Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Systemic inflammatory cells fight off neurodegenerative disease

Abstract

Treatment of Alzheimer disease or amyotrophic lateral sclerosis with anti-inflammatory drugs (to prevent disease or slow its progression) has yielded mixed results, despite evidence indicating that local cytotoxic inflammation occurs in these conditions. Here, through consideration of the importance of immune cell origin (resident versus blood-derived immune cells) and activity (pro-inflammatory versus anti-inflammatory activity) under neurodegenerative conditions, we propose a model that reconciles these seemingly inconsistent data. We suggest that systemic immune cells (CD4+ T cells and peripheral blood-derived monocytes) must be recruited to the CNS to modify potentially destructive local inflammation, and that the failure of systemic anti-inflammatory drug therapies to arrest neurodegenerative disease progression might result from drug-induced suppression of such recruitment. Thus, we propose that an appreciation of the distinctive temporal and spatial contributions of resident and systemic leukocytes to disease progression is essential for the development of effective therapeutic regimens.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Immune cells in neurodegenerative conditions.
Figure 2: Model of immune responses in neurodegenerative diseases.

Similar content being viewed by others

References

  1. Hardy, J. & Selkoe, D. J. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297, 353–356 (2002).

    Article  CAS  Google Scholar 

  2. Pasinelli, P. & Brown, R. H. Molecular biology of amyotrophic lateral sclerosis: insights from genetics. Nat. Rev. Neurosci. 7, 710–723 (2006).

    Article  CAS  Google Scholar 

  3. McGeer, P. L., McGeer, E., Rogers, J. & Sibley, J. Anti-inflammatory drugs and Alzheimer disease. Lancet 335, 1037 (1990).

    Article  CAS  Google Scholar 

  4. McGeer, P. L. & McGeer, E. G. Polymorphisms in inflammatory genes and the risk of Alzheimer disease. Arch. Neurol. 58, 1790–1792 (2001).

    Article  CAS  Google Scholar 

  5. Boster, A. et al. Intense immunosuppression in patients with rapidly worsening multiple sclerosis: treatment guidelines for the clinician. Lancet Neurol. 7, 173–183 (2008).

    Article  CAS  Google Scholar 

  6. Zhu, S. et al. Minocycline inhibits cytochrome c release and delays progression of amyotrophic lateral sclerosis in mice. Nature 417, 74–78 (2002).

    Article  CAS  Google Scholar 

  7. Cudkowicz, M. E. et al. Trial of celecoxib in amyotrophic lateral sclerosis. Ann. Neurol. 60, 22–31 (2006).

    Article  CAS  Google Scholar 

  8. Gordon, P. H. et al. Efficacy of minocycline in patients with amyotrophic lateral sclerosis: a phase III randomised trial. Lancet Neurol. 6, 1045–1053 (2007).

    Article  CAS  Google Scholar 

  9. Breitner, J. C. et al. Risk of dementia and AD with prior exposure to NSAIDs in an elderly community-based cohort. Neurology 72, 1899–1905 (2009).

    Article  CAS  Google Scholar 

  10. Popovich, P. G. & Longbrake, E. E. Can the immune system be harnessed to repair the CNS? Nat. Rev. Neurosci. 9, 481–493 (2008).

    Article  CAS  Google Scholar 

  11. Hanisch, U. K. & Kettenmann, H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat. Neurosci. 10, 1387–1394 (2007).

    Article  CAS  Google Scholar 

  12. Wyss-Coray, T. Inflammation in Alzheimer disease: driving force, bystander or beneficial response? Nat. Med. 12, 1005–1015 (2006).

    CAS  PubMed  Google Scholar 

  13. Meda, L. et al. Activation of microglial cells by β-amyloid protein and interferon-γ. Nature 374, 647–650 (1995).

    Article  CAS  Google Scholar 

  14. Takeuchi, A. et al. Microglial NO induces delayed neuronal death following acute injury in the striatum. Eur. J. Neurosci. 10, 1613–1620 (1998).

    Article  CAS  Google Scholar 

  15. Davoust, N., Vuaillat, C., Androdias, G. & Nataf, S. From bone marrow to microglia: barriers and avenues. Trends Immunol. 29, 227–234 (2008).

    Article  CAS  Google Scholar 

  16. Lucin, K. M. & Wyss-Coray, T. Immune activation in brain aging and neurodegeneration: too much or too little? Neuron 64, 110–122 (2009).

    Article  CAS  Google Scholar 

  17. Yong, V. W. & Rivest, S. Taking advantage of the systemic immune system to cure brain diseases. Neuron 64, 55–60 (2009).

    Article  CAS  Google Scholar 

  18. Wyss-Coray, T. & Mucke, L. Inflammation in neurodegenerative disease—a double-edged sword. Neuron 35, 419–432 (2002).

    Article  CAS  Google Scholar 

  19. Shechter, R. et al. Infiltrating blood-derived macrophages are vital cells playing an anti-inflammatory role in recovery from spinal cord injury in mice. PLoS Med. 6, e1000113 (2009).

    Article  Google Scholar 

  20. Butovsky, O., Kunis, G., Koronyo-Hamaoui, M. & Schwartz, M. Selective ablation of bone marrow-derived dendritic cells increases amyloid plaques in a mouse Alzheimer's disease model. Eur. J. Neurosci. 26, 413–416 (2007).

    Article  Google Scholar 

  21. Simard, A. R. & Rivest, S. Bone marrow stem cells have the ability to populate the entire central nervous system into fully differentiated parenchymal microglia. FASEB J. 18, 998–1000 (2004).

    Article  CAS  Google Scholar 

  22. Town, T. et al. Blocking TGF-β-Smad2/3 innate immune signaling mitigates Alzheimer-like pathology. Nat. Med. 14, 681–687 (2008).

    Article  CAS  Google Scholar 

  23. Koronyo-Hamaoui, M. et al. Attenuation of AD-like neuropathology by harnessing peripheral immune cells: local elevation of IL-10 and MMP-9. J. Neurochem. 111, 1409–1424 (2009).

    Article  CAS  Google Scholar 

  24. Butovsky, O. et al. Glatiramer acetate fights against Alzheimer's disease by inducing dendritic-like microglia expressing insulin-like growth factor 1. Proc. Natl Acad. Sci. USA 103, 11784–11789 (2006).

    Article  CAS  Google Scholar 

  25. Kang, J. & Rivest, S. MyD88-deficient bone marrow cells accelerate onset and reduce survival in a mouse model of amyotrophic lateral sclerosis. J. Cell Biol. 179, 1219–1230 (2007).

    Article  CAS  Google Scholar 

  26. Moalem, G. et al. Autoimmune T cells protect neurons from secondary degeneration after central nervous system axotomy. Nat. Med. 5, 49–55 (1999).

    Article  CAS  Google Scholar 

  27. Schwartz, M., Shaked, I., Fisher, J., Mizrahi, T. & Schori, H. Protective autoimmunity against the enemy within: fighting glutamate toxicity. Trends Neurosci. 26, 297–302 (2003).

    Article  CAS  Google Scholar 

  28. Butovsky, O. et al. Glatiramer acetate fights against Alzheimer's disease by inducing dendritic-like microglia expressing insulin-like growth factor 1. Proc. Natl Acad. Sci. USA 103, 11784–11789 (2006).

    Article  CAS  Google Scholar 

  29. Kipnis, J., Avidan, H., Caspi, R. R. & Schwartz, M. Dual effect of CD4+CD25+ regulatory T cells in neurodegeneration: a dialogue with microglia. Proc. Natl Acad. Sci. USA 101 (Suppl. 2), 14663–14669 (2004).

    Article  CAS  Google Scholar 

  30. Beers, D. R., Henkel, J. S., Zhao, W., Wang, J. & Appel, S. H. CD4+ T cells support glial neuroprotection, slow disease progression, and modify glial morphology in an animal model of inherited ALS. Proc. Natl Acad. Sci. USA 105, 15558–15563 (2008).

    Article  CAS  Google Scholar 

  31. Chiu, I. M. et al. T lymphocytes potentiate endogenous neuroprotective inflammation in a mouse model of ALS. Proc. Natl Acad. Sci. USA 105, 17913–17918 (2008).

    Article  CAS  Google Scholar 

  32. Banerjee, R. et al. Adaptive immune neuroprotection in G93A-SOD1 amyotrophic lateral sclerosis mice. PLoS ONE 3, e2740 (2008).

    Article  Google Scholar 

  33. Frenkel, D., Maron, R., Burt, D. S. & Weiner, H. L. Nasal vaccination with a proteosome-based adjuvant and glatiramer acetate clears β-amyloid in a mouse model of Alzheimer disease. J. Clin. Invest. 115, 2423–2433 (2005).

    Article  CAS  Google Scholar 

  34. Ziv, Y. et al. Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood. Nat. Neurosci. 9, 268–275 (2006).

    Article  CAS  Google Scholar 

  35. Wolf, S. A. et al. CD4-positive T lymphocytes provide a neuroimmunological link in the control of adult hippocampal neurogenesis. J. Immunol. 182, 3979–3984 (2009).

    Article  CAS  Google Scholar 

  36. Kipnis, J., Cohen, H., Cardon, M., Ziv, Y. & Schwartz, M. T cell deficiency leads to cognitive dysfunction: implications for therapeutic vaccination for schizophrenia and other psychiatric conditions. Proc. Natl Acad. Sci. USA 101, 8180–8185 (2004).

    Article  CAS  Google Scholar 

  37. Kipnis, J., Derecki, N. C., Yang, C. & Scrable, H. Immunity and cognition: what do age-related dementia, HIV-dementia and 'chemo-brain' have in common? Trends Immunol. 29, 455–463 (2008).

    Article  CAS  Google Scholar 

  38. Lewitus, G. M. et al. Vaccination as a novel approach for treating depressive behavior. Biol. Psychiatry 65, 283–288 (2009).

    Article  Google Scholar 

  39. Ron-Harel, N. & Schwartz, M. Immune senescence and brain aging: can rejuvenation of immunity reverse memory loss? Trends Neurosci. 32, 367–375 (2009).

    Article  CAS  Google Scholar 

  40. Ray, S. et al. Classification and prediction of clinical Alzheimer's diagnosis based on plasma signaling proteins. Nat. Med. 13, 1359–1362 (2007).

    Article  CAS  Google Scholar 

  41. Fiala, M. et al. Ineffective phagocytosis of amyloid-β by macrophages of Alzheimer's disease patients. J. Alzheimers Dis. 7, 221–232 (2005).

    Article  CAS  Google Scholar 

  42. Richartz-Salzburger, E. et al. Altered lymphocyte distribution in Alzheimer's disease. J. Psychiatr. Res. 41, 174–178 (2007).

    Article  Google Scholar 

  43. Irizarry, M. C. Biomarkers of Alzheimer disease in plasma. NeuroRx 1, 226–234 (2004).

    Article  Google Scholar 

  44. Seksenyan, A. et al. Thymic involution in amyotrophic lateral sclerosis. J. Cell. Mol. Med. doi: 10.1111/j.1582–49342009.00863.x.

  45. Ransohoff, R. M., Kivisäkk, P. & Kidd, G. Three or more routes for leukocyte migration into the central nervous system. Nat. Rev. Immunol. 3, 569–581 (2003).

    Article  CAS  Google Scholar 

  46. Schwartz, M. & Shechter, R. Protective autoimmunity functions by intracranial immunosurveillance to support the mind: the missing link between health and disease. Mol. Psychiatry 15, 342–354 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

M. Schwartz is in part supported by a European Research Council (http://erc.europa.eu) research grant award and by an Israel Science Foundation-Legacy grant. We thank Shelley Schwarzbaum (The Weizmann Institute of Science) for editing the manuscript and Dr Liora Cahalon (Department of Neurobiology, The Weizmann Institute of Science) for assisting in the compilation of Supplementary Table 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Schwartz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

Summary of the main anti-inflammatory clinical trials in Alzheimer disease and amyotrophic lateral sclerosis (DOC 126 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwartz, M., Shechter, R. Systemic inflammatory cells fight off neurodegenerative disease. Nat Rev Neurol 6, 405–410 (2010). https://doi.org/10.1038/nrneurol.2010.71

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2010.71

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing