

    PubMed  Google Scholar 

  139. Palmer, T. M. et al. Association of plasma uric acid with ischaemic heart disease and blood pressure: mendelian randomisation analysis of two large cohorts. BMJ 347, f4262 (2013).

    PubMed  PubMed Central  Google Scholar 

  140. Hughes, K., Flynn, T., de Zoysa, J., Dalbeth, N. & Merriman, T. R. Mendelian randomization analysis associates increased serum urate, due to genetic variation in uric acid transporters, with improved renal function. Kidney Int. 85, 344–351 (2014).

    CAS  PubMed  Google Scholar 

  141. Lyngdoh, T. et al. Serum uric acid and adiposity: deciphering causality using a bidirectional Mendelian randomization approach. PLoS One 7, e39321 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Merola, J. F., Wu, S., Han, J., Choi, H. K. & Qureshi, A. A. Psoriasis, psoriatic arthritis and risk of gout in US men and women. Ann. Rheum. Dis. http://dx.doi.org/10.1136/annrheumdis-2014-205212.

  143. Reynolds, M. D. Gout and hyperuricemia associated with sickle-cell anemia. Semin. Arthritis Rheum. 12, 404–413 (1983).

    CAS  PubMed  Google Scholar 

  144. McAdams-DeMarco, M. A., Maynard, J. W., Coresh, J. & Baer, A. N. Anemia and the onset of gout in a population-based cohort of adults: Atherosclerosis Risk in Communities study. Arthritis Res. Ther. 14, R193 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Khokhar, N. Gouty arthritis in chronic obstructive pulmonary disease. Arch. Intern. Med. 142, 838 (1982).

    CAS  PubMed  Google Scholar 

  146. Kuzell, W. C. et al. Some observations on 520 gouty patients. J. Chronic Dis. 2, 645–669 (1955).

    CAS  PubMed  Google Scholar 

  147. Durward, W. F. Letter: Gout and hypothyroidism in males. Arthritis Rheum. 19, 123 (1976).

    CAS  PubMed  Google Scholar 

  148. Erickson, A. R., Enzenauer, R. J., Nordstrom, D. M. & Merenich, J. A. The prevalence of hypothyroidism in gout. Am. J. Med. 97, 231–234 (1994).

    CAS  PubMed  Google Scholar 

  149. See, L. C. et al. Hyperthyroid and hypothyroid status was strongly associated with gout and weakly associated with hyperuricaemia. PLoS One 9, e114579 (2014).

    PubMed  PubMed Central  Google Scholar 

  150. Mariani, L. H. & Berns, J. S. The renal manifestations of thyroid disease. J. Am. Soc. Nephrol. 23, 22–26 (2012).

    CAS  PubMed  Google Scholar 

  151. Bruderer, S., Bodmer, M., Jick, S. S. & Meier, C. R. Use of diuretics and risk of incident gout: a population-based case-control study. Arthritis Rheumatol. 66, 185–196 (2014).

    PubMed  Google Scholar 

  152. Choi, H. K., Soriano, L. C., Zhang, Y. & Rodriguez, L. A. Antihypertensive drugs and risk of incident gout among patients with hypertension: population based case-control study. BMJ 344, d8190 (2012).

    PubMed  PubMed Central  Google Scholar 

  153. McAdams-DeMarco, M. A. et al. A urate gene-by-diuretic interaction and gout risk in participants with hypertension: results from the ARIC study. Ann. Rheum. Dis. 72, 701–706 (2013).

    PubMed  Google Scholar 

  154. Lin, H. Y. et al. Cyclosporine-induced hyperuricemia and gout. N. Engl. J. Med. 321, 287–292 (1989).

    CAS  PubMed  Google Scholar 

  155. Stamp, L., Searle, M., O'Donnell, J. & Chapman, P. Gout in solid organ transplantation: a challenging clinical problem. Drugs 65, 2593–2611 (2005).

    CAS  PubMed  Google Scholar 

  156. So, A. & Thorens, B. Uric acid transport and disease. J. Clin. Invest. 120, 1791–1799 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Zhang, Y. et al. Low-dose aspirin use and recurrent gout attacks. Ann. Rheum. Dis. 73, 385–390 (2014).

    CAS  PubMed  Google Scholar 

  158. Fazio, S. et al. Long-term efficacy and safety of ezetimibe/simvastatin coadministered with extended-release niacin in hyperlipidaemic patients with diabetes or metabolic syndrome. Diabetes Obes. Metab. 12, 983–993 (2010).

    CAS  PubMed  Google Scholar 

  159. Amodio, M. I., Bengualid, V. & Lowy, F. D. Development of acute gout secondary to pyrazinamide in a patient without a prior history of gout. DICP 24, 1115–1116 (1990).

    CAS  PubMed  Google Scholar 

  160. Rao, T. P. & Schmitt, J. K. Gout secondary to pyrazinamide and ethambutol. Va Med. Q. 123, 271 (1996).

    CAS  PubMed  Google Scholar 

  161. Creighton, S., Miller, R., Edwards, S., Copas, A. & French, P. Is ritonavir boosting associated with gout? Int. J. STD AIDS 16, 362–364 (2005).

    CAS  PubMed  Google Scholar 

  162. Ball, G. V. Two epidemics of gout. Bull. Hist. Med. 45, 401–408 (1971).

    CAS  PubMed  Google Scholar 

  163. Lin, J. L., Tan, D. T., Ho, H. H. & Yu, C. C. Environmental lead exposure and urate excretion in the general population. Am. J. Med. 113, 563–568 (2002).

    CAS  PubMed  Google Scholar 

  164. Krishnan, E., Lingala, B. & Bhalla, V. Low-level lead exposure and the prevalence of gout: an observational study. Ann. Intern. Med. 157, 233–241 (2012).

    PubMed  Google Scholar 

  165. Shadick, N. A. et al. Effect of low level lead exposure on hyperuricemia and gout among middle aged and elderly men: the normative aging study. J. Rheumatol. 27, 1708–1712 (2000).

    CAS  PubMed  Google Scholar 

  166. Lin, J. L., Lin-Tan, D. T., Hsu, K. H. & Yu, C. C. Environmental lead exposure and progression of chronic renal diseases in patients without diabetes. N. Engl. J. Med. 348, 277–286 (2003).

    CAS  PubMed  Google Scholar 

  167. Martillo, M. A., Nazzal, L. & Crittenden, D. B. The crystallization of monosodium urate. Curr. Rheumatol. Rep. 16, 400 (2014).

    PubMed  PubMed Central  Google Scholar 

  168. Burt, H. M. & Dutt, Y. C. Growth of monosodium urate monohydrate crystals: effect of cartilage and synovial fluid components on in vitro growth rates. Ann. Rheum. Dis. 45, 858–864 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Wilcox, W. R. & Khalaf, A. A. Nucleation of monosodium urate crystals. Ann. Rheum. Dis. 34, 332–339 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Tak, H. K., Wilcox, W. R. & Cooper, S. M. The effect of lead upon urate nucleation. Arthritis Rheum. 24, 1291–1295 (1981).

    CAS  PubMed  Google Scholar 

  171. Perricone, E. & Brandt, K. D. Enhancement of urate solubility by connective tissue. I. Effect of proteoglycan aggregates and buffer cation. Arthritis Rheum. 21, 453–460 (1978).

    CAS  PubMed  Google Scholar 

  172. Pascual, E. & Ordonez, S. Orderly arrayed deposit of urate crystals in gout suggest epitaxial formation. Ann. Rheum. Dis. 57, 255 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Simkin, P. A. The pathogenesis of podagra. Ann. Intern. Med. 86, 230–233 (1977).

    CAS  PubMed  Google Scholar 

  174. Zhang, Y. et al. Purine-rich foods intake and recurrent gout attacks. Ann. Rheum. Dis. 71, 1448–1453 (2012).

    CAS  PubMed  Google Scholar 

  175. Neogi, T. et al. Alcohol quantity and type on risk of recurrent gout attacks: an internet-based case-crossover study. Am. J. Med. 127, 311–318 (2014).

    PubMed  PubMed Central  Google Scholar 

  176. Choi, H. K. & Curhan, G. Coffee consumption and risk of incident gout in women: the Nurses' Health Study. Am. J. Clin. Nutr. 92, 922–927 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Roubenoff, R. et al. Incidence and risk factors for gout in white men. JAMA 266, 3004–3007 (1991).

    CAS  PubMed  Google Scholar 

  178. Hochberg, M. C. et al. Racial differences in the incidence of gout. The role of hypertension. Arthritis Rheum. 38, 628–632 (1995).

    CAS  PubMed  Google Scholar 

  179. Krishnan, E. Gout in African Americans. Am. J. Med. 127, 858–864 (2014).

    PubMed  Google Scholar 

  180. Currie, W. J. Prevalence and incidence of the diagnosis of gout in Great Britain. Ann. Rheum. Dis. 38, 101–106 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Isomäki, H., Raunio, J., von Essen, R. & Hämeenkorpi, R. Incidence of inflammatory rheumatic diseases in Finland. Scand. J. Rheumatol 7, 188–192 (1978).

    PubMed  Google Scholar 

  182. Williams, P. T. Effects of diet, physical activity and performance, and body weight on incident gout in ostensibly healthy, vigorously active men. Am. J. Clin. Nutr. 87, 1480–1487 (2008).

    CAS  PubMed  Google Scholar 

  183. DeMarco, M. M., Maynard, J. W., Baer, A. N. & Coresh, J. Alcohol intake is associated with incident gout among black and white, men and women in the Atherosclerosis Risk in Communities Study [abstract]. Arthritis Rheum. 63 (Suppl. 10), 887 (2011).

    Google Scholar 

  184. Zhang, Y. et al. Alcohol consumption as a trigger of recurrent gout attacks. Am. J. Med. 119, 800.e11–800.e16 (2006).

    Google Scholar 

  185. Bhole, V., de Vera, M., Rahman, M. M., Krishnan, E. & Choi, H. Epidemiology of gout in women: fifty-two-year followup of a prospective cohort. Arthritis. Rheum. 62, 1069–1076 (2010).

    PubMed  Google Scholar 

  186. Lyu, L. C. et al. A case-control study of the association of diet and obesity with gout in Taiwan. Am. J. Clin. Nutr. 78, 690–701 (2003).

    CAS  PubMed  Google Scholar 

  187. Zhang, W. et al. EULAR evidence based recommendations for gout. Part I: Diagnosis. Report of a task force of the Standing Committee for International Clinical Studies Including Therapeutics (ESCISIT). Ann. Rheum. Dis. 65, 1301–1311 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Kellgren, J. H. et al. (Eds) The epidemiology of chronic rheumatism Vol. 1 (Blackwell, 1963).

    Google Scholar 

  189. Wallace, S. L. et al. Preliminary criteria for the classification of the acute arthritis of primary gout. Arthritis Rheum. 20, 895–900 (1977).

    CAS  PubMed  Google Scholar 

  190. Malik, A., Schumacher, H. R., Dinnella, J. E. & Clayburne, G. M. Clinical diagnostic criteria for gout: comparison with the gold standard of synovial fluid crystal analysis. J Clin. Rheumatol. 15, 22–24 (2009).

    PubMed  Google Scholar 

  191. Taylor, W. J. et al. Performance of classification criteria for gout in early and established disease. Ann. Rheum. Dis. (2014).

  192. Neogi, T. et al. The Proposed New Preliminary Gout Classification Criteria. Annual Congress of American College of Rheumatology (2014).

  193. McAdams, M. A. et al. Reliability and sensitivity of the self-report of physician-diagnosed gout in the campaign against cancer and heart disease and the atherosclerosis risk in the community cohorts. J. Rheumatol. 38, 135–141 (2011).

    PubMed  Google Scholar 

  194. Harrold, L. R. et al. Validity of gout diagnoses in administrative data. Arthritis Rheum. 57, 103–108 (2007).

    PubMed  Google Scholar 

  195. Singh, J. A., Hodges, J. S., Toscano, J. P. & Asch, S. M. Quality of care for gout in the US needs improvement. Arthritis Rheum. 57, 822–829 (2007).

    PubMed  PubMed Central  Google Scholar 

  196. Meier, C. R. & Jick, H. Omeprazole, other antiulcer drugs and newly diagnosed gout. Br. J. Clin Pharmacol 44, 175–178 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Taylor, W. J. et al. Toward a valid definition of gout flare: results of consensus exercises using Delphi methodology and cognitive mapping. Arthritis Rheum. 61, 535–543 (2009).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors made a substantial contribution to discussion of content and reviewed/edited the manuscript before submission. C.-F.K. researched data for and wrote the article.

Corresponding author

Correspondence to Chang-Fu Kuo.

Ethics declarations

Competing interests

W.Z. declares that he has received personal fees from Daiichi Sankyo and is a member of guideline development groups for gout and osteoarthritis for the National Institute for Health and Care Excellence (NICE), EULAR and the British Society for Rheumatology (BSR). M.D. declares that he has received fees from ad hoc advisory activities related to gout and osteoarthritis (outside the submitted work) for Astrazeneca, Menarini, Nordic Biosciences, Novartis and Pfizer; he also declares that he is a clinical expert adviser on gout and osteoarthritis for NICE and a member of guideline development groups for gout for EULAR and BSR. The other authors declare no competing interests.

Supplementary information

Supplementary Tables

Supplementary Tables 1–5 (DOC 202 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuo, CF., Grainge, M., Zhang, W. et al. Global epidemiology of gout: prevalence, incidence and risk factors. Nat Rev Rheumatol 11, 649–662 (2015). https://doi.org/10.1038/nrrheum.2015.91

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2015.91

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing