Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Activation of mTOR (mechanistic target of rapamycin) in rheumatic diseases

Key Points

  • The mechanistic target of rapamycin (mTOR) is a serine/threonine kinase that regulates growth, proliferation, survival and autophagy in a cell-type-specific manner

  • mTOR forms two interacting complexes, mTORC1 and mTORC2

  • mTORC1 drives the proinflammatory expansion of T helper (TH) type 1, TH17, and CD4−CD8− double-negative T cells, which collectively orchestrate the pathogenesis of autoimmune diseases

  • mTORC1 contributes to erosive arthritis by mediating the proliferation of fibroblasts-like synoviocytes and osteoclasts, and contributes to osteoarthritis by restraining autophagy in chondrocytes

  • Blockade of the mTOR pathway offers new treatments and prevention strategies for rheumatic diseases

Abstract

Mechanistic target of rapamycin (mTOR, also known as mammalian target of rapamycin) is a ubiquitous serine/threonine kinase that regulates cell growth, proliferation and survival. These effects are cell-type-specific, and are elicited in response to stimulation by growth factors, hormones and cytokines, as well as to internal and external metabolic cues. Rapamycin was initially developed as an inhibitor of T-cell proliferation and allograft rejection in the organ transplant setting. Subsequently, its molecular target (mTOR) was identified as a component of two interacting complexes, mTORC1 and mTORC2, that regulate T-cell lineage specification and macrophage differentiation. mTORC1 drives the proinflammatory expansion of T helper (TH) type 1, TH17, and CD4−CD8− (double-negative, DN) T cells. Both mTORC1 and mTORC2 inhibit the development of CD4+CD25+FoxP3+ T regulatory (TREG) cells and, indirectly, mTORC2 favours the expansion of T follicular helper (TFH) cells which, similarly to DN T cells, promote B-cell activation and autoantibody production. In contrast to this proinflammatory effect of mTORC2, mTORC1 favours, to some extent, an anti-inflammatory macrophage polarization that is protective against infections and tissue inflammation. Outside the immune system, mTORC1 controls fibroblast proliferation and chondrocyte survival, with implications for tissue fibrosis and osteoarthritis, respectively. Rapamycin (which primarily inhibits mTORC1), ATP-competitive, dual mTORC1/mTORC2 inhibitors and upstream regulators of the mTOR pathway are being developed to treat autoimmune, hyperproliferative and degenerative diseases. In this regard, mTOR blockade promises to increase life expectancy through treatment and prevention of rheumatic diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: mTOR pathway activation.
Figure 2: mTOR-mediated lineage specification in T cells.
Figure 3: Cell type-specific mTOR pathway activation in rheumatic diseases.

Similar content being viewed by others

References

  1. Vezina, C., Kudelski, A. & Sehgal, S. N. Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J. Antibiot. (Tokyo) 28, 721–726 (1975).

    Article  CAS  Google Scholar 

  2. Sehgal, S. N. & Bansback, C. C. Rapamycin: in vitro profile of a new immunosuppressive macrolide. Ann. NY Acad. Sci. 685, 58–67 (1993).

    Article  CAS  PubMed  Google Scholar 

  3. Collier, D. S. J. et al. Rapamycin in experimental renal allografts in dogs and pigs. Transplant. Proc. 22, 1674–1675 (1990).

    CAS  PubMed  Google Scholar 

  4. Calne, R. Y. et al. Rapamycin for immunosuppression in organ allografting. Lancet 334, 227 (1989).

    Article  Google Scholar 

  5. Warner, L. M., Adams, L. M. & Sehgal, S. N. Rapamycin prolongs survival and arrests pathophysiologic changes in murine systemic lupus erythematosus. Arthritis Rheum. 37, 289–297 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Fernandez, D., Bonilla, E., Mirza, N., Niland, B. & Perl, A. Rapamycin reduces disease activity and normalizes T-cell activation-induced calcium fluxing in patients with systemic lupus erythematosus. Arthritis Rheum. 54, 2983–2988 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cejka, D. et al. Mammalian target of rapamycin signaling is crucial for joint destruction in experimental arthritis and is activated in osteoclasts from patients with rheumatoid arthritis. Arthritis Rheum. 62, 2294–2302 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Bruyn, G. A. W. et al. Everolimus in patients with rheumatoid arthritis receiving concomitant methotrexate: a 3-month, double-blind, randomised, placebo-controlled, parallel-group, proof-of-concept study. Ann. Rheum. Dis. 67, 1090–1095 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Foroncewicz, B., Mucha, K., Pàczek, L., Chmura, A. & Rowin´ski, W. Efficacy of rapamycin in patient with juvenile rheumatoid arthritis. Transpl. Int. 18, 366–368 (2005).

    Article  PubMed  Google Scholar 

  10. Shah, M. et al. A rapamycin-binding protein polymer nanoparticle shows potent therapeutic activity in suppressing autoimmune dacryoadenitis in a mouse model of Sjögren's syndrome. J. Control. Release 171, 269–279 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ponticos, M. et al. Failed degradation of JunB contributes to overproduction of type I collagen and development of dermal fibrosis in patients with systemic sclerosis. Arthritis Rheumatol. 67, 243–253 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Tamaki, Z. et al. Effects of the immunosuppressant rapamycin on the expression of human α2(I) collagen and matrix metalloproteinase 1 genes in scleroderma dermal fibroblasts. J. Dermatol. Sci. 74, 251–259 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Yoshizaki, A. et al. Treatment with rapamycin prevents fibrosis in tight-skin and bleomycin-induced mouse models of systemic sclerosis. Arthritis Rheum. 62, 2476–2487 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Chen, C. et al. mTOR inhibition rescues osteopenia in mice with systemic sclerosis. J. Exp. Med. 212, 73–91 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Su, T. I. et al. Rapamycin versus methotrexate in early diffuse systemic sclerosis: results from a randomized, single-blind pilot study. Arthritis Rheum. 60, 3821–3830 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Terasawa, A. et al. Sirolimus-eluting stent implantation for ostial stenosis of left main coronary artery after Bentall operation in aortitis syndrome. J. Cardiol. 55, 147–150 (2010).

    Article  PubMed  Google Scholar 

  17. Furukawa, Y. et al. Sirolimus-eluting stent for in-stent restenosis of left main coronary artery in Takayasu arteritis. Circ. J. 69, 752–755 (2005).

    Article  PubMed  Google Scholar 

  18. Koening, C. L., Hernandez-Rodriguez, J., Molloy, E. S., Clark, T. M. & Hoffman, G. S. Limited utility of rapamycin in severe, refractory Wegener's granulomatosis. J. Rheumatol. 36, 116–119 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Constantinescu, A. R., Liang, M. & Laskow, D. A. Sirolimus lowers myeloperoxidase and p-ANCA titers in a pediatric patient before kidney transplantation. Am. J. Kidney Dis. 40, 407–410 (2002).

    Article  PubMed  Google Scholar 

  20. Lopez de Figueroa, P., Lotz, M. K., Blanco, F. J. & Carames, B. Autophagy activation and protection from mitochondrial dysfunction in human chondrocytes. Arthritis Rheum. 67, 966–976 (2015).

    Article  CAS  Google Scholar 

  21. Chauvin, C. et al. Ribosomal protein S6 kinase activity controls the ribosome biogenesis transcriptional program. Oncogene 33, 474–483 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Gingras, A. C. et al. Regulation of 4E-BP1 phosphorylation: a novel two step mechanism. Genes Dev. 13, 1422–1437 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kim, J. H., Yoon, M. S. & Chen, J. Signal transducer and activator of transcription 3 (STAT3) mediates amino acid inhibition of insulin signaling through serine 727 phosphorylation. J. Biol. Chem. 284, 35425–35432 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nazio, F. et al. MTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6. Nat. Cell. Biol. 15, 406–416 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Alers, S., Loffler, A. S., Wesselborg, S. & Stork, B. Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks. Mol. Cell. Biol. 32, 2–11 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Zoncu, R. et al. mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H+-ATPase. Science 334, 678–683 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bar-Peled, L. et al. A tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. Science 340, 1100–1106 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sarbassov, D. D. & Sabatini, D. M. Redox regulation of the nutrient-sensitive raptor–mTOR pathway and complex. J. Biol. Chem. 280, 39505–39509 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Thedieck, K. et al. Inhibition of mTORC1 by astrin and stress granules prevents apoptosis in cancer cells. Cell 154, 859–874 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Fernandez, D. R. et al. Activation of mTOR controls the loss of TCRζ in lupus T cells through HRES-1/Rab4-regulated lysosomal degradation. J. Immunol. 182, 2063–2073 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Sonenberg, N. & Hinnebusch, A. G. Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 136, 731–745 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sancak, Y. et al. The Rag GTPases bind Raptor and mediate amino acid signaling to mTORC1. Science 320, 1496–1501 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Desai, B. N., Myers, B. R. & Schreiber, S. L. FKBP12-rapamycin-associated protein associates with mitochondria and senses osmotic stress via mitochondrial dysfunction. Proc. Natl Acad. Sci. USA 99, 4319–4324 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shor, B. et al. Requirement of the mTOR kinase for the regulation of Maf1 phosphorylation and control of RNA polymerase III-dependent transcription in cancer cells. J. Biol. Chem. 285, 15380–15392 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tsang, C. K., Liu, H. & Zheng, X. S. mTOR binds to the promoters of RNA polymerase I- and III-transcribed genes. Cell Cycle 9, 953–957 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Ravikumar, B., Imarisio, S., Sarkar, S., O'Kane, C. J. & Rubinsztein, D. C. Rab5 modulates aggregation and toxicity of mutant huntingtin through macroautophagy in cell and fly models of Huntington disease. J. Cell. Sci. 121, 1649–1660 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Su, W. C. et al. Rab5 and class III phosphoinositide 3-kinase Vps34 are involved in hepatitis C virus NS4B-induced autophagy. J. Virol. 85, 10561–10571 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jia, W., Pua, H. H., Li, Q. J. & He, Y. W. Autophagy regulates endoplasmic reticulum homeostasis and calcium mobilization in T lymphocytes. J. Immunol. 186, 1564–1574 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Gutierrez, M. G., Munafo, D. B., Beron, W. & Colombo, M. I. Rab7 is required for the normal progression of the autophagic pathway in mammalian cells. J. Cell Sci. 117, 2687–2697 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Stein, M. P., Feng, Y., Cooper, K. L., Welford, A. M. & Wandinger-Ness, A. Human VPS34 and p150 are Rab7 interacting partners. Traffic 4, 754–771 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Caza, T. N. et al. HRES-1/RAB4-mediated depletion of Drp1 impairs mitochondrial homeostasis and represents a target for treatment in SLE. Ann. Rheum. Dis. 73, 1887–1897 (2014).

    Article  CAS  Google Scholar 

  42. Talaber, G. et al. HRES-1/Rab4 promotes the formation of LC3+ autophagosomes and the accumulation of mitochondria during autophagy. PLoS ONE 9, e84392 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Telarico, T. et al. HRES-1/Rab4 lupus susceptibility gene selectively regulates mammalian target of rapamycin complexes 1 and 2 in T lymphocytes. Arthritis Rheum. Abstr. 63 (Suppl. 10), 2358 (2011).

    Google Scholar 

  44. Chamberlain, M. D., Berry, T. R., Pastor, M. C. & Anderson, D. H. The p85α subunit of phosphatidylinositol 3′-kinase binds to and stimulates the GTPase activity of Rab proteins. J. Biol. Chem. 279, 48607–48614 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Chamberlain, M. D. et al. Disrupted RabGAP function of the p85 subunit of phosphatidylinositol 3-kinase results in cell transformation. J. Biol. Chem. 283, 15861–15868 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chamberlain, M. D. et al. Deregulation of Rab5 and Rab4 proteins in p85R274A-expressing cells alters PDGFR trafficking. Cell. Signal. 22, 1562–1575 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Kausch, C. et al. Association of impaired phosphatidylinositol 3-kinase activity in GLUT1-containing vesicles with malinsertion of glucose transporters into the plasma membrane of fibroblasts from a patient with severe insulin resistance and clinical features of Werner syndrome. J. Clin. Endocrin. Metab. 85, 905–918 (2000).

    CAS  Google Scholar 

  48. Kim, S. G. et al. Metabolic stress controls mTORC1 lysosomal localization and dimerization by regulating the TTT-RUVBL1/2 complex. Mol. Cell 49, 172–185 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Honda, K. et al. Spatiotemporal regulation of MyD88–IRF-7 signalling for robust type-I interferon induction. Nature 434, 1035–1040 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Caro-Maldonado, A., Gerriets, V. A. & Rathmell, J. C. Matched and mismatched metabolic fuels in lymphocyte function. Semin. Immunol. 24, 405–413 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Delgoffe, G. M. et al. The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nat. Immunol. 12, 295–304 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mercalli, A. et al. Rapamycin unbalances the polarization of human macrophages to M1. Immunology 140, 179–190 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhu, L. et al. TSC1 controls macrophage polarization to prevent inflammatory disease. Nat. Commun. 5, 4696 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. Poglitsch, M. et al. CMV late phase-induced mTOR activation is essential for efficient virus replication in polarized human macrophages. Am. J. Transplant. 12, 1458–1468 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Vasheghani, F. et al. PPARγ deficiency results in severe, accelerated osteoarthritis associated with aberrant mTOR signalling in the articular cartilage. Ann. Rheum. Dis. 74, 569–578 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. Garcia, R. J. et al. Attention deficit and hyperactivity disorder scores are elevated and respond to NAC treatment in patients with SLE. Arthritis Rheum. 65, 1313–1318 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Proud, C. G. Regulation of mammalian translation factors by nutrients. Eur. J. Biochem. 269, 5338–5349 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Duran, R. et al. Glutaminolysis activates Rag−mTORC1 signaling. Mol. Cell 47, 349–358 (2012).

    Article  CAS  PubMed  Google Scholar 

  59. Jewell, J. L. et al. Differential regulation of mTORC1 by leucine and glutamine. Science 347, 194–198 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Perl, A. et al. Comprehensive metabolome analyses reveal N-acetylcysteine-responsive accumulation of kynurenine in systemic lupus erythematosus: implications for activation of the mechanistic target of rapamycin. Metabolomics 11, 1157–1174 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Duvel, K. et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol. Cell 39, 171–183 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Semenza, G. L. HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations. J. Clin. Invest. 123, 3664–3671 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Liu, G. et al. SIRT1 limits the function and fate of myeloid-derived suppressor cells in tumors by orchestrating HIF-1-α dependent glycolysis. Cancer Res. 74, 727–737 (2014).

    Article  CAS  PubMed  Google Scholar 

  64. Ben-Sahra, I., Howell, J. J., Asara, J. M. & Manning, B. D. Stimulation of de novo pyrimidine synthesis by growth signaling through mTOR and S6K1. Science 339, 1323–1328 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sun, Y. et al. Estradiol promotes pentose phosphate pathway addiction and cell survival via reactivation of Akt in mTORC1 hyperactive cells. Cell Death Dis. 5, e1231 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Taylor, S. S., Zhang, P., Steichen, J. M., Keshwani, M. M. & Kornev, A. P. PKA: lessons learned after twenty years. Biochim. Biophys. Acta 1834, 1271–1278 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. de Joussineau, C. et al. mTOR pathway is activated by PKA in adrenocortical cells and participates in vivo to apoptosis resistance in primary pigmented nodular adrenocortical disease (PPNAD). Hum. Mol. Genet. 23, 5418–5428 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yoo, S. E. et al. Gpx4 ablation in adult mice results in a lethal phenotype accompanied by neuronal loss in brain. Free Radic. Biol. Med. 52, 1820–1827 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Xie, J. et al. CAMP inhibits mammalian target of rapamycin complex-1 and -2 (mTORC1 and 2) by promoting complex dissociation and inhibiting mTOR kinase activity. Cell. Signal. 23, 1927–1935 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lai, Z.-W. et al. N-acetylcysteine reduces disease activity by blocking mTOR in T cells of lupus patients. Arthritis Rheum. 64, 2937–2946 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Pearce, E. L. et al. Enhancing CD8 T cell memory by modulating fatty acid metabolism. Nature 460, 103–107 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Michalek, R. D. et al. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J. Immunol. 186, 3299–3303 (2011).

    Article  CAS  PubMed  Google Scholar 

  73. Spiegel, S. & Milstien, S. Sphingosine-1-phosphate: an enigmatic signalling lipid. Nat. Rev. Mol. Cell. Biol. 4, 397–407 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Rivera, J., Proia, R. L. & Olivera, A. The alliance of sphingosine-1-phosphate and its receptors in immunity. Nat. Rev. Immunol. 8, 753–763 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Matloubian, M. et al. Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature 427, 355–360 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Liu, G. et al. The receptor S1P1 overrides regulatory T cell-mediated immune suppression through Akt−mTOR. Nat. Immunol. 10, 769–777 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Liu, G., Yang, K., Burns, S., Shrestha, S. & Chi, H. The S1P1−mTOR axis directs the reciprocal differentiation of TH1 and Treg cells. Nat. Immunol. 11, 1047–1056 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hsieh, C. T., Chuang, J. H., Yang, W. C., Yin, Y. & Lin, Y. Ceramide inhibits insulin-stimulated Akt phosphorylation through activation of Rheb/mTORC1/S6K signaling in skeletal muscle. Cell. Signal. 26, 1400–1408 (2014).

    Article  CAS  PubMed  Google Scholar 

  79. Yoshida, S. et al. Redox regulates mammalian target of rapamycin complex 1 (mTORC1) activity by modulating the TSC1/TSC2−Rheb GTPase pathway. J. Biol. Chem. 286, 32651–32660 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Whitman, M., Downes, C. P., Keeler, M., Keller, T. & Cantley, L. Type I phosphatidylinositol kinase makes a novel inositol phospholipid, phosphatidylinositol-3-phosphate. Nature 332, 644–646 (1988).

    Article  CAS  PubMed  Google Scholar 

  81. Vanhaesebroeck, B., Stephens, L. & Hawkins, P. PI3K signalling: the path to discovery and understanding. Nat. Rev. Mol. Cell. Biol. 13, 195–203 (2012).

    Article  CAS  PubMed  Google Scholar 

  82. Lamming, D. W. et al. Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science 335, 1638–1643 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Braccini, L. et al. PI3K-C2γ is a Rab5 effector selectively controlling endosomal Akt2 activation downstream of insulin signalling. Nat. Commun. 6, 7400 (2015).

    Article  CAS  PubMed  Google Scholar 

  84. Kim, J. et al. Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy. Cell 152, 290–303 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Worby, C. A. & Dixon, J. E. PTEN. Annu. Rev. Biochem. 83, 641–669 (2014).

    Article  CAS  PubMed  Google Scholar 

  86. Sagar, V., Bond, J. R. & Chowdhary, V. R. A 50-year-old woman with Cowden syndrome and joint pains. Arthritis Care Res. 67, 1604–1608 (2015).

    Article  Google Scholar 

  87. Lee, T., Le, E. N., Glass, D. A., Bowen, C. D. & Dominguez, A. R. Systemic lupus erythematosus in a patient with PTEN hamartoma tumour syndrome. Brit. J. Dermatol. 170, 990–992 (2014).

    Article  CAS  Google Scholar 

  88. Shrestha, S. et al. Treg cells require the phosphatase PTEN to restrain TH1 and TFH cell responses. Nat. Immunol. 16, 178–187 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Huynh, A. et al. Control of PI3 kinase in Treg cells maintains homeostasis and lineage stability. Nat. Immunol. 16, 188–196 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ray, J. P. & Craft, J. PTENtiating autoimmunity through Treg cell deregulation. Nat. Immunol. 16, 139–140 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wu, X. N. et al. Defective PTEN regulation contributes to B cell hyperresponsiveness in systemic lupus erythematosus. Sci. Transl. Med. 6, 246ra99 (2014).

    Article  PubMed  CAS  Google Scholar 

  92. Bluml, S. et al. Loss of phosphatase and tensin homolog (PTEN) in myeloid cells controls inflammatory bone destruction by regulating the osteoclastogenic potential of myeloid cells. Ann. Rheum. Dis. 74, 227–233 (2015).

    Article  PubMed  CAS  Google Scholar 

  93. Inoki, K., Zhu, T. & Guan, K. L. TSC2 mediates cellular energy response to control cell growth and survival. Cell 115, 577–590 (2003).

    Article  CAS  PubMed  Google Scholar 

  94. Gwinn, D. M. et al. AMPK phosphorylation of Raptor mediates a metabolic checkpoint. Mol. Cell 30, 214–226 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Hardie, D. G., Carling, D. & Carlson, M. The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Ann. Rev. Biochem. 67, 821–855 (1998).

    Article  CAS  PubMed  Google Scholar 

  96. Carroll, K. C., Viollet, B. & Suttles, J. AMPKα1 deficiency amplifies proinflammatory myeloid APC activity and CD40 signaling. J. Leukoc. Biol. 94, 1113–1121 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Russell, R. C. et al. ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nat. Cell Biol. 15, 741–750 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kang, K. Y. et al. Metformin downregulates TH17 cells differentiation and attenuates murine autoimmune arthritis. Int. Immunopharmacol. 16, 85–92 (2013).

    Article  CAS  PubMed  Google Scholar 

  99. Araki, K. et al. mTOR regulates memory CD8 T-cell differentiation. Nature 460, 108–112 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Rao, R. R., Li, Q., Odunsi, K. & Shrikant, P. A. The mTOR kinase determines effector versus memory CD8+ T cell fate by regulating the expression of transcription factors T-bet and eomesodermin. Immunity 32, 67–78 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Delgoffe, G. M. et al. The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity 30, 832–844 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Procaccini, C. et al. An oscillatory switch in mTOR kinase activity sets regulatory T cell responsiveness. Immunity 33, 929–941 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Zeng, H. et al. mTORC1 couples immune signals and metabolic programming to establish Treg-cell function. Nature 499, 485–490 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Yang, Z., Fujii, H., Mohan, S. V., Goronzy, J. J. & Weyand, C. M. Phosphofructokinase deficiency impairs ATP generation, autophagy, and redox balance in rheumatoid arthritis T cells. J. Exp. Med. 210, 2119–2134 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Yang, Z., Matteson, E. L., Goronzy, J. J. & Weyand, C. M. T-cell metabolism in autoimmune disease. Arthritis Res. Ther. 17, 29 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kato, H. & Perl, A. Mechanistic taret of rapamycin complex 1 expands TH17 and IL-4+ double negative T cells and contracts regulatory T cells in systemic lupus erythematosus. J. Immunol. 192, 4134–4144 (2014).

    Article  CAS  PubMed  Google Scholar 

  107. Fernandez, D. R. & Perl, A. mTOR signaling: a central pathway to pathogenesis in systemic lupus erythematosus? Discov. Med. 9, 173–178 (2010).

    PubMed  PubMed Central  Google Scholar 

  108. Moulton, V. R. & Tsokos, G. C. Abnormalities of T cell signaling in systemic lupus erythematosus. Arth. Res. Ther. 13, 207 (2010).

    Article  CAS  Google Scholar 

  109. Lai, Z.-W. et al. mTOR activation triggers IL-4 production and necrotic death of double-negative T cells in patients with systemic lupus eryhthematosus. J. Immunol. 191, 2236–2246 (2013).

    Article  CAS  PubMed  Google Scholar 

  110. Perl, A. mTOR activation is a biomarker and a central pathway to autoimmune disorders, cancer, obesity, and aging. Ann. NY Acad. Sci. 1346, 33–44 (2015).

    Article  CAS  PubMed  Google Scholar 

  111. Tai, T. S., Pai, S. Y. & Ho, I. C. GATA-3 regulates the homeostasis and activation of CD8+ T cells. J. Immunol. 190, 428–437 (2013).

    Article  CAS  PubMed  Google Scholar 

  112. Tomasoni, R. et al. Rapamycin-sensitive signals control TCR/CD28-driven Ifng, Il4 and Foxp3 transcription and promoter region methylation. Eur. J. Immunol. 41, 2086–2096 (2011).

    Article  CAS  PubMed  Google Scholar 

  113. Sieling, P. A. et al. Human double-negative T cells in systemic lupus erythematosus provide help for IgG and are restricted by CD1c. J. Immunol. 165, 5338–5344 (2000).

    Article  CAS  PubMed  Google Scholar 

  114. Shivakumar, S., Tsokos, G. C. & Datta, S. K. T cell receptor α/β expressing double-negative (CD4−/CD8−) and CD4+ T helper cells in humans augment the production of pathogenic anti-DNA autoantibodies associated with lupus nephritis. J. Immunol. 143, 103–112 (1989).

    CAS  PubMed  Google Scholar 

  115. Umekawa, M. & Klionsky, D. J. Ksp1 kinase regulates autophagy via the target of rapamycin complex 1 (TORC1) pathway. J. Biol. Chem. 287, 16300–16310 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Odegard, J. M. et al. ICOS-dependent extrafollicular helper T cells elicit IgG production via IL-21 in systemic autoimmunity. J. Exp. Med. 205, 2873–2886 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Le Coz, C. et al. Circulating TFH subset distribution is strongly affected in lupus patients with an active disease. PLoS ONE 8, e75319 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Singh, N., Birkenbach, M., Caza, T., Perl, A. & Cohen, P. L. Tuberous sclerosis and fulminant lupus in a young woman. J. Clin. Rheumatol. 19, 134–137 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Wu, T. et al. Shared signaling networks active in B cells isolated from genetically distinct mouse models of lupus. J. Clin. Invest. 117, 2186–2196 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Stylianou, K. et al. The PI3K/Akt/mTOR pathway is activated in murine lupus nephritis and downregulated by rapamycin. Nephrol. Dial. Transplant. 26, 498–508 (2011).

    Article  CAS  PubMed  Google Scholar 

  121. Tan, E. M. et al. The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 25, 1271–1277 (1982).

    Article  CAS  PubMed  Google Scholar 

  122. Hochberg, M. C. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 40, 1725 (1997).

    Article  CAS  PubMed  Google Scholar 

  123. Petri, M. et al. Derivation and validation of the Systemic Lupus International Collaborating Clinics classification criteria for systemic lupus erythematosus. Arthritis Rheum. 64, 2677–2686 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Miyakis, S. et al. International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). J. Thromb. Haemost. 4, 295–306 (2006).

    Article  CAS  PubMed  Google Scholar 

  125. Canaud, G. et al. Inhibition of the mTORC pathway in the antiphospholipid syndrome. N. Engl. J. Med. 371, 303–312 (2014).

    Article  PubMed  CAS  Google Scholar 

  126. Lai, Z. W., Marchena-Mendez, I. & Perl, A. Oxidative stress and Treg depletion in lupus patients with anti-phospholipid syndrome. Clin. Immunol. 158, 148–152 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Doherty, E., Oaks, Z. & Perl, A. Increased mitochondrial electron transport chain activity at complex I is regulated by N-acetylcysteine in lymphocytes of patients with systemic lupus erythematosus. Antiox. Redox Signal. 21, 56–65 (2014).

    Article  CAS  Google Scholar 

  128. Yin, Y. et al. Normalization of CD4+ T cell metabolism reverses lupus. Sci. Transl. Med. 7, 274ra18 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Hanczko, R. et al. Prevention of hepatocarcinogenesis and acetaminophen-induced liver failure in transaldolase-deficient mice by N-acetylcysteine. J. Clin. Invest. 119, 1546–1557 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Perl, A., Hanczko, R., Telarico, T., Oaks, Z. & Landas, S. Oxidative stress, inflammation and carcinogenesis are controlled through the pentose phosphate pathway by transaldolase. Trends Mol. Med. 7, 395–403 (2011).

    Article  CAS  Google Scholar 

  131. Malemud, C. J. The PI3K/Akt/PTEN/mTOR pathway: a fruitful target for inducing cell death in rheumatoid arthritis? Future Med. Chem. 7, 1137–1147 (2015).

    Article  CAS  PubMed  Google Scholar 

  132. Messaoudi, I., Warner, J. & Nikolich-Zugich, J. Age-related CD8+ T cell clonal expansions express elevated levels of CD122 and CD127 and display defects in perceiving homeostatic signals. J. Immunol. 177, 2784–2792 (2006).

    Article  CAS  PubMed  Google Scholar 

  133. Laragione, T. & Gulko, P. S. mTOR regulates the invasive properties of synovial fibroblasts in rheumatoid arthritis. Mol. Med. 16, 352–358 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Saxena, A., Raychaudhuri, S. K. & Raychaudhuri, S. P. Interleukin-17-induced proliferation of fibroblast-like synovial cells is mTOR dependent. Arthritis Rheum. 63, 1465–1466 (2011).

    Article  CAS  PubMed  Google Scholar 

  135. Reveille, J. D. Biomarkers for diagnosis, monitoring of progression, and treatment responses in ankylosing spondylitis and axial spondyloarthritis. Clin. Rheumatol. 34, 1009–1018 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  136. International Genetics of Ankylosing Spondylitis Consortium (IGAS) et al. Identification of multiple risk variants for ankylosing spondylitis through high-density genotyping of immune-related loci. Nat. Genet. 45, 730–738 (2013).

  137. Robinson, P. C. et al. ERAP2 is associated with ankylosing spondylitis in HLA-B27-positive and HLA-B27-negative patients. Ann. Rheum. Dis. 74, 1627–1629 (2015).

    Article  CAS  PubMed  Google Scholar 

  138. Evans, D. M. et al. Interaction between ERAP1 and HLA-B27 in ankylosing spondylitis implicates peptide handling in the mechanism for HLA-B27 in disease susceptibility. Nat. Genet. 43, 761–767 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Appel, H. et al. In situ analysis of interleukin-23 and interleukin-12 positive cells in the spine of patients with ankylosing spondylitis. Arthritis Rheum. 65, 1522–1529 (2013).

    Article  CAS  PubMed  Google Scholar 

  140. Lai, N. S. et al. Aberrant expression of microRNAs in T cells from patients with ankylosing spondylitis contributes to the immunopathogenesis. Clin. Exp. Immunol. 173, 47–57 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Hou, C., Zhu, M., Sun, M. & Lin, Y. MicroRNA let-7i induced autophagy to protect T cell from apoptosis by targeting IGF1R. Biochem. Biophys. Res. Commun. 453, 728–734 (2014).

    Article  CAS  PubMed  Google Scholar 

  142. Kooijman, R., Lauf, J. J., Kappers, A. C. & Rijkers, G. T. Insulin-like growth factor induces phosphorylation of immunoreactive insulin receptor substrate and its association with phosphatidylinositol-3 kinase in human thymocytes. J. Exp. Med. 182, 593–597 (1995).

    Article  CAS  PubMed  Google Scholar 

  143. Kooijman, R., Scholtens, L. E., Rijkers, G. T. & Zegers, B. J. Differential expression of type I insulin-like growth factor receptors in different stages of human T cells. Eur. J. Immunol. 25, 931–935 (1995).

    Article  CAS  PubMed  Google Scholar 

  144. Xu, W. D. et al. Up-regulation of fatty acid oxidation in the ligament as a contributing factor of ankylosing spondylitis: a comparative proteomic study. J. Proteom. 113, 57–72 (2015).

    Article  CAS  Google Scholar 

  145. Mease, P. J. Inhibition of interleukin-17, interleukin-23 and the TH17 cell pathway in the treatment of psoriatic arthritis and psoriasis. Curr. Opin. Rheumatol. 27, 127–133 (2015).

    Article  CAS  PubMed  Google Scholar 

  146. Helms, C. et al. A putative RUNX1 binding site variant between SLC9A3R1 and NAT9 is associated with susceptibility to psoriasis. Nat. Genet. 35, 349–356 (2003).

    Article  CAS  PubMed  Google Scholar 

  147. Mitra, A., Raychaudhuri, S. K. & Raychaudhuri, S. P. IL-22 induced cell proliferation is regulated by PI3K/Akt/mTOR signaling cascade. Cytokine 60, 38–42 (2012).

    Article  CAS  PubMed  Google Scholar 

  148. Peled, M. et al. Analysis of programmed death-1 in patients with psoriatic arthritis. Inflammation 38, 1573–1579 (2015).

    Article  CAS  PubMed  Google Scholar 

  149. Javier, A. F. et al. Rapamycin (sirolimus) inhibits proliferating cell nuclear antigen expression and blocks cell cycle in the G1 phase in human keratinocyte stem cells. J. Clin. Invest. 99, 2094–2099 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Buerger, C., Malisiewicz, B., Eiser, A., Hardt, K. & Boehncke, W. H. Mammalian target of rapamycin and its downstream signalling components are activated in psoriatic skin. Br. J. Dermatol. 169, 156–159 (2013).

    Article  CAS  PubMed  Google Scholar 

  151. Young, C. N. et al. Reactive oxygen species in tumor necrosis factor-α-activated primary human keratinocytes: implications for psoriasis and inflammatory skin disease. J. Invest. Dermatol. 128, 2606–2614 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Wynn, T. A. Cellular and molecular mechanisms of fibrosis. J. Pathol. 214, 199–210 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Wilkes, M. C. et al. Transforming growth factor-β activation of phosphatidylinositol 3-kinase is independent of Smad2 and Smad3 and regulates fibroblast responses via p21-activated kinase-2. Cancer Res. 65, 10431–10440 (2005).

    Article  CAS  PubMed  Google Scholar 

  154. Rahimi, R. A. et al. Distinct roles for mammalian target of rapamycin complexes in the fibroblast response to transforming growth factor-β. Cancer Res. 69, 84–93 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Li, J. et al. Rictor/mTORC2 signaling mediates TGFβ1-induced fibroblast activation and kidney fibrosis. Kidney Int. 88, 515–527 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Brandt, K. D., Dieppe, P. & Radin, E. Etiopathogenesis of osteoarthritis. Med. Clin. North Am. 93, 1–24 (2009).

    Article  PubMed  Google Scholar 

  157. Guan, Y., Yang, X., Yang, W., Charbonneau, C. & Chen, Q. Mechanical activation of mammalian target of rapamycin pathway is required for cartilage development. FASEB J. 28, 4470–4481 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Lotz, M. & Carames, B. Autophagy and cartilage homeostasis mechanisms in joint health, aging and osteoarthritis. Nat. Rev. Rheumatol. 7, 579–587 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Zhang, Y. et al. Cartilage-specific deletion of mTOR upregulates autophagy and protects mice from osteoarthritis. Ann. Rheum. Dis. 74, 1432–1440 (2015).

    Article  CAS  PubMed  Google Scholar 

  160. Harrison, D. E. et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460, 392–395 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Sabatini, D. M., Erdjument-Bromage, H., Lui, M., Tempst, P. & Snyder, S. H. RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell 78, 35–43 (1994).

    Article  CAS  PubMed  Google Scholar 

  162. US National Library of Medicine. ClinicalTrials.gov [online].

  163. Chiarini, F., Evangelisti, C., McCubrey, J. A. & Martelli, A. M. Current treatment strategies for inhibiting mTOR in cancer. Trends Pharm. Sci. 36, 124–135 (2015).

    Article  CAS  PubMed  Google Scholar 

  164. Thoreen, C. C. et al. An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J. Biol. Chem. 284, 8023–8032 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Dancey, J. E. Therapeutic targets: mTOR and related pathways. Cancer Biol. Ther. 5, 1065–1073 (2006).

    Article  CAS  PubMed  Google Scholar 

  166. Peng, L., Zhou, Y., Ye, X. & Zhao, Q. Treatment-related fatigue with everolimus and temsirolimus in patients with cancer meta-analysis of clinical trials. Tumor Biol. 36, 643–654 (2014).

    Article  CAS  Google Scholar 

  167. Markman, B. et al. Phase I safety, pharmacokinetic, and pharmacodynamic study of the oral phosphatidylinositol-3-kinase and mTOR inhibitor BGT226 in patients with advanced solid tumors. Ann. Oncol. 23, 2399–2408 (2012).

    Article  CAS  PubMed  Google Scholar 

  168. Aghdasi, B. et al. FKBP12, the 12-kDa FK506-binding protein, is a physiologic regulator of the cell cycle. Proc. Natl Acad. Sci. USA 98, 2425–2430 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Dolinski, K., Muir, S., Cardenas, M. & Heitman, J. All cyclophilins and FK506 binding proteins are, individually and collectively, dispensable for viability in Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 94, 13093–13098 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Houde, V. P. et al. Chronic rapamycin treatment causes glucose intolerance and hyperlipidemia by upregulating hepatic gluconeogenesis and impairing lipid deposition in adipose tissue. Diabetes 59, 1338–1348 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Fraenkel, M. et al. mTOR inhibition by rapamycin prevents β-cell adaptation to hyperglycemia and exacerbates the metabolic state in type 2 diabetes. Diabetes 57, 945–957 (2008).

    Article  CAS  PubMed  Google Scholar 

  172. Fang, Y. et al. Duration of rapamycin treatment has differential effects on metabolism in mice. Cell. Metab. 17, 456–462 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Schenone, S., Brullo, C., Musumeci, F., Radi, M. & Botta, M. ATP-competitive inhibitors of mTOR: an update. Curr. Med. Chem. 18, 2995–3014 (2011).

    Article  CAS  PubMed  Google Scholar 

  174. Wang, B. T. et al. The mammalian target of rapamycin regulates cholesterol biosynthetic gene expression and exhibits a rapamycin-resistant transcriptional profile. Proc. Natl Acad. Sci. USA 108, 15201–15206 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Ramos-Barron, A. et al. Prevention of murine lupus disease in (NZB × NZW)F1 mice by sirolimus treatment. Lupus 16, 775–781 (2007).

    Article  CAS  PubMed  Google Scholar 

  176. Lui, S. L. et al. Rapamycin attenuates the severity of established nephritis in lupus-prone NZB/W F1 mice. Nephrol. Dial. Transplant. 23, 2768–2776 (2008).

    Article  CAS  PubMed  Google Scholar 

  177. Yap, D. Y., Ma, M. K., Tang, C. S. & Chan, T. M. Proliferation signal inhibitors in the treatment of lupus nephritis: preliminary experience. Nephrology (Carlton) 17, 676–680 (2012).

    Article  CAS  Google Scholar 

  178. US National Library of Medicine. NCT00779194. ClinicalTrials.gov [online], (2015).

  179. Reitamo, S. et al. Efficacy of sirolimus (rapamycin) administered concomitantly with a subtherapeutic dose of cyclosporin in the treatment of severe psoriasis: a randomized controlled trial. Brit. J. Dermatol. 145, 438–445 (2001).

    Article  CAS  Google Scholar 

  180. Niculescu, F. et al. Pathogenic T cells in murine lupus exhibit spontaneous signaling activity through phosphatidylinositol 3-kinase and mitogen-activated protein kinase pathways. Arthritis Rheum. 48, 1071–1079 (2003).

    Article  CAS  PubMed  Google Scholar 

  181. Barber, D. F. et al. PI3Kγ inhibition blocks glomerulonephritis and extends lifespan in a mouse model of systemic lupus. Nat. Med. 11, 933–935 (2005).

    Article  CAS  PubMed  Google Scholar 

  182. Suarez-Fueyo, A., Barber, D. F., Martinez-Ara, J., Zea-Mendoza, A. C. & Carrera, A. C. Enhanced phosphoinositide 3-kinase δ activity is a frequent event in systemic lupus erythematosus that confers resistance to activation-induced T cell death. J. Immunol. 187, 2376–2385 (2011).

    Article  CAS  PubMed  Google Scholar 

  183. Suarez-Fueyo, A. et al. Inhibition of PI3Kγ reduces kidney infiltration by macrophages and ameliorates systemic lupus in the mouse. J. Immunol. 193, 544–554 (2014).

    Article  CAS  PubMed  Google Scholar 

  184. Chen, H. et al. Leptin and NAP2 promote mesenchymal stem cell senescence through activation of PI3K/Akt pathway in patients with systemic lupus erythematosus. Arthritis Rheumatol. 67, 2383–2393 (2015).

    Article  CAS  PubMed  Google Scholar 

  185. Bartok, B. et al. PI3 kinase δ is a key regulator of synoviocyte function in rheumatoid arthritis. Am. J. Pathol. 180, 1906–1916 (2012).

    Article  CAS  PubMed  Google Scholar 

  186. Perl, A. Oxidative stress in the pathology and treatment of systemic lupus erythematosus. Nat. Rev. Rheumatol. 9, 674–686 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Gergely, P. J. et al. Persistent mitochondrial hyperpolarization, increased reactive oxygen intermediate production, and cytoplasmic alkalinization characterize altered IL-10 signaling in patients with systemic lupus erythematosus. J. Immunol. 169, 1092–1101 (2002).

    Article  CAS  PubMed  Google Scholar 

  188. Li, Y., Gorelik, G., Strickland, F. M. & Richardson, B. C. Oxidative stress, T cell DNA methylation and lupus. Arthritis Rheum. 66, 1574–1582 (2014).

    Article  CAS  Google Scholar 

  189. Gehrke, N. et al. Oxidative damage of DNA confers resistance to cytosolic nuclease TREX1 degradation and potentiates STING-dependent immune sensing. Immunity 39, 482–495 (2013).

    Article  CAS  PubMed  Google Scholar 

  190. Scofield, R. H. et al. Modification of lupus-associated 60-kDa Ro protein with the lipid oxidation product 4-hydroxy-2-nonenal increases antigenicity and facilitates epitope spreading. Free Radic. Biol. Med. 38, 719–728 (2005).

    Article  CAS  PubMed  Google Scholar 

  191. Otaki, N. et al. Identification of a lipid peroxidation product as the source of oxidation-specific epitopes recognized by anti-DNA autoantibodies. J. Biol. Chem. 285, 33834–33842 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Gergely, P. J. et al. Mitochondrial hyperpolarization and ATP depletion in patients with systemic lupus erythematosus. Arthritis Rheum. 46, 175–190 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Shah, D., Aggarwal, A., Bhatnagar, A., Kiran, R. & Wanchu, A. Association between T lymphocyte sub-sets apoptosis and peripheral blood mononuclear cells oxidative stress in systemic lupus erythematosus. Free Radic. Res. 45, 559–567 (2011).

    Article  CAS  PubMed  Google Scholar 

  194. Shah, D., Kiran, R., Wanchu, A. & Bhatnagar, A. Oxidative stress in systemic lupus erythematosus: relationship to TH1 cytokine and disease activity. Immunol. Lett. 129, 7–12 (2010).

    Article  CAS  PubMed  Google Scholar 

  195. Li, K. J. et al. Deranged bioenergetics and defective redox capacity in T lymphocytes and neutrophils are related to cellular dysfunction and increased oxidative stress in patients with active systemic lupus erythematosus. Clin. Dev. Immunol. 2012, 548516 (2012).

    PubMed  Google Scholar 

  196. Nambiar, M. P. et al. Oxidative stress is involved in the heat stress-induced downregulation of TCRζ chain expression and TCR/CD3-mediated [Ca2+]i response in human T-lymphocytes. Cell. Immunol. 215, 151–161 (2002).

    Article  CAS  PubMed  Google Scholar 

  197. Suwannaroj, S., Lagoo, A., Keisler, D. & McMurray, R. W. Antioxidants suppress mortality in the female NZB × NZW F1 mouse model of systemic lupus erythematosus (SLE). Lupus 10, 258–265 (2001).

    Article  CAS  PubMed  Google Scholar 

  198. Bergamo, P. et al. Conjugated linoleic acid enhances glutathione synthesis and attenuates pathological signs in MRL/MpJ-Faslpr mice. J. Lipid Res. 47, 2382–2391 (2006).

    Article  CAS  PubMed  Google Scholar 

  199. Bergamo, P., Maurano, F. & Rossi, M. Phase 2 enzyme induction by conjugated linoleic acid improves lupus-associated oxidative stress. Free Radic. Biol. Med. 43, 71–79 (2007).

    Article  CAS  PubMed  Google Scholar 

  200. Herzenberg, L. A. et al. Glutathione deficiency is associated with impaired survival in HIV disease. Proc. Natl Acad. Sci. USA 94, 1967–1972 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Travaline, J. M. et al. Effect of N-acetylcysteine on human diaphragm strength and fatigability. Am. J. Resp. Crit. Care Med. 156, 1567–1571 (1997).

    Article  CAS  PubMed  Google Scholar 

  202. Demedts, M. et al. High-dose acetylcysteine in idiopathic pulmonary fibrosis. N. Engl. J. Med. 353, 2229–2242 (2005).

    Article  CAS  PubMed  Google Scholar 

  203. Brattstrom, C. et al. Hyperlipidemia in renal transplant recipients treated with sirolimus (rapamycin). Transplantation 65, 1272–1274 (1998).

    Article  CAS  PubMed  Google Scholar 

  204. Qi, W. X., Huang, Y. J., Yao, Y., Shen, Z. & Min, D. L. Incidence and risk of treatment-related mortality with mTOR inhibitors everolimus and temsirolimus in cancer patients: a meta-analysis. PLoS ONE 8, e65166 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Trager, J. & Ward, M. M. Mortality and causes of death in systemic lupus erythematosus. Curr. Opin. Rheumatol. 13, 345–351 (2001).

    Article  CAS  PubMed  Google Scholar 

  206. Lee, R., Margaritis, M., Channon, K. M. & Antoniades, C. Evaluating oxidative stress in human cardiovascular disease: methodological aspects and considerations. Curr. Med. Chem. 19, 2504–2520 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Tepel, M., van der Giet, M., Statz, M., Jankowski, J. & Zidek, W. The antioxidant acetylcysteine reduces cardiovascular events in patients with end-stage renal failure. Circulation 107, 992–995 (2003).

    Article  CAS  PubMed  Google Scholar 

  208. Kim, Y. C. & Guan, K. L. mTOR: a pharmacologic target for autophagy regulation. J. Clin. Invest. 125, 25–32 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Yan, H., Zhou, H. F., Hu, Y. & Pham, C. T. Suppression of experimental arthritis through AMP-activated protein kinase activation and autophagy modulation. J. Rheum. Dis. Treat. 1, 5 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  210. Martinet, W., De Loof, H. & De Meyer, G. R. mTOR inhibition: a promising strategy for stabilization of atherosclerotic plaques. Atherosclerosis 233, 601–607 (2014).

    Article  CAS  PubMed  Google Scholar 

  211. Balasubramaniam, S. et al. Novel heterozygous mutations in TALDO1 gene causing transaldolase deficiency and early infantile liver failure. J. Pediatr. Gastroenterol. Nutr. 52, 113–116 (2011).

    Article  CAS  PubMed  Google Scholar 

  212. Taniguchi, M. et al. Regulation of autophagy and its associated cell death by 'sphingolipid rheostat': reciprocal role of ceramide and sphingosine 1-phosphate in the mammalian target of rapamycin pathway. J. Biol. Chem. 287, 39898–39910 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Brinkmann, V. et al. Fingolimod (FTY720): discovery and development of an oral drug to treat multiple sclerosis. Nat. Rev. Drug Discov. 9, 883–897 (2010).

    Article  CAS  PubMed  Google Scholar 

  214. Okazaki, H. et al. Effects of FTY720 in MRL-lpr/lpr mice: therapeutic potential in systemic lupus erythematosus. J. Rheumatol. 29, 707–716 (2002).

    CAS  PubMed  Google Scholar 

  215. Wenderfer, S. E., Stepkowski, S. M. & Braun, M. C. Prolonged survival and reduced renal injury in MRL/lpr mice treated with a novel sphingosine-1-P receptor agonist. Kidney Int. 74, 1319–1326 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Koga, T. et al. CaMK4-dependent activation of AKT/mTOR and CREM-α underlies autoimmunity-associated TH17 imbalance. J. Clin. Invest. 124, 2234–2245 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Koga, T. et al. KN-93, an inhibitor of calcium/calmodulin-dependent protein kinase IV, promotes generation and function of Foxp3+ regulatory T cells in MRL/lpr mice. Autoimmunity 47, 445–450 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Ichinose, K., Juang, Y. T., Crispin, J. C., Kis-Toth, K. & Tsokos, G. C. Inhibition of calcium/calmodulin-dependent protein kinase type IV results in suppression of autoimmunity and organ pathology in lupus-prone mice. Arthritis Rheum. 63, 523–529 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Fujikawa, K. et al. Calcium/calmodulin-dependent protein kinase II (CaMKII) regulates tumour necrosis factor-related apoptosis inducing ligand (TRAIL)-mediated apoptosis of fibroblast-like synovial cells (FLS) by phosphorylation of Akt. Clin. Exp. Rheumatol. 27, 952–957 (2009).

    CAS  PubMed  Google Scholar 

  220. Westra, J. et al. Expression and regulation of HIF-1α in macrophages under inflammatory conditions; significant reduction of VEGF by CaMKII inhibitor. BMC Musculoskelet. Disord. 11, 61 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  221. Yepuri, G. et al. Positive crosstalk between arginase-II and S6K1 in vascular endothelial inflammation and aging. Aging Cell 11, 1005–1016 (2012).

    Article  CAS  PubMed  Google Scholar 

  222. Xiong, Y. et al. ARG2 impairs endothelial autophagy through regulation of MTOR and PRKAA/AMPK signaling in advanced atherosclerosis. Autophagy 10, 2223–2238 (2014).

    Article  CAS  PubMed  Google Scholar 

  223. Elloso, M. M. et al. Protective effect of the immunosuppressant sirolimus against aortic atherosclerosis in apo E-deficient mice. Am. J. Transplant. 3, 562–569 (2003).

    Article  CAS  PubMed  Google Scholar 

  224. Manzi, S. et al. Age-specific incidence rates of myocardial infarction and angina in women with systemic lupus erythematosus: comparison with the Framingham study. Am. J. Epidemiol. 145, 408–415 (1997).

    Article  CAS  PubMed  Google Scholar 

  225. Mackey, R. H. et al. Rheumatoid arthritis, anti-CCP positivity, and cardiovascular disease risk in the Women's Health Initiative. Arthritis Rheumatol. 67, 2311–2322 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Avina-Zubieta, J. A. et al. Risk of cardiovascular mortality in patients with rheumatoid arthritis: a meta-analysis of observational studies. Arthritis Care Res. 59, 1690–1697 (2008).

    Article  Google Scholar 

  227. Soefje, S. A., Karnad, A. & Brenner, A. J. Common toxicities of mammalian target of rapamycin inhibitors. Target. Oncol. 6, 125–129 (2011).

    Article  PubMed  Google Scholar 

  228. Doran, M. F., Crowson, C. S., Pond, G. R., O'Fallon, W. M. & Gabriel, S. E. Frequency of infection in patients with rheumatoid arthritis compared with controls: a population-based study. Arthritis Rheum. 46, 2287–2293 (2002).

    Article  PubMed  Google Scholar 

  229. Paul, M. et al. Methotrexate promotes platelet apoptosis via JNK-mediated mitochondrial damage: alleviation by N-acetylcysteine and N-acetylcysteine amide. PLoS ONE 10, e0127558 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  230. Laplante, M. & Sabatini, D. M. Regulation of mTORC1 and its impact on gene expression at a glance. J. Cell Sci. 126, 1713–1719 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Lui, S. L. et al. Rapamycin prevents the development of nephritis in lupus-prone NZB/W F1 mice. Lupus 17, 305–313 (2008).

    Article  CAS  PubMed  Google Scholar 

  232. Kshirsagar, S. et al. Akt-dependent enhanced migratory capacity of TH17 cells from children with lupus nephritis. J. Immunol. 193, 4895–4903 (2014).

    Article  CAS  PubMed  Google Scholar 

  233. Tian, J., Wang, Y., Liu, X., Zhou, X. & Li, R. Rapamycin ameliorates IgA nephropathy via cell cycle-dependent mechanisms. Exp. Biol. Med. (Maywood) 240, 936–945 (2015).

    Article  CAS  Google Scholar 

  234. Cruzado, J. M. et al. Low-dose sirolimus combined with angiotensin-converting enzyme inhibitor and statin stabilizes renal function and reduces glomerular proliferation in poor prognosis IgA nephropathy. Nephrol. Dial. Transplant. 26, 3596–3602 (2011).

    Article  CAS  PubMed  Google Scholar 

  235. Zou, Y. et al. Oligodendrocyte precursor cell-intrinsic effect of Rheb1 controls differentiation and mediates mTORC1-dependent myelination in brain. J. Neurosci. 34, 15764–15778 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  236. Seyfarth, H. J., Hammerschmidt, S., Halank, M., Neuhaus, P. & Wirtz, H. R. Everolimus in patients with severe pulmonary hypertension: a safety and efficacy pilot trial. Pulm. Circ. 3, 632–638 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  237. Raychaudhuri, S. K. & Raychaudhuri, S. P. mTOR signaling cascade in psoriatic disease: double kinase mTOR inhibitor a novel therapeutic target. Indian J. Dermatol. 59, 67–70 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  238. Mitra, A. et al. Dual mTOR inhibition is required to prevent TGF-β-mediated fibrosis: implications for scleroderma. J. Invest. Dermatol. 135, 2873–2876 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Biniecka, M. et al. Hypoxia induces mitochondrial mutagenesis and dysfunction in inflammatory arthritis. Arth. Rheum. 63, 2172–2182 (2011).

    Article  CAS  Google Scholar 

  240. Nahir, A. M. et al. Effects of oral N-acetylcysteine on both ocular and oral manifestations of Sjögren's syndrome. 46, 187–192 (1989).

  241. Walters, M. T., Rubin, C. E. & Keightley, S. J. A double-blind, cross-over, study of oral N-acetylcysteine in Sjögren's syndrome. 15, 253–258 (1986).

  242. Kelly, C. & Saravanan, V. Treatment strategies for a rheumatoid arthritis patient with interstitial lung disease. Exp. Opin. Pharmacother. 9, 3221–3230 (2008).

    Article  CAS  Google Scholar 

  243. Son, H. J. et al. Metformin attenuates experimental autoimmune arthritis through reciprocal regulation of TH17/Treg balance and osteoclastogenesis. Mediators Inflamm. 2014, 973986 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The author's research work is supported in part by grants AI 048079 and AI 072648 from the National Institutes of Health and the Central New York Community Foundation, and Investigator-Initiated Research Grant P0468X1-4470/WS1234172 from Pfizer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andras Perl.

Ethics declarations

Competing interests

The author declares no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perl, A. Activation of mTOR (mechanistic target of rapamycin) in rheumatic diseases. Nat Rev Rheumatol 12, 169–182 (2016). https://doi.org/10.1038/nrrheum.2015.172

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2015.172

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing