Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanistic biomarkers for clinical decision making in rheumatic diseases

Abstract

The use of biomarkers is becoming increasingly intrinsic to the practice of medicine and holds great promise for transforming the practice of rheumatology. Biomarkers have the potential to aid clinical diagnosis when symptoms are present or to provide a means of detecting early signs of disease when they are not. Some biomarkers can serve as early surrogates of eventual clinical outcomes or guide therapeutic decision making by enabling identification of individuals likely to respond to a specific therapy. Using biomarkers might reduce the costs of drug development by enabling individuals most likely to respond to be enrolled in clinical trials, thereby minimizing the number of participants required. In this Review, we discuss the current use and the potential of biomarkers in rheumatology and in select fields at the forefront of biomarker research. We emphasize the value of different types of biomarkers, addressing the concept of 'actionable' biomarkers, which can be used to guide clinical decision making, and 'mechanistic' biomarkers, a subtype of actionable biomarker that is embedded in disease pathogenesis and, therefore, represents a potentially superior biomarker. We provide examples of actionable and mechanistic biomarkers currently available, and discuss how development of such biomarkers could revolutionize clinical practice and drug development.

Key Points

  • Biomarkers can aid in the management of disease by facilitating diagnosis and stratification of disease, as well as assessment or prediction of disease severity or response to therapy

  • Drug development can be facilitated by biomarkers that enable selective recruitment of individuals likely to benefit from the intervention being tested or rapid assessment of response to a candidate therapeutic

  • Biomarkers rooted in the mechanism underlying the disease (mechanistic biomarkers) are likely to be more useful than those that are byproducts of the disease process (descriptive biomarkers)

  • Mechanistic biomarkers are more likely to perform better than descriptive biomarkers in differential diagnosis of disease, disease stratification and targeting of treatment, and as surrogate endpoints in clinical trials

  • Cytokines, chemokines, autoantibodies, microRNAs, gene-expression profiles and immune-cell types can all act as mechanistic biomarkers for rheumatic diseases

  • Mechanistic biomarkers might help to establish a molecular taxonomy of diseases

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Possible clinical uses of actionable biomarkers at different stages of the development of RA.
Figure 2: Mechanistic biomarkers of autoimmune diseases.
Figure 3: Types and uses of descriptive and mechanistic biomarkers for autoimmune rheumatic diseases.

Similar content being viewed by others

References

  1. Atkinson, A. J. et al. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin. Pharmacol. Ther. 69, 89–95 (2001).

    Article  Google Scholar 

  2. Logothetis, N. K. What we can do and what we cannot do with fMRI. Nature 453, 869–878 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Fu, Q., Schoenhoff, F. S., Savage, W. J., Zhang, P. & Van Eyk, J. E. Multiplex assays for biomarker research and clinical application: translational science coming of age. Proteomics Clin. Appl. 4, 271–284 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Cho, J. H. & Gregersen, P. K. Genomics and the multifactorial nature of human autoimmune disease. N. Engl. J. Med. 365, 1612–1623 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Walsh, G. M. Canakinumab for the treatment of cryopyrin-associated periodic syndromes. Drugs Today (Barc.) 45, 731–735 (2009).

    Article  CAS  Google Scholar 

  6. Karlson, E. W. et al. Gene-environment interaction between HLA-DRB1 shared epitope and heavy cigarette smoking in predicting incident rheumatoid arthritis. Ann. Rheum. Dis. 69, 54–60 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Arbuckle, M. R. et al. Development of autoantibodies before the clinical onset of systemic lupus erythematosus. N. Engl. J. Med. 349, 1526–1533 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Berger, T. et al. Antimyelin antibodies as a predictor of clinically definite multiple sclerosis after a first demyelinating event. N. Engl. J. Med. 349, 139–145 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Soeldner, J. S., Tuttleman, M., Srikanta, S., Ganda, O. P. & Eisenbarth, G. S. Insulin-dependent diabetes mellitus and autoimmunity: islet-cell autoantibodies, insulin autoantibodies, and beta-cell failure. N. Engl. J. Med. 313, 893–894 (1985).

    Article  CAS  PubMed  Google Scholar 

  10. Sokolove, J. et al. Autoantibody epitope spreading in the pre-clinical phase predicts progression to rheumatoid arthritis. PLoS ONE 7, e35296 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Klarenbeek, N. B. et al. The impact of four dynamic, goal-steered treatment strategies on the 5-year outcomes of rheumatoid arthritis patients in the BeSt study. Ann. Rheum. Dis. 70, 1039–1046 (2011).

    Article  PubMed  Google Scholar 

  12. Guermazi, A. et al. Assessment of synovitis with contrast-enhanced MRI using a whole-joint semiquantitative scoring system in people with, or at high risk of, knee osteoarthritis: the MOST study. Ann. Rheum. Dis. 70, 805–811 (2011).

    Article  PubMed  Google Scholar 

  13. Hunter, D. J. et al. The reliability of a new scoring system for knee osteoarthritis MRI and the validity of bone marrow lesion assessment: BLOKS (Boston Leeds Osteoarthritis Knee Score). Ann. Rheum. Dis. 67, 206–211 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Peterfy, C. G. et al. Whole-Organ Magnetic Resonance Imaging Score (WORMS) of the knee in osteoarthritis. Osteoarthritis Cartilage 12, 177–190 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Blanco, F. J. & Ruiz-Romero, C. Osteoarthritis: metabolomic characterization of metabolic phenotypes in OA. Nat. Rev. Rheumatol. 8, 130–132 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Hoch, J. M., Mattacola, C. G., Medina McKeon, J. M., Howard, J. S. & Lattermann, C. Serum cartilage oligomeric matrix protein (sCOMP) is elevated in patients with knee osteoarthritis: a systematic review and meta-analysis. Osteoarthritis Cartilage 19, 1396–1404 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Attur, M., Krasnokutsky-Samuels, S., Samuels, J. & Abramson, S. B. Prognostic biomarkers in osteoarthritis. Curr. Opin. Rheumatol. 25, 136–144 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. van Leeuwen, M. A. et al. The acute-phase response in relation to radiographic progression in early rheumatoid arthritis: a prospective study during the first three years of the disease. Br. J. Rheumatol. 32 (Suppl. 3), 9–13 (1993).

    Article  PubMed  Google Scholar 

  19. Eastman, P. S. et al. Characterization of a multiplex, 12-biomarker test for rheumatoid arthritis. J. Pharm. Biomed. Anal. 70, 415–424 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Ludwig, J. A. & Weinstein, J. N. Biomarkers in cancer staging, prognosis and treatment selection. Nat. Rev. Cancer 5, 845–856 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Epperly, T. D., Moore, K. E. & Harrover, J. D. Polymyalgia rheumatica and temporal arthritis. Am. Fam. Physician 62, 789–796 (2000).

    CAS  PubMed  Google Scholar 

  22. Kasitanon, N., Petri, M., Haas, M., Magder, L. S. & Fine, D. M. Mycophenolate mofetil as the primary treatment of membranous lupus nephritis with and without concurrent proliferative disease: a retrospective study of 29 cases. Lupus 17, 40–45 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Syversen, S. W. et al. Biomarkers in early rheumatoid arthritis: longitudinal associations with inflammation and joint destruction measured by magnetic resonance imaging and conventional radiographs. Ann. Rheum. Dis. 69, 845–850 (2010).

    Article  PubMed  Google Scholar 

  24. Hama, M. et al. Power Doppler ultrasonography is useful for assessing disease activity and predicting joint destruction in rheumatoid arthritis patients receiving tocilizumab—preliminary data. Rheumatol. Int. 32, 1327–1333 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. US Department of Health and Human Services. Draft guidance for industry on qualification process for drug development tools [online], (2010).

  26. Woodcock, J. & Woosley, R. The FDA critical path initiative and its influence on new drug development. Annu. Rev. Med. 59, 1–12 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Chang, D. M., Weinblatt, M. E. & Schur, P. H. The effects of methotrexate on interleukin 1 in patients with rheumatoid arthritis. J. Rheumatol. 19, 1678–1682 (1992).

    CAS  PubMed  Google Scholar 

  28. Elliott, M. J. et al. Randomised double-blind comparison of chimeric monoclonal antibody to tumour necrosis factor α (cA2) versus placebo in rheumatoid arthritis. Lancet 344, 1105–1110 (1994).

    Article  CAS  PubMed  Google Scholar 

  29. Haringman, J. J. et al. Synovial tissue macrophages: a sensitive biomarker for response to treatment in patients with rheumatoid arthritis. Ann. Rheum. Dis. 64, 834–838 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Yao, Y. et al. Neutralization of interferon-α/β-inducible genes and downstream effect in a phase I trial of an anti-interferon-α monoclonal antibody in systemic lupus erythematosus. Arthritis Rheum. 60, 1785–1796 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Farina, G., Lafyatis, D., Lemaire, R. & Lafyatis, R. A four-gene biomarker predicts skin disease in patients with diffuse cutaneous systemic sclerosis. Arthritis Rheum. 62, 580–588 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Arrowsmith, J. Trial watch: phase II failures: 2008–2010. Nat. Rev. Drug Discov. 10, 328–329 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Arrowsmith, J. Trial watch: phase III and submission failures: 2007–2010. Nat. Rev. Drug Discov. 10, 87 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Trusheim, M. R., Berndt, E. R. & Douglas, F. L. Stratified medicine: strategic and economic implications of combining drugs and clinical biomarkers. Nat. Rev. Drug Discov. 6, 287–293 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Higgins, M. J. & Baselga, J. Targeted therapies for breast cancer. J. Clin. Invest. 121, 3797–3803 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ernst, T., La Rosée, P., Müller, M. C. & Hochhaus, A. BCR–ABL mutations in chronic myeloid leukemia. Hematol. Oncol. Clin. North Am. 25, 997–1008, v–vi (2011).

    Article  PubMed  Google Scholar 

  37. Sachdev, J. C. & Jahanzeb, M. Blockade of the HER family of receptors in the treatment of HER2-positive metastatic breast cancer. Clin. Breast Cancer 12, 19–29 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Pao, W. et al. KRAS mutations and primary resistance of lung adenocarcinomas to gefitinib or erlotinib. PLoS Med. 2, e17 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Owczarczyk, K. et al. A plasmablast biomarker for nonresponse to antibody therapy to CD20 in rheumatoid arthritis. Sci. Transl. Med. 21, 101ra92 (2011).

    Google Scholar 

  40. Cohen, S. B. et al. Rituximab for rheumatoid arthritis refractory to anti-tumor necrosis factor therapy: results of a multicenter, randomized, double-blind, placebo-controlled, phase III trial evaluating primary efficacy and safety at twenty-four weeks. Arthritis Rheum. 54, 2793–2806 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Emery, P. et al. The efficacy and safety of rituximab in patients with active rheumatoid arthritis despite methotrexate treatment: results of a phase IIB randomized, double-blind, placebo-controlled, dose-ranging trial. Arthritis Rheum. 54, 1390–1400 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Dickson, M. & Gagnon, J. P. Key factors in the rising cost of new drug discovery and development. Nat. Rev. Drug Discov. 3, 417–429 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Fransen, J. & van Riel, P. L. The Disease Activity Score and the EULAR response criteria. Clin. Exp. Rheumatol. 23, S93–S99 (2005).

    CAS  PubMed  Google Scholar 

  44. Park, J. W. et al. Rationale for biomarkers and surrogate end points in mechanism-driven oncology drug development. Clin. Cancer Res. 10, 3885–3896 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Liu, E. T. Mechanism-derived gene expression signatures and predictive biomarkers in clinical oncology. Proc. Natl Acad. Sci. USA 102, 3531–3532 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chang, H. Y. et al. Robustness, scalability, and integration of a wound-response gene expression signature in predicting breast cancer survival. Proc. Natl Acad. Sci. USA 102, 3738–3743 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chung, L. et al. Molecular framework for response to imatinib mesylate in systemic sclerosis. Arthritis Rheum. 60, 584–591 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Axtell, R. C. et al. T helper type 1 and 17 cells determine efficacy of interferon-β in multiple sclerosis and experimental encephalomyelitis. Nat. Med. 16, 406–412 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lee, L. F. et al. IL-7 promotes T(H)1 development and serum IL-7 predicts clinical response to interferon-β in multiple sclerosis. Sci. Transl. Med. 3, 93ra68 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Agostini, L. et al. NALP3 forms an IL-1β-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. Immunity 20, 319–325 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Gattorno, M. et al. The pattern of response to anti-interleukin-1 treatment distinguishes two subsets of patients with systemic-onset juvenile idiopathic arthritis. Arthritis Rheum. 58, 1505–1515 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Allantaz, F. et al. Blood leukocyte microarrays to diagnose systemic onset juvenile idiopathic arthritis and follow the response to IL-1 blockade. J. Exp. Med. 204, 2131–2144 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Niewold, T. B. Interferon alpha as a primary pathogenic factor in human lupus. J. Interferon Cytokine Res. 31, 887–892 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hooks, J. J. et al. Immune interferon in the circulation of patients with autoimmune disease. N. Engl. J. Med. 301, 5–8 (1979).

    Article  CAS  PubMed  Google Scholar 

  55. Banchereau, J. & Pascual, V. Type I interferon in systemic lupus erythematosus and other autoimmune diseases. Immunity 25, 383–392 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Hua, J., Kirou, K., Lee, C. & Crow, M. K. Functional assay of type I interferon in systemic lupus erythematosus plasma and association with anti-RNA binding protein autoantibodies. Arthritis Rheum. 54, 1906–1916 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Takemura, S. et al. Lymphoid neogenesis in rheumatoid synovitis. J. Immunol. 167, 1072–1080 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Lisignoli, G. et al. Human osteoblasts express functional CXC chemokine receptors 3 and 5: activation by their ligands, CXCL10 and CXCL13, significantly induces alkaline phosphatase and β-N-acetylhexosaminidase release. J. Cell. Physiol. 194, 71–79 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Meeuwisse, C. M. et al. Identification of CXCL13 as a marker for rheumatoid arthritis outcome using an in silico model of the rheumatic joint. Arthritis Rheum. 63, 1265–1273 (2011).

    Article  CAS  PubMed  Google Scholar 

  60. Rosengren, S., Wei, N., Kalunian, K. C., Kavanaugh, A. & Boyle, D. L. CXCL13: a novel biomarker of B-cell return following rituximab treatment and synovitis in patients with rheumatoid arthritis. Rheumatology (Oxford) 50, 603–610 (2011).

    Article  CAS  Google Scholar 

  61. Bugatti, S. et al. Serum levels of CXCL13 are associated with ultrasonographic synovitis and predict power Doppler persistence in early rheumatoid arthritis treated with non-biological disease-modifying anti-rheumatic drugs. Arthritis Res. Ther. 14, R34 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Rioja, I. et al. Potential novel biomarkers of disease activity in rheumatoid arthritis patients: CXCL13, CCL23, transforming growth factor alpha, tumor necrosis factor receptor superfamily member 9, and macrophage colony-stimulating factor. Arthritis Rheum. 58, 2257–2267 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Boulé, M. W. et al. Toll-like receptor 9-dependent and -independent dendritic cell activation by chromatin-immunoglobulin G complexes. J. Exp. Med. 199, 1631–1640 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Kelly, K. M. et al. “Endogenous adjuvant” activity of the RNA components of lupus autoantigens Sm/RNP and Ro 60. Arthritis Rheum. 54, 1557–1567 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Lövgren, T. et al. Induction of interferon-α by immune complexes or liposomes containing systemic lupus erythematosus autoantigen- and Sjögren's syndrome autoantigen-associated RNA. Arthritis Rheum. 54, 1917–1927 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Marshak-Rothstein, A. & Rifkin, I. R. Immunologically active autoantigens: the role of Toll-like receptors in the development of chronic inflammatory disease. Annu. Rev. Immunol. 25, 419–441 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Means, T. K. et al. Human lupus autoantibody-DNA complexes activate DCs through cooperation of CD32 and TLR9. J. Clin. Invest. 115, 407–417 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Savarese, E. et al. U1 small nuclear ribonucleoprotein immune complexes induce type I interferon in plasmacytoid dendritic cells through TLR7. Blood 107, 3229–3234 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Niewold, T. B., Hua, J., Lehman, T. J., Harley, J. B. & Crow, M. K. High serum IFN-α activity is a heritable risk factor for systemic lupus erythematosus. Genes Immun. 8, 492–502 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sokolove, J., Zhao, X., Chandra, P. E. & Robinson, W. H. Immune complexes containing citrullinated fibrinogen costimulate macrophages via Toll-like receptor 4 and Fcγ receptor. Arthritis Rheum. 63, 53–62 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. van de Sande, M. G. et al. Different stages of rheumatoid arthritis: features of the synovium in the preclinical phase. Ann. Rheum. Dis. 70, 772–777 (2011).

    Article  CAS  PubMed  Google Scholar 

  72. Verge, C. F. et al. Prediction of type I diabetes in first-degree relatives using a combination of insulin, GAD, and ICA512bdc/IA-2 autoantibodies. Diabetes 45, 926–933 (1996).

    Article  CAS  PubMed  Google Scholar 

  73. Ziegler, A. G., Hummel, M., Schenker, M. & Bonifacio, E. Autoantibody appearance and risk for development of childhood diabetes in offspring of parents with type 1 diabetes: the 2-year analysis of the German BABYDIAB Study. Diabetes 48, 460–468 (1999).

    Article  CAS  PubMed  Google Scholar 

  74. Nielen, M. M. et al. Specific autoantibodies precede the symptoms of rheumatoid arthritis: a study of serial measurements in blood donors. Arthritis Rheum. 50, 380–386 (2004).

    Article  PubMed  Google Scholar 

  75. Rantapää-Dahlqvist, S. et al. Antibodies against cyclic citrullinated peptide and IgA rheumatoid factor predict the development of rheumatoid arthritis. Arthritis Rheum. 48, 2741–2749 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Deane, K. D. et al. The number of elevated cytokines/chemokines in pre-clinical seropositive rheumatoid arthritis predicts time to diagnosis in an age-dependent manner. Arthritis Rheum. 62, 3161–3172 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kokkonen, H. et al. Up-regulation of cytokines and chemokines predates the onset of rheumatoid arthritis. Arthritis Rheum. 62, 383–391 (2010).

    CAS  PubMed  Google Scholar 

  78. Nielen, M. M. et al. Increased levels of C-reactive protein in serum from blood donors before the onset of rheumatoid arthritis. Arthritis Rheum. 50, 2423–2427 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Robinson, W. H. et al. Protein microarrays guide tolerizing DNA vaccine treatment of autoimmune encephalomyelitis. Nat. Biotechnol. 21, 1033–1039 (2003).

    Article  CAS  PubMed  Google Scholar 

  80. Garren, H. et al. Phase 2 trial of a DNA vaccine encoding myelin basic protein for multiple sclerosis. Ann. Neurol. 63, 611–620 (2008).

    Article  CAS  PubMed  Google Scholar 

  81. van Dongen, H. et al. Efficacy of methotrexate treatment in patients with probable rheumatoid arthritis: a double-blind, randomized, placebo-controlled trial. Arthritis Rheum. 56, 1424–1432 (2007).

    CAS  PubMed  Google Scholar 

  82. de Groot, A. S. & Scott, D. W. Immunogenicity of protein therapeutics. Trends Immunol. 28, 482–490 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Alevizos, I. & Illei, G. G. MicroRNAs as biomarkers in rheumatic diseases. Nat. Rev. Rheumatol. 6, 391–398 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ceribelli, A. et al. MicroRNAs in systemic rheumatic diseases. Arthritis Res. Ther. 13, 229 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Curtale, G. et al. An emerging player in the adaptive immune response: microRNA-146a is a modulator of IL-2 expression and activation-induced cell death in T lymphocytes. Blood 115, 265–273 (2010).

    Article  CAS  PubMed  Google Scholar 

  86. Pope, R. M. Apoptosis as a therapeutic tool in rheumatoid arthritis. Nat. Rev. Immunol. 2, 527–535 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Nakasa, T. et al. Expression of microRNA-146 in rheumatoid arthritis synovial tissue. Arthritis Rheum. 58, 1284–1292 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Niimoto, T. et al. MicroRNA-146a expresses in interleukin-17 producing T cells in rheumatoid arthritis patients. BMC Musculoskelet. Disord. 11, 209 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Pauley, K. M. et al. Upregulated miR-146a expression in peripheral blood mononuclear cells from rheumatoid arthritis patients. Arthritis Res. Ther. 10, R101 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Pauley, K. M. et al. Altered miR-146a expression in Sjögren's syndrome and its functional role in innate immunity. Eur. J. Immunol. 41, 2029–2039 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Tang, Y. et al. MicroRNA-146A contributes to abnormal activation of the type I interferon pathway in human lupus by targeting the key signaling proteins. Arthritis Rheum. 60, 1065–1075 (2009).

    Article  CAS  PubMed  Google Scholar 

  92. O'Connell, R. M. et al. MicroRNA-155 promotes autoimmune inflammation by enhancing inflammatory T cell development. Immunity 33, 607–619 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Blüml, S. et al. Essential role of microRNA-155 in the pathogenesis of autoimmune arthritis in mice. Arthritis Rheum. 63, 1281–1288 (2011).

    Article  CAS  PubMed  Google Scholar 

  94. McInnes, I. B. & Schett, G. The pathogenesis of rheumatoid arthritis. N. Engl. J. Med. 365, 2205–2219 (2011).

    Article  CAS  PubMed  Google Scholar 

  95. Gabay, C., Lamacchia, C. & Palmer, G. IL-1 pathways in inflammation and human diseases. Nat. Rev. Rheumatol. 6, 232–241 (2010).

    Article  CAS  PubMed  Google Scholar 

  96. Tak, P. P. et al. The effects of interferon beta treatment on arthritis. Rheumatology (Oxford) 38, 362–369 (1999).

    Article  CAS  Google Scholar 

  97. Triantaphyllopoulos, K. A., Williams, R. O., Tailor, H. & Chernajovsky, Y. Amelioration of collagen-induced arthritis and suppression of interferon-γ, interleukin-12, and tumor necrosis factor α production by interferon-β gene therapy. Arthritis Rheum. 42, 90–99 (1999).

    Article  CAS  PubMed  Google Scholar 

  98. van Holten, J. et al. A multicentre, randomised, double blind, placebo controlled phase II study of subcutaneous interferon beta-1a in the treatment of patients with active rheumatoid arthritis. Ann. Rheum. Dis. 64, 64–69 (2005).

    Article  CAS  PubMed  Google Scholar 

  99. Tsokos, G. C. Systemic lupus erythematosus. N. Engl. J. Med. 365, 2110–2121 (2011).

    Article  CAS  PubMed  Google Scholar 

  100. van den Broek, M., Huizinga, T. W., Dijkmans, B. A. & Allaart, C. F. Drug-free remission: is it already possible? Curr. Opin. Rheumatol. 23, 266–272 (2011).

    Article  PubMed  Google Scholar 

  101. Walsh, R. J. et al. Type I interferon-inducible gene expression in blood is present and reflects disease activity in dermatomyositis and polymyositis. Arthritis Rheum. 56, 3784–3792 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Båve, U. et al. Activation of the type I interferon system in primary Sjögren's syndrome: a possible etiopathogenic mechanism. Arthritis Rheum. 52, 1185–1195 (2005).

    Article  CAS  PubMed  Google Scholar 

  103. York, M. R. et al. A macrophage marker, Siglec-1, is increased on circulating monocytes in patients with systemic sclerosis and induced by type I interferons and Toll-like receptor agonists. Arthritis Rheum. 56, 1010–1020 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work of W. H. Robinson is supported by N01-HV-00242/HV/ NHLBI NIH HSS/United States, RC1 AR058713/AR/NIAMS NIH HHS/United States, R01 AR-054822/AR/NIAMS NIH HHS/United States, and U01 U01AI101981/NIAID NIH HSS/United States grants, and Veterans Affairs Health Care System funding. J. Sokolove receives salary support from an American College of Rheumatology Research and Education Foundation Physician Scientist Development Award and a Veterans Affairs Career Development 2 Award.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to all stages of the preparation of this manuscript for publication.

Corresponding author

Correspondence to William H. Robinson.

Ethics declarations

Competing interests

W. H. Robinson is an inventor on patents owned by Stanford University that have been licensed to, or for which option agreements to license have been taken by, Bio-Rad Laboratories, Crescendo Biosciences and Roche Diagnostics, and has received research support from Genentech and Roche Diagnostics. All other authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robinson, W., Lindstrom, T., Cheung, R. et al. Mechanistic biomarkers for clinical decision making in rheumatic diseases. Nat Rev Rheumatol 9, 267–276 (2013). https://doi.org/10.1038/nrrheum.2013.14

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2013.14

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research