Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Oestrogen as a neuroprotective hormone

Key Points

  • There is abundant experimental evidence that the sex hormone oestrogen might have neuroprotective actions. Observations in vivo and in vitro, as well as epidemiological studies, lend general support to this idea.

  • There are several possible mechanisms to account for the neuroprotective actions of oestrogen. In the simplest scenario, oestrogen receptors, which are transcription factors, might act directly on genes that code for proteins that modulate nerve-cell survival, regulating their expression. These proteins might enhance neurotrophic support, suppress apoptosis and affect neuronal structure.

  • The neuroprotective action of oestrogen could also depend on non-classical actions of this neurohormone. Indeed, oestrogen can interact with intracellular signalling pathways that are directly linked to the control of neuronal survival, such as the mitogen-activated protein kinase (MAPK) pathway, cyclic-AMP-responsive-element-binding protein (CREB) and phosphatidylinositol 3-kinase (PI3K). In addition, the chemical structure of oestrogen enables it to act as a free-radical scavenger, preventing oxidative damage.

Abstract

In addition to its role as a sex hormone, oestrogen affects the structure and function of the nervous system. Oestrogen receptors are expressed in brain regions that are involved in sex differentiation and maturation. But in addition to its well-known effects, oestrogen also has important neuroprotective actions that are both dependent and independent of a nuclear oestrogen-receptor activity. Furthermore, oestrogen can interact with neuroprotective intracellular signalling pathways and is itself a neuroprotective antioxidant. Understanding the mechanisms of oestrogen action will be crucial to determine its potential as a therapeutic agent, particularly in the elderly.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chemical structure of oestrogen and related naturally occurring molecules.
Figure 2: Oestrogen protects against nerve-cell death.
Figure 3: The oestrogen receptor belongs to the superfamily of nuclear receptors.
Figure 4: Expression of ERα and ERβ in the rodent brain.
Figure 5: Simplified model of the classical and non-classical modes of oestrogen action.
Figure 6: Some possible modes of oestrogen-mediated neuroprotection.

Similar content being viewed by others

References

  1. Payami, H. et al. Gender difference in apolipoprotein E-associated risk for familial Alzheimer disease – a possible clue to the higher incidence of Alzheimer disease in women. Am. J. Hum. Genet. 58, 803–811 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Roof, R. L. & Hall, E. D. Gender differences in acute CNS trauma and stroke: neuroprotective effects of estrogen and progesterone. J. Neurotrauma 17, 367–388 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Takahashi, S. et al. Age at onset of schizophrenia: gender differences and influence of temporal socioeconomic change. Psychiatry Clin. Neurosci. 54, 153–156 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Nolen-Hoeksema, S. Gender differences in depression. Curr. Dir. Psychol. Sci. 10, 173–176 (2001).

    Article  Google Scholar 

  5. McEwen, B. S. Estrogen effects on the brain: multiple sites and molecular mechanisms. J. Appl. Physiol. 91, 2785–2801 (2001).A recent authoritative review on the multiple roles of oestrogen in the brain.

    Article  CAS  PubMed  Google Scholar 

  6. Bishop, J. & Simpkins, J. W. Estradiol treatment increases viability of glioma and neuroblastoma cells in vitro. Mol. Cell. Neurosci. 5, 303–308 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Behl, C., Widmann, M., Trapp, T. & Holsboer, F. 17-β Estradiol protects neurons from oxidative stress-induced cell death in vitro. Biochem. Biophys. Res. Commun. 216, 473–482 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Green, P. S. & Simpkins, J. W. Neuroprotective effects of estrogens: potential mechanisms of action. Int. J. Dev. Neurosci. 18, 347–358 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Wise, P. M. et al. Estradiol is a protective factor in the adult and aging brain: understanding of mechanisms derived from in vivo and in vitro studies. Brain Res. Brain Res. Rev. 37, 313–319 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Finkel, T. & Holbrook, N. J. Oxidants, oxidative stress and the biology of aging. Nature 408, 239–247 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Behl, C. & Moosmann, B. Oxidative nerve cell death in Alzheimer's disease and stroke: antioxidants as neuroprotective compounds. Biol. Chem. 383, 521–536 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Hurn, P. D. & Macrae, I. M. Estrogen as a neuroprotectant in stroke. J. Cereb. Blood Flow Metab. 20, 631–652 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Freyaldenhoven, T. E., Cadet, J. L. & Ali, S. F. The dopamine-depleting effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in cd-1 mice are gender-dependent. Brain Res. 735, 232–238 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Hossmann, K. A. Experimental models for the investigation of brain ischemia. Cardiovasc. Res. 39, 106–120 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Alkayed, N. J. et al. Gender-linked brain injury in experimental stroke. Stroke 29, 159–165 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Zhang, Y. Q., Shi, J., Rajakumar, G., Day, A. L. & Simpkins, J. W. Effects of gender and estradiol treatment on focal brain ischemia. Brain Res. 784, 321–324 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Saleh, T. M., Cribb, A. E. & Connell, B. J. Estrogen-induced recovery of autonomic function after middle cerebral artery occlusion in male rats. Am J Physiol Regul Integr Comp Physiol 281, R1531–R1539 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Barrett-Connor, E. & Bush, T. L. Estrogen and coronary heart disease in women. JAMA 265, 1861–1867 (1991).

    Article  CAS  PubMed  Google Scholar 

  19. Shi, J. et al. Estrogens decrease reperfusion-associated cortical ischemic damage – an MRI analysis in a transient focal ischemia model. Stroke 32, 987–992 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Jover, T. et al. Estrogen protects against global ischemia-induced neuronal death and prevents activation of apoptotic signaling cascades in the hippocampal CA1. J. Neurosci. 22, 2115–2124 (2002).Shows that long-term treatment with oestrogen at physiological levels ameliorates ischaemia-induced hippocampal injury.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yang, S. H., Shi, J., Day, A. L. & Simpkins, J. W. Estradiol exerts neuroprotective effects when administered after ischemic insult. Stroke 31, 745–749 (2000).Oestrogen is neuroprotective even when applied after the onset of ischaemic damage.

    Article  CAS  PubMed  Google Scholar 

  22. Dluzen, D. E. & McDermott, J. L. Gender differences in neurotoxicity of the nigrostriatal dopaminergic system: implications for Parkinson's disease. J. Gend. Specif. Med. 3, 36–42 (2000).

    CAS  PubMed  Google Scholar 

  23. Beal, M. F. Experimental models of Parkinson's disease. Nature Rev. Neurosci. 2, 325–332 (2001).

    Article  CAS  Google Scholar 

  24. Kuppers, E., Ivanova, T., Karolczak, M. & Beyer, C. Estrogen: a multifunctional messenger to nigrostriatal dopaminergic neurons. J. Neurocytol. 29, 375–385 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Grandbois, M., Morissette, M., Callier, S. & Di Paolo, T. Ovarian steroids and raloxifene prevent MPTP-induced dopamine depletion in mice. Neuroreport 11, 343–346 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Azcoitia, I., Sierra, A. & Garcia-Segura, L. M. Estradiol prevents kainic acid-induced neuronal loss in the rat dentate gyrus. Neuroreport 9, 3075–3079 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Yankova, M., Hart, S. A. & Woolley, C. S. Estrogen increases synaptic connectivity between single presynaptic inputs and multiple postsynaptic CA1 pyramidal cells: a serial electron-microscopic study. Proc. Natl Acad. Sci. USA 98, 3525–3530 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Foy, M. R. 17β-Estradiol: effect on CA1 hippocampal synaptic plasticity. Neurobiol. Learn. Mem. 76, 239–252 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Gould, E. & Gross, C. G. Neurogenesis in adult mammals: some progress and problems. J. Neurosci. 22, 619–623 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tanapat, P., Hastings, N. B., Reeves, A. J. & Gould, E. Estrogen stimulates a transient increase in the number of new neurons in the dentate gyrus of the adult female rat. J. Neurosci. 19, 5792–5801 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cameron, H. A. & McKay, R. D. G. Restoring production of hippocampal neurons in old age. Nature Neurosci. 2, 894–897 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Brinton, R. D. et al. The Women's Health Initiative estrogen replacement therapy is neurotrophic and neuroprotective. Neurobiol. Aging 21, 475–496 (2000).

    Article  Google Scholar 

  33. Seeman, M. V. Psychopathology in women and men – focus on female hormones. Am. J. Psychiatry 154, 1641–1647 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Henderson, V. W. Oestrogens and dementia. Novartis Found. Symp. 230, 254–273 (2000).

    CAS  PubMed  Google Scholar 

  35. Paganini-Hill, A. Estrogen replacement therapy and stroke. Prog. Cardiovasc. Dis. 38, 223–242 (1995).

    Article  CAS  PubMed  Google Scholar 

  36. Gail, M. H. et al. Weighing the risks and benefits of tamoxifen treatment for preventing breast cancer – response. J. Natl Cancer Inst. 91, 1829–1846 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Paganini-Hill, A. Hormone replacement therapy and stroke: risk, protection or no effect? Maturitas 38, 243–261 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Sherwin, B. B. Can estrogen keep you smart? Evidence from clinical studies. J. Psychiatry Neurosci. 24, 315–321 (1999).This comprehensive review discusses the biological plausibility and the clinical empirical evidence of a link between oestrogen levels and memory in women.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Paganini-Hill, A. & Henderson, V. W. Estrogen replacement therapy and risk of Alzheimer Disease. Arch. Intern. Med. 156, 2213–2217 (1996).

    Article  CAS  PubMed  Google Scholar 

  40. Kawas, C. et al. A prospective study of estrogen replacement therapy and the risk of developing Alzheimer's disease: the Baltimore Longitudinal Study of Aging. Neurology 48, 1517–1521 (1997).

    Article  CAS  PubMed  Google Scholar 

  41. Gao, S., Hendrie, H. C. & Hall, K. S. The relationship between age, sex, and the incidence of dementia and Alzheimer Disease – a meta-analysis. Arch. Gen. Psychiatry 55, 809–815 (1998).This meta-analysis concludes that women are at higher risk of Alzheimer's disease than men.

    Article  CAS  PubMed  Google Scholar 

  42. Carlson, M. C. et al. Hormone replacement therapy and reduced cognitive decline in older women: the Cache County Study. Neurology 57, 2210–2216 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Neurgaren, B. L. & Kraines, R. J. Menopausal symptoms in women of various ages. Psychol. Med. 27, 266–273 (1965).

    Google Scholar 

  44. Tang, M. X. et al. Effect of oestrogen during menopause on risk and age of onset of Alzheimer's Disease. Lancet 348, 429–432 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. Slooter, A. J. C. et al. Estrogen use and early onset Alzheimer's disease: a population-based study. J. Neurol. Neurosurg. Psychiatry 67, 779–781 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Waring, S. C. et al. Postmenopausal estrogen replacement therapy and risk of AD – a population-based study. Neurology 52, 965–970 (1999).References 39, 42 and 44–46 argue in favour of ERT for the prevention of Alzheimer's disease.

    Article  CAS  PubMed  Google Scholar 

  47. Wang, P. N. et al. Effects of estrogen on cognition, mood, and cerebral blood flow in AD – a controlled study. Neurology 54, 2061–2066 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Mulnard, R. I. et al. Estrogen replacement therapy for treatment of mild to moderate Alzheimer disease – a randomized controlled trial. JAMA 283, 1007–1015 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Seshadri, S. et al. Postmenopausal estrogen replacement therapy and the risk of Alzheimer disease. Arch. Neurol. 58, 435–440 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Fillit, H. et al. Observations in a preliminary open trial of estradiol therapy for senile dementia–Alzheimer's type. Psychoneuroendocrinology 11, 337–345 (1986).Seven women with Alzheimer's disease were treated with low doses of oestrogen over six weeks. Significant improvements were noted in three women on measures of attention, orientation, mood and social interaction.

    Article  CAS  PubMed  Google Scholar 

  51. Henderson, V. W. et al. Estrogen for Alzheimer's disease in women – randomized, double-blind, placebo-controlled trial. Neurology 54, 295–301 (2000).References 47–49 and 51 argue against oestrogen replacement for Alzheimer's disease therapy.

    Article  CAS  PubMed  Google Scholar 

  52. Aranda, A. & Pascual, A. Nuclear hormone receptors and gene expression. Physiol. Rev. 81, 1269–1304 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Hall, J. M., Couse, J. F. & Korach, K. S. The multifaceted mechanisms of estradiol and estrogen receptor signaling. J. Biol. Chem. 276, 36869–36872 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Jensen, E. V. & Jacobson, H. I. Basic guides to the mechanism of estrogen action. Recent Prog. Horm. Res. 18, 387–414 (1962).

    CAS  Google Scholar 

  55. Green, S. et al. Human oestrogen receptor cDNA: sequence, expression and homology to v-erb-A. Nature 320, 134–139 (1986).

    Article  CAS  PubMed  Google Scholar 

  56. Greene, G. L. et al. Sequence and expression of human estrogen receptor complementary DNA. Science 231, 1150–1154 (1986).References 55 and 56 describe the cloning of the first human ER.

    Article  CAS  PubMed  Google Scholar 

  57. Kuiper, G. G., Enmark, E., Pelto-Huikko, M., Nilsson, S. & Gustafsson, J. A. Cloning of a novel receptor expressed in rat prostate and ovary. Proc. Natl Acad. Sci. USA 93, 5925–5930 (1996).This paper describes the cloning of ERβ. The discovery of ERβ is an important landmark in our understanding of oestrogen action in various tissues.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Couse, J. F. & Korach, K. S. Estrogen receptor null mice: what have we learned and where will they lead us? Endocr. Rev. 20, 358–417 (1999).

    Article  CAS  PubMed  Google Scholar 

  59. Kuiper, G. G. J. M., Shughrue, P. J., Merchenthaler, I. & Gustafsson, J. A. The estrogen receptor β subtype – a novel mediator of estrogen action in neuroendocrine systems. Front. Neuroendocrinol. 19, 253–286 (1998).

    Article  CAS  PubMed  Google Scholar 

  60. Enmark, E. et al. Human estrogen receptor – gene structure, chromosomal localization, and expression pattern. J. Clin. Endocrinol. Metabol. 82, 4258–4265 (1997).

    CAS  Google Scholar 

  61. Shughrue, P. J., Lane, M. V. & Merchenthaler, I. Comparative distribution of estrogen receptor-α and -β mRNA in the rat central nervous system. J. Comp. Neurol. 388, 507–525 (1997).This comparative study provides evidence that the region-specific expression of ERα or ERβ, or both, could be important in determining the physiological responses of neuronal populations to oestrogen.

    Article  CAS  PubMed  Google Scholar 

  62. Shughrue, P. J., Scrimo, P. J. & Merchenthaler, I. Estrogen binding and estrogen receptor characterization (ERα and ERβ) in the cholinergic neurons of the rat basal forebrain. Neuroscience 96, 41–49 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Gudino-Cabrera, G. & Nieto-Sampedro, M. Estrogen receptor immunoreactivity in Schwann-like brain macroglia. J. Neurobiol. 40, 458–470 (1999).

    Article  CAS  PubMed  Google Scholar 

  64. Azcoitia, I., Garcia-Ovejero, D., Chowen, J. A. & Garcia-Segura, L. M. Astroglia play a key role in the neuroprotective actions of estrogen. Prog. Brain Res. 132, 469–478 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Santagati, S., Melcangi, R. C., Celotti, F., Martini, L. & Maggi, A. Estrogen receptor is expressed in different types of glial cells in culture. J. Neurochem. 63, 2058–2064 (1994).

    Article  CAS  PubMed  Google Scholar 

  66. Freedman, L. P. Multimeric coactivator complexes for steroid/nuclear receptors. Trends Endocrinol. Metab. 10, 403–407 (1999).

    Article  CAS  PubMed  Google Scholar 

  67. Klinge, C. M. Estrogen receptor interaction with co-activators and co-repressors. Steroids 65, 227–251 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Nilsson, S. et al. Mechanisms of estrogen action. Physiol. Rev. 81, 1535–1565 (2001).A recent review on the molecular mechanisms of oestrogen activity.

    Article  CAS  PubMed  Google Scholar 

  69. McKenna, N. J. & O'Malley, B. W. Combinatorial control of gene expression by nuclear receptors and coregulators. Cell 108, 465–474 (2002).A detailed review on the mechanisms of signal transduction of nuclear receptors from pioneers in the field.

    Article  CAS  PubMed  Google Scholar 

  70. Pettersson, K., Grandien, K., Kuiper, G. G. J. M. & Gustafsson, J. A. Mouse estrogen receptor β forms estrogen response element-binding heterodimers with estrogen receptor α. Mol. Endocrinol. 11, 1486–1496 (1997).

    CAS  PubMed  Google Scholar 

  71. Donaghue, C., Westley, B. R. & May, F. E. B. Selective promoter usage of the human estrogen receptor-α gene and its regulation by estrogen. Mol. Endocrinol. 13, 1934–1950 (1999).

    CAS  PubMed  Google Scholar 

  72. Sohrabji, F., Miranda, R. C. G. & Toran-Allerand, C. D. Identification of a putative estrogen response element in the gene encoding brain-derived neurotrophic factor. Proc. Natl Acad. Sci. USA 92, 11110–11114 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Toran-Allerand, C. D., Singh, M. & Setalo, G. Novel mechanisms of estrogen action in the brain: new players in an old story. Front. Neuroendocrinol. 20, 97–121 (1999).

    Article  CAS  PubMed  Google Scholar 

  74. Blurton-Jones, M. M., Roberts, J. A. & Tuszynski, M. H. Estrogen receptor immunoreactivity in the adult primate brain: neuronal distribution and association with p75, trkA, and choline acetyltransferase. J. Comp. Neurol. 405, 529–542 (1999).

    Article  CAS  PubMed  Google Scholar 

  75. Mattson, M. P. Apoptosis in neurodegenerative disorders. Nature Rev. Mol. Cell Biol. 1, 120–129 (2000).

    Article  CAS  Google Scholar 

  76. Antonsson, B. Bax and other pro-apoptotic Bcl-2 family 'killer-proteins' and their victim, the mitochondrion. Cell Tissue Res. 306, 347–361 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Pike, C. J. Estrogen modulates neuronal Bcl-xL expression and β-amyloid-induced apoptosis: relevance to Alzheimer's disease. J. Neurochem. 72, 1552–1563 (1999).

    Article  CAS  PubMed  Google Scholar 

  78. Singer, C. A., Rogers, K. L. & Dorsa, D. M. Modulation of bcl-2 expression – a potential component of estrogen protection in NT2 neurons. Neuroreport 9, 2565–2568 (1998).

    Article  CAS  PubMed  Google Scholar 

  79. Alkayed, N. J. et al. Estrogen and Bcl-2: gene induction and effect of transgene in experimental stroke. J. Neurosci. 21, 7543–7550 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhang, Y., Tounekti, O., Akerman, B., Goodyer, C. G. & LeBlanc, A. A. 17-β-Estradiol induces an inhibitor of active caspases. J. Neurosci. 21, RC176 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Belcredito, S. et al. Estrogen neuroprotection: the involvement of the Bcl-2 binding protein BNIP2. Brain Res. Brain Res. Rev. 37, 335–342 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Ferreira, A. & Caceres, A. Estrogen-enhanced neurite growth: evidence for a selective induction of Tau and stable microtubules. J. Neurosci. 11, 392–400 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Scoville, S. A., Bufton, S. M. & Liuzzi, F. J. Estrogen regulates neurofilament gene expression in adult female rat dorsal root ganglion neurons. Exp. Neurol. 146, 596–599 (1997).

    Article  CAS  PubMed  Google Scholar 

  84. Brueggemeier, R. W. et al. 2-Methoxymethylestradiol: a new 2-methoxy estrogen analog that exhibits antiproliferative activity and alters tubulin dynamics. J. Steroid Biochem. Mol. Biol. 78, 145–156 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Shughrue, P. J. & Dorsa, D. M. Estrogen modulates the growth-associated protein GAP-43 (neuromodulin) mRNA in the rat preoptic area and basal hypothalamus. Neuroendocrinology 57, 439–447 (1993).

    Article  CAS  PubMed  Google Scholar 

  86. Lonard, D. M. & Smith, C. L. Molecular perspectives on selective estrogen receptor modulators (SERMs): progress in understanding their tissue-specific agonist and antagonist actions. Steroids 67, 15–24 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Singer, C. A., Figueroa-Masot, X. A., Batchelor, R. H. & Dorsa, D. M. The mitogen-activated protein kinase pathway mediates estrogen neuroprotection after glutamate toxicity in primary cortical neurons. J. Neurosci. 19, 2455–2463 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Bi, R. F., Foy, M. R., Vouimba, R. M., Thompson, R. F. & Baudry, M. Cyclic changes in estradiol regulate synaptic plasticity through the MAP kinase pathway. Proc. Natl Acad. Sci. USA 98, 13391–13395 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Manthey, D., Heck, S., Engert, S. & Behl, C. Estrogen induces a rapid secretion of amyloid β precursor protein via the mitogen-activated protein kinase pathway. Eur. J. Biochem. 268, 4285–4291 (2001).

    Article  CAS  PubMed  Google Scholar 

  90. Belcher, S. M. & Zsarnovszky, A. Estrogenic actions in the brain: estrogen, phytoestrogens, and rapid intracellular signaling mechanisms. J. Pharmacol. Exp. Ther. 299, 408–414 (2001).

    CAS  PubMed  Google Scholar 

  91. Boonyaratanakornkit, V. et al. Progesterone receptor contains a proline-rich motif that directly interacts with SH3 domains and activates c-Src family tyrosine kinases. Mol. Cell 8, 269–280 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. Nethrapalli, I. S. et al. Estradiol (E2) elicits SRC phosphorylation in the mouse neocortex: the initial event in E2 activation of the MAPK cascade? Endocrinology 142, 5145–5148 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Setalo, G., Singh, M., Guan, X. P. & Toran-Allerand, C. D. Estradiol-induced phosphorylation of ERK1/2 in explants of the mouse cerebral cortex: the roles of heat shock protein 90 (Hsp90) and MEK2. J. Neurobiol. 50, 1–12 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. Simoncini, T. et al. Interaction of oestrogen receptor with the regulatory subunit of phosphatidylinositol-3-OH kinase. Nature 407, 538–541 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Xin, H. B. et al. Oestrogen protects FKBP12.6 null mice from cardiac hypertrophy. Nature 416, 334–337 (2002).

    Article  CAS  PubMed  Google Scholar 

  96. Kelly, M. J. & Wagner, E. J. Estrogen modulation of G-protein-coupled receptors. Trends Endocrinol. Metab. 10, 369–374 (1999).

    Article  CAS  PubMed  Google Scholar 

  97. Rupprecht, R. et al. Neuroactive steroids: molecular mechanisms of action and implications for neuropsychopharmacology. Brain Res. Brain Res. Rev. 37, 59–67 (2001).

    Article  CAS  PubMed  Google Scholar 

  98. Power, R. F., Mani, S. K., Codina, J., Conneely, O. M. & O'Malley, B. W. Dopaminergic and ligand-independent activation of steroid hormone receptors. Science 254, 1636–1639 (1991).

    Article  CAS  PubMed  Google Scholar 

  99. Coleman, K. M. & Smith, C. L. Intracellular signaling pathways: nongenomic actions of estrogens and ligand-independent activation of estrogen receptors. Front. Biosci. 6, D1379–D1391 (2001).

    Article  CAS  PubMed  Google Scholar 

  100. Pietras, R. J. & Szego, C. M. Cell membrane estrogen receptors resurface. Nature Med. 5, 1330 (1999).

  101. Razandi, M., Pedram, A., Greene, G. L. & Levin, E. R. Cell membrane and nuclear estrogen receptors (ERs) originate from a single transcript: studies of ERα and ERβ expressed in Chinese hamster ovary cells. Mol. Endocrinol. 13, 307–319 (1999).

    CAS  PubMed  Google Scholar 

  102. Powell, C. E., Soto, A. M. & Sonnenschein, C. Identification and characterization of membrane estrogen receptor from MCF7 estrogen-target cells. J. Steroid Biochem. Mol. Biol. 77, 97–108 (2001).

    Article  CAS  PubMed  Google Scholar 

  103. Nadal, A. et al. Nongenomic actions of estrogens and xenoestrogens by binding at a plasma membrane receptor unrelated to estrogen receptor α and estrogen receptor β. Proc. Natl Acad. Sci. USA 97, 11603–11608 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Vasudevan, N., Kow, L. M. & Pfaff, D. W. Early membrane estrogenic effects required for full expression of slower genomic actions in a nerve cell line. Proc. Natl Acad. Sci. USA 98, 12267–12271 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Wetzel, C. H. R. et al. Functional antagonism of gonadal steroids at the 5-hydroxytryptamine type 3 receptor. Mol. Endocrinol. 12, 1441–1451 (1998).

    Article  CAS  PubMed  Google Scholar 

  106. Valverde, M. A. et al. Acute activation of Maxi-K channels (hSlo) by estradiol binding to the β subunit. Science 285, 1929–1931 (1999).

    Article  CAS  PubMed  Google Scholar 

  107. Woolley, C. S. Electrophysiological and cellular effects of estrogen on neuronal function. Crit. Rev. Neurobiol. 13, 1–20 (1999).A comprehensive review on oestrogen's potential to modulate neurotransmission.

    Article  CAS  PubMed  Google Scholar 

  108. Okamoto, T., Schlegel, A., Scherer, P. E. & Lisanti, M. P. Caveolins, a family of scaffolding proteins for organizing preassembled signaling complexes at the plasma membrane. J. Biol. Chem. 273, 5419–5422 (1998).

    Article  CAS  PubMed  Google Scholar 

  109. Chambliss, K. L. et al. Estrogen receptor α and endothelial nitric oxide synthase are organized into a functional signaling module in caveolae. Circ. Res. 87, E44–E52 (2000).

    Article  CAS  PubMed  Google Scholar 

  110. Razandi, M., Oh, P., Pedram, A., Schnitzer, J. & Levin, E. R. ERs associate with and regulate the production of caveolin: implications for signaling and cellular actions. Mol. Endocrinol. 16, 100–115 (2002).

    Article  CAS  PubMed  Google Scholar 

  111. Schlegel, A., Wang, C. G., Katzenellenbogen, B. S., Pestell, R. G. & Lisanti, M. P. Caveolin-1 potentiates estrogen receptor α (ER α) signaling – caveolin-1 drives ligand-independent nuclear translocation and activation of ER α. J. Biol. Chem. 274, 33551–33556 (1999).

    Article  CAS  PubMed  Google Scholar 

  112. Ikezu, T. et al. Affinity-purification and characterization of caveolins from the brain – differential expression of caveolin-1, -2, and -3 in brain endothelial and astroglial cell types. Brain Res. 804, 177–192 (1998).

    Article  CAS  PubMed  Google Scholar 

  113. Singh, M., Setalo, G., Guan, X. P., Warren, M. & Toran-Allerand, C. D. Estrogen-induced activation of mitogen-activated protein kinase in cerebral cortical explants: convergence of estrogen and neurotrophin signaling pathways. J. Neurosci. 19, 1179–1188 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kousteni, S. et al. Nongenotropic, sex-nonspecific signaling through the estrogen or androgen receptors: dissociation from transcriptional activity. Cell 104, 719–730 (2001).

    CAS  PubMed  Google Scholar 

  115. Cohen, P. & Frame, S. The renaissance of GSK3. Nature Rev. Mol. Cell Biol. 2, 769–776 (2001).

    Article  CAS  Google Scholar 

  116. Campard, P. K. et al. PACAP type I receptor activation promotes cerebellar neuron survival through the cAMP/PKA signaling pathway. DNA Cell Biol. 16, 323–333 (1997).

    Article  CAS  Google Scholar 

  117. Honda, K. et al. Nongenomic antiapoptotic signal transduction by estrogen in cultured cortical neurons. J. Neurosci. Res. 64, 466–475 (2001).

    Article  CAS  PubMed  Google Scholar 

  118. Carlstrom, L., Ke, Z. J., Unnerstall, J. R., Cohen, R. S. & Pandey, S. C. Estrogen modulation of the cyclic AMP response element-binding protein pathway – effects of long-term and acute treatments. Neuroendocrinology 74, 227–243 (2001).

    Article  CAS  PubMed  Google Scholar 

  119. Murphy, D. D. & Segal, M. Morphological plasticity of dendritic spines in central neurons is mediated by activation of cAMP response element binding protein. Proc. Natl Acad. Sci. USA 94, 1482–1487 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Watters, J. J. & Dorsa, D. M. Transcriptional effects of estrogen on neuronal neurotensin gene expression involve cAMP/protein kinase A-dependent signaling mechanisms. J. Neurosci. 18, 6672–6680 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Zhang, L. et al. Estrogen protects against β-amyloid-induced neurotoxicity in rat hippocampal neurons by activation of Akt. Neuroreport 12, 1919–1923 (2001).

    Article  CAS  PubMed  Google Scholar 

  122. Pozzo-Miller, L. D., Inoue, T. & Murphy, D. D. Estradiol increases spine density and NMDA-dependent Ca2+ transients in spines of CA1 pyramidal neurons from hippocampal slices. J. Neurophysiol. 81, 1404–1411 (1999).

    Article  CAS  PubMed  Google Scholar 

  123. Kelly, M. J., Lagrange, A. H., Wagner, E. J. & Ronnekleiv, O. K. Rapid effects of estrogen to modulate G protein-coupled receptors via activation of protein kinase A and protein kinase C pathways. Steroids 64, 64–75 (1999).

    Article  CAS  PubMed  Google Scholar 

  124. Hayashi, T. et al. Biphasic effect of estrogen on neuronal constitutive nitric oxide synthase via Ca2+–calmodulin dependent mechanism. Biochem. Biophys. Res. Commun. 203, 1013–1019 (1994).

    Article  CAS  PubMed  Google Scholar 

  125. Howard, S. A., Brooke, S. M. & Sapolsky, R.M. Mechanisms of estrogenic protection against gp120-induced neurotoxicity. Exp. Neurol. 168, 385–391 (2001).

    Article  CAS  PubMed  Google Scholar 

  126. Weaver, C. E. et al. Geometry and charge determine pharmacological effects of steroids on N-methyl-d-aspartate receptor-induced Ca2+ accumulation and cell death. J. Pharmacol. Exp. Ther. 293, 747–754 (2000).

    CAS  PubMed  Google Scholar 

  127. Schubert, D. & Piasecki, D. Oxidative glutamate toxicity can be a component of the excitotoxicity cascade. J. Neurosci. 21, 7455–7462 (2001).Shows the importance of oxidative stress in glutamate toxicity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Weaver, C. E., Parkchung, M., Gibbs, T. T. & Farb, D. H. 17-β-estradiol protects against NMDA-induced excitotoxicity by direct inhibition of NMDA receptors. Brain Res. 761, 338–341 (1997).

    Article  CAS  PubMed  Google Scholar 

  129. Wang, L., Andersson, S., Warner, M. & Gustafsson, J. A. Morphological abnormalities in the brains of estrogen receptor β knockout mice. Proc. Natl Acad. Sci. USA 98, 2792–2796 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Dubal, D. B. et al. Estrogen receptor α, not β, is a critical link in estradiol-mediated protection against brain injury. Proc. Natl Acad. Sci. USA 98, 1952–1957 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Forsell, C. et al. Investigations of a CA repeat in the oestrogen receptor β gene in patients with Alzheimer's disease. Eur. J. Hum. Genet. 9, 802–804 (2001).

    Article  CAS  PubMed  Google Scholar 

  132. Sugioka, K., Shimosegawa, Y. & Nakano, M. Estrogens as natural antioxidants of membrane phospholipid peroxidation. FEBS Lett. 210, 37–39 (1987).An early report showing that oestrogen can act as free-radical scavenger in a lipophilic environment.

    Article  CAS  PubMed  Google Scholar 

  133. Moosmann, B. & Behl, C. The antioxidant neuroprotective effects of estrogens and phenolic compounds are independent from their estrogenic properties. Proc. Natl Acad. Sci. USA 96, 8867–8872 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Behl, C. et al. Neuroprotection against oxidative stress by estrogens: structure–activity relationship. Mol. Pharmacol. 51, 535–541 (1997).The first report to show that the antioxidant neuroprotective activity of 17β-oestradiol is dependent on its phenolic ring structure.

    Article  CAS  PubMed  Google Scholar 

  135. Green, P. S., Bishop, J. & Simpkins, J. W. 17-α-Estradiol exerts neuroprotective effects on SK-N-SH cells. J. Neurosci. 17, 511–515 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Vedder, H. et al. Estrogen hormones reduce lipid peroxidation in cells and tissues of the central nervous system. J. Neurochem. 72, 2531–2538 (1999).

    Article  CAS  PubMed  Google Scholar 

  137. Vegeto, E., Ciana, P. & Maggi, A. Estrogen and inflammation: hormone generous action spreads to the brain. Mol. Psychiatry 7, 236–238 (2002).

    Article  CAS  PubMed  Google Scholar 

  138. Whitehouse, P. J. et al. Alzheimer's disease and senile dementia: loss of neurons in the basal forebrain. Science 215, 1237–1239 (1982).

    Article  CAS  PubMed  Google Scholar 

  139. Luine, V. N., Khylchevskaya, R. I. & McEwen, B. S. Effect of gonadal steroids on activities of monoamine oxidase and choline acetylase in rat brain. Brain Res. 86, 293–306 (1975).Shows for the first time that oestrogen can affect the metabolism of the neurotransmitter acetylcholine.

    Article  CAS  PubMed  Google Scholar 

  140. Ishunina, T. A. & Swaab, D. F. Increased expression of estrogen receptor α and β in the nucleus basalis of Meynert in Alzheimer's disease. Neurobiol. Aging 22, 417–426 (2001).Shows an upregulation of ER expression in the brains of patients with Alzheimer's disease.

    Article  CAS  PubMed  Google Scholar 

  141. Selkoe, D. J. Alzheimer's disease: genes, proteins, and therapy. Physiol. Rev. 81, 741–766 (2001).

    Article  CAS  PubMed  Google Scholar 

  142. Xu, H. X. et al. Estrogen reduces neuronal generation of Alzheimer β-aymloid peptides. Nature Med. 4, 447–451 (1998).Using clonal neuronal cell lines and primary neurons, this paper reports that oestrogen enhances the non-amyloidogenic processing of the amyloid precursor protein and prevents the formation of Aβ.

    Article  CAS  PubMed  Google Scholar 

  143. Zheng, H. et al. Modulation of Aβ peptides by estrogen in mouse models. J. Neurochem. 80, 191–196 (2002).

    Article  CAS  PubMed  Google Scholar 

  144. Gouras, G. K. et al. Testosterone reduces neuronal secretion of Alzheimer's β-amyloid peptides. Proc. Natl Acad. Sci. USA 97, 1202–1205 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Goodenough, S., Engert, S. & Behl, C. Testosterone stimulates rapid secretory amyloid precursor protein release from rat hypothalamic cells via the activation of the mitogen-activated protein kinase pathway. Neurosci. Lett. 296, 49–52 (2000).

    Article  CAS  PubMed  Google Scholar 

  146. Sagara, Y. Induction of reactive oxygen species in neurons by haloperidol. J. Neurochem. 71, 1002–1012 (1998).

    Article  CAS  PubMed  Google Scholar 

  147. Chae, H. S. et al. Estrogen attenuates cell death induced by carboxy-terminal fragment of amyloid precursor protein in PC12 through a receptor-dependent pathway. J. Neurosci. Res. 65, 403–407 (2001).

    Article  CAS  PubMed  Google Scholar 

  148. Gollapudi, L. & Oblinger, M. M. Stable transfection of PC12 cells with estrogen receptor α: protective effects of estrogen on cell survival after serum deprivation. J. Neurosci. Res. 56, 99–108 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank S. Goodenough, N. Bayatti and D. Manthey for fruitful discussions. The work of my laboratory is supported in part by grants from the Deutsche Forschungsgemeinschaft and the European Union.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

LocusLink

ERα

ERβ

Medscape DrugInfo

oestrone

raloxifene

tamoxifen

OMIM

Alzheimer's disease

Parkinson's disease

FURTHER INFORMATION

Encyclopedia of Life Sciences

ageing and the brain

Alzheimer disease

hormones and behaviour

oestrogens, mood and cognition

Parkinson disease

Glossary

REPERFUSION DAMAGE

The tissue damage that occurs after an episode of ischaemia, not as a result of lack of blood, but as a consequence of the return of blood to the affected region.

HILUS

A subdivision of the hippocampus that is rich in interneurons. It is located between the CA3 region and the dentate gyrus.

NUCLEUS BASALIS OF MEYNERT

A telencephalic structure that provides most of the acetylcholine to the cerebral cortex.

INVERTED REPEAT

A nucleotide sequence that is found at two sites on the same DNA segment, but with opposite orientations.

PALINDROMIC SEQUENCE

A sequence of nucleotides that reads the same regardless of direction.

NEUROFILAMENT

A type of intermediate filament that is found only in neurons and serves as a cytoskeletal element that supports the axonal cytoplasm.

SH DOMAINS

Src-homology domains are involved in interactions with phosphorylated tyrosine residues on other proteins (SH2 domains) or with proline-rich sections of other proteins (SH3 domains).

FK506

A metabolic product of the fungus Streptomyces tsukabaensis that is commonly used as an immunosupressant agent. FK506 has a binding protein that, when bound to the drug, inhibits the phosphatase calcineurin.

CAVEOLAE

Specialized rafts that contain the protein caveolin and form a flask-shaped, cholesterol-rich invagination of the plasma membrane, which might mediate the uptake of some extracellular materials and are probably involved in cell signalling.

EXPRESSION PROFILING

The use of DNA microarrays to determine the expression level of thousands of genes simultaneously.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Behl, C. Oestrogen as a neuroprotective hormone. Nat Rev Neurosci 3, 433–442 (2002). https://doi.org/10.1038/nrn846

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn846

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing