Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Restoring sensorimotor function through intracortical interfaces: progress and looming challenges

Key Points

  • Brain–machine interface (BMI) control of the kinematics of reaching has progressed dramatically, whereas BMI control of the hand and of the dynamics of movement is still quite limited.

  • Conveying somatosensory feedback is critical for BMIs to be clinically viable, but afferent interfaces are still rather primitive.

  • Biomimicry — that is, attempting to exploit or reproduce natural patterns of neuronal activity — may be an important design criterion.

  • Adaptation, the ability of the nervous system to adapt to novel motor and sensory mappings, is also likely to be crucial.

  • The lifespan of cortical interfaces is currently inadequate.

Abstract

The loss of a limb or paralysis resulting from spinal cord injury has devastating consequences on quality of life. One approach to restoring lost sensory and motor abilities in amputees and patients with tetraplegia is to supply them with implants that provide a direct interface with the CNS. Such brain–machine interfaces might enable a patient to exert voluntary control over a prosthetic or robotic limb or over the electrically induced contractions of paralysed muscles. A parallel interface could convey sensory information about the consequences of these movements back to the patient. Recent developments in the algorithms that decode motor intention from neuronal activity and in approaches to convey sensory feedback by electrically stimulating neurons, using biomimetic and adaptation-based approaches, have shown the promise of invasive interfaces with sensorimotor cortices, although substantial challenges remain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Idealized bidirectional brain–machine interface for prosthetic control.
Figure 2: Seven-DOF control of a prosthetic limb for reaching and grasping.
Figure 3: Offline electromyography-based predictions during flexion and extension isometric wrist torque.
Figure 4: Conveying information about contact location and pressure using a biomimetic approach.
Figure 5: Bidirectional interface based on learned associations.

Similar content being viewed by others

References

  1. Chapin, J. K., Moxon, K. A., Markowitz, R. S. & Nicolelis, M. A. Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex. Nature Neurosci. 2, 664–670 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Carmena, J. M. et al. Learning to control a brain–machine interface for reaching and grasping by primates. PLoS Biol. 1, e42 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Velliste, M., Perel, S., Spalding, M. C., Whitford, A. S. & Schwartz, A. B. Cortical control of a prosthetic arm for self-feeding. Nature 453, 1098–1001 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Santhanam, G., Ryu, S. I., Yu, B. M., Afshar, A. & Shenoy, K. V. A high-performance brain–computer interface. Nature 442, 195–198 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Gilja, V. et al. A high-performance neural prosthesis enabled by control algorithm design. Nature Neurosci. 15, 1752–1757 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Mulliken, G. H., Musallam, S. & Andersen, R. A. Decoding trajectories from posterior parietal cortex ensembles. J. Neurosci. 28, 12913–12926 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Li, Z., O'Doherty, J. E., Lebedev, M. A. & Nicolelis, M. A. Adaptive decoding for brain–machine interfaces through Bayesian parameter updates. Neural Comput. 23, 3162–3204 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hochberg, L. R. et al. Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature 485, 372–375 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Collinger, J. L. et al. High-performance neuroprosthetic control by an individual with tetraplegia. Lancet 381, 557–564 (2013). This study represents the current state of the art of a tetraplegic human controlling a prosthetic limb with many DOFs. Optimal performance was obtained through a two-stage biomimetic decoder and guided, progressive user adaptation.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Johansson, R. S. & Flanagan, J. R. Coding and use of tactile signals from the fingertips in object manipulation tasks. Nature Rev. Neurosci. 10, 345–359 (2009). This paper provides an excellent review of how tactile signals are important for manipulating objects.

    Article  CAS  Google Scholar 

  11. London, B. M., Jordan, L. R., Jackson, C. R. & Miller, L. E. Electrical stimulation of the proprioceptive cortex (area 3a) used to instruct a behaving monkey. IEEE Trans. Neural Syst. Rehabil. Eng. 16, 32–36 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  12. O'Doherty, J. E., Lebedev, M. A., Li, Z. & Nicolelis, M. A. Virtual active touch using randomly patterned intracortical microstimulation. IEEE Trans. Neural Syst. Rehabil. Eng. 20, 85–93 (2012).

    Article  PubMed  Google Scholar 

  13. Venkatraman, S. & Carmena, J. M. Active sensing of target location encoded by cortical microstimulation. IEEE Trans. Neural Syst. Rehabil. Eng. 19, 317–3241 (2011).

    Article  PubMed  Google Scholar 

  14. Tabot, G. A. et al. Restoring the sense of touch with a prosthetic hand through a brain interface. Proc. Natl Acad. Sci. USA 110, 18279–18284 (2013). This study describes approaches to convey information about contact location, force and timing through a biomimetic strategy of ICMS applied to the somatosensory cortex.

    Article  CAS  PubMed  Google Scholar 

  15. Romo, R., Hernandez, A., Zainos, A., Brody, C. D. & Lemus, L. Sensing without touching: psychophysical performance based on cortical microstimulation. Neuron 26, 273–278 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Fitzsimmons, N. A., Drake, W., Hanson, T. L., Lebedev, M. A. & Nicolelis, M. A. Primate reaching cued by multichannel spatiotemporal cortical microstimulation. J. Neurosci. 27, 5593–5602 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dadarlat, M. C., O'Doherty, J. E. & Sabes, P. N. Multisensory integration of vision and intracortical microstimulation for sensory substitution and augmentation. Soc. Neurosci. Abstr. 792.12 (2012).

  18. Weber, D. J. et al. Limb-state information encoded by peripheral and central somatosensory neurons: Implications for an afferent interface. IEEE Trans. Neural Syst. Rehabil. Eng. 19, 501–513 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Tomlinson, T., Ruiz Torres, R. & Miller, L. E. Multi-electrode stimulation in somatosensory area 2 induces a natural sensation of limb movement. Soc. Neurosci. Abstr. 835.03 (2013).

  20. O'Doherty, J. E. et al. Active tactile exploration using a brain-machine-brain interface. Nature 479, 228–231 (2011). This study was the first to describe a bidirectional BMI in which a cursor was controlled by signals from the motor cortex while stimulation was delivered to the somatosensory cortex to signal the consequences of those movements. The monkey had to learn the mapping of the afferent interface.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ethier, C., Oby, E. R., Bauman, M. J. & Miller, L. E. Restoration of grasp following paralysis through brain-controlled stimulation of muscles. Nature 485, 368–371 (2012). Monkeys were able to grasp and move objects despite temporary paralysis of forearm flexor muscles in this study, which used a biomimetic decoder to evoke electrically induced muscle contractions controlled in real-time by predictions of muscle activity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Suminski, A. J., Willett, F. R., Fagg, A. H., Bodenhamer, M. & Hatsopoulos, N. G. Continuous decoding of intended movements with a hybrid kinetic and kinematic brain machine interface. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2011, 5802–5806 (2011).

    PubMed  Google Scholar 

  23. Chhatbar, P. Y. & Francis, J. T. Towards a naturalistic brain–machine interface: hybrid torque and position control allows generalization to novel dynamics. PLoS ONE 8, e52286 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Serruya, M. D., Hatsopoulos, N. G., Paninski, L., Fellows, M. R. & Donoghue, J. P. Instant neural control of a movement signal. Nature 416, 141–142 (2002). This classic study was the first to achieve continuous control of two-dimensional cursor movement using intracortical recordings of neural activity.

    Article  CAS  PubMed  Google Scholar 

  25. Wessberg, J. et al. Real-time prediction of hand trajectory by ensembles of cortical neurons in primates. Nature 408, 361–365 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Taylor, D. M., Tillery, S. I. & Schwartz, A. B. Direct cortical control of 3D neuroprosthetic devices. Science 296, 1829–1832 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Ganguly, K. & Carmena, J. M. Emergence of a stable cortical map for neuroprosthetic control. PLoS Biol. 7, e1000153 (2009). Given several days of practice, monkeys became as proficient in using a decoder with scrambled inputs as they had been in its original, biomimetic state. They could readily switch between the two decoders. Changes in neural tuning tracked the behavioural improvement.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jarosiewicz, B. et al. Functional network reorganization during learning in a brain–computer interface paradigm. Proc. Natl Acad. Sci. USA 105, 19486–19491 (2008). This study emulates the classic 'visual rotation' studies by systematically (rather than randomly) remapping the decoder output. It reveals a combination of global and local adaptive changes in neural tuning.

    Article  CAS  PubMed  Google Scholar 

  29. Ganguly, K., Dimitrov, D. F., Wallis, J. D. & Carmena, J. M. Reversible large-scale modification of cortical networks during neuroprosthetic control. Nature Neurosci. 14, 662–667 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Fetz, E. E. & Baker, M. A. Operantly conditioned patterns on precentral unit activity and correlated responses in adjacent cells and contralateral muscles. J. Neurophysiol. 36, 179–204 (1973). This paper extends earlier work on the conditioning of single neurons in M1 by showing that monkeys can learn to control the discharge of different neurons independently, even that of adjacent pairs of neurons.

    Article  CAS  PubMed  Google Scholar 

  31. Chase, S. M., Kass, R. E. & Schwartz, A. B. Behavioral and neural correlates of visuomotor adaptation observed through a brain–computer interface in primary motor cortex. J. Neurophysiol. 108, 624–644 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Millán, J. R. & Carmena, J. M. Invasive or noninvasive: understanding brain–machine interface technology. IEEE Eng. Med. Biol. Mag. 29, 16–19 (2010).

    Article  Google Scholar 

  33. Barrese, J. C. et al. Failure mode analysis of silicon-based intracortical microelectrode arrays in non-human primates. J. Neural Eng. 10, 066014 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hwang, E. J. & Andersen, R. A. The utility of multichannel local field potentials for brain–machine interfaces. J. Neural Eng. 10, 046005 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Schalk, G. et al. Two-dimensional movement control using electrocorticographic signals in humans. J. Neural Eng. 5, 75–84 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wolpaw, J. R. & McFarland, D. J. Control of a two-dimensional movement signal by a noninvasive brain–computer interface in humans. Proc. Natl Acad. Sci. USA 101, 17849–17854 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Flint, R. D., Wright, Z. A., Scheid, M. R. & Slutzky, M. W. Long term, stable brain machine interface performance using local field potentials and multiunit spikes. J. Neural Eng. 10, 056005 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Mehring, C. et al. Inference of hand movements from local field potentials in monkey motor cortex. Nature Neurosci. 6, 1253–1254 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Bansal, A. K., Vargas-Irwin, C. E., Truccolo, W. & Donoghue, J. P. Relationships among low-frequency local field potentials, spiking activity, and three-dimensional reach and grasp kinematics in primary motor and ventral premotor cortices. J. Neurophysiol. 105, 1603–1619 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Stark, E. & Abeles, M. Predicting movement from multiunit activity. J. Neurosci. 27, 8387–8394 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chestek, C. A. et al. Long-term stability of neural prosthetic control signals from silicon cortical arrays in rhesus macaque motor cortex. J. Neural Eng. 8, 045005 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Sellers, E., McFarland, D., Vaughan, T. & Wolpaw, J. in Brain–Computer Interfaces: Revolutionizing Human–Computer Interaction (eds Graimann, B., Allison, B. & Pfurtscheller, G.) 97–111 (Springer, 2010).

    Google Scholar 

  43. Wahnoun, R., He, J. & Helms Tillery, S. I. Selection and parameterization of cortical neurons for neuroprosthetic control. J. Neural Eng. 3, 162–171 (2006).

    Article  PubMed  Google Scholar 

  44. Hochberg, L. R. et al. Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442, 164–171 (2006). This study was the first in which a paralysed human patient achieved continuous, two-dimensional control of a cursor through an intracortical brain interface.

    Article  CAS  PubMed  Google Scholar 

  45. Tkach, D., Reimer, J. & Hatsopoulos, N. G. Congruent activity during action and action observation in motor cortex. J. Neurosci. 27, 13241–13250 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rizzolatti, G. & Craighero, L. The mirror-neuron system. Annu. Rev. Neurosci. 27, 169–192 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. di Pellegrino, G., Fadiga, L., Fogassi, L., Gallese, V. & Rizzolatti, G. Understanding motor events: a neurophysiological study. Exp. Brain Res. 91, 176–180 (1992).

    Article  CAS  PubMed  Google Scholar 

  48. Cheney, P. D. & Fetz, E. E. Corticomotoneuronal cells contribute to long-latency stretch reflexes in the rhesus monkey. J. Physiol. 349, 249–272 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Asanuma, H. Functional role of sensory inputs to the motor cortex. Prog. Neurobiol. 16, 241–262 (1981).

    Article  CAS  PubMed  Google Scholar 

  50. Fetz, E. E., Perlmutter, S. I., Prut, Y., Seki, K. & Votaw, S. Roles of primate spinal interneurons in preparation and execution of voluntary hand movement. Brain Res. Rev. 40, 53–65 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Johannes, M. S. et al. An overview of the developmental process for the modular prosthetic limb. Johns Hopkins Apl. Tech. Digest 30, 207–216 (2011).

    Google Scholar 

  52. Landgren, S., Phillips, C. G. & Porter, R. Cortical fields of origin of the monosynaptic pyramidal pathways to some alpha motoneurones of the baboon's hand and forearm. J. Physiol. 161, 112–125 (1962).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Schieber, M. H. & Hibbard, L. S. How somatotopic is the motor cortex hand area? Science 261, 489–492 (1993).

    Article  CAS  PubMed  Google Scholar 

  54. Maier, M. A., Bennett, K. M. B., Hepp-Reymond, M. C. & Lemon, R. N. Contribution of the monkey corticomotoneuronal system to the control of force in precision grip. J. Neurophysiol. 69, 772–785 (1993).

    Article  CAS  PubMed  Google Scholar 

  55. Hendrix, C. M., Mason, C. R. & Ebner, T. J. Signaling of grasp dimension and grasp force in dorsal premotor cortex and primary motor cortex neurons during reach to grasp in the monkey. J. Neurophysiol. 102, 132–145 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Townsend, B. R., Subasi, E. & Scherberger, H. Grasp movement decoding from premotor and parietal cortex. J. Neurosci. 31, 14386–14398 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Carpaneto, J. et al. Continuous decoding of grasping tasks for a prospective implantable cortical neuroprosthesis. J. Neuroeng. Rehabil. 9, 84 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Egan, J., Baker, J., House, P. A. & Greger, B. Decoding dexterous finger movements in a neural prosthesis model approaching real-world conditions. IEEE Trans. Neural Syst. Rehabil. Eng. 20, 836–844 (2012).

    Article  PubMed  Google Scholar 

  59. Aggarwal, V., Mollazadeh, M., Davidson, A. G., Schieber, M. H. & Thakor, N. V. State-based decoding of hand and finger kinematics using neuronal ensemble and LFP activity during dexterous reach-to-grasp movements. J. Neurophysiol. 109, 3067–3081 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Vargas-Irwin, C. E. et al. Decoding complete reach and grasp actions from local primary motor cortex populations. J. Neurosci. 30, 9659–9669 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Santello, M., Flanders, M. & Soechting, J. F. Postural hand synergies for tool use. J. Neurosci. 18, 10105–10115 (1998).

    Article  CAS  PubMed  Google Scholar 

  62. Thakur, P. H., Bastian, A. J. & Hsiao, S. S. Multidigit movement synergies of the human hand in an unconstrained haptic exploration task. J. Neurosci. 28, 1271–1281 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Todorov, E. & Ghahramani, Z. Analysis of the synergies underlying complex hand manipulation. Conf. Proc. IEEE Eng. Med. Biol. Soc. 6, 4637–4640 (2004).

    CAS  PubMed  Google Scholar 

  64. Thompson, D., Blain-Moraes, S. & Huggins, J. Performance assessment in brain-computer interface-based augmentative and alternative communication. BioMed Eng. Online 12, 43 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Yuan, P. et al. A study of the existing problems of estimating the information transfer rate in online brain–computer interfaces. J. Neural Eng. 10, 026014 (2013).

    Article  PubMed  Google Scholar 

  66. Hogan, N. Active control of mechanical impedance by coactivation of antagonist muscles. IEEE Trans. Automat. Control 29, 681–690 (1984).

    Article  Google Scholar 

  67. Evarts, E. V. Relation of pyramidal tract activity to force exerted during voluntary movement. J. Neurophysiol. 31, 14–27 (1968).

    Article  CAS  PubMed  Google Scholar 

  68. Smith, A. M., Hepp-Reymond, M. C. & Wyss, U. R. Relation of activity in precentral cortical neurons to force and rate of force change during isometric contractions of finger muscles. Exp. Brain Res. 23, 315–332 (1975).

    Article  CAS  PubMed  Google Scholar 

  69. Kalaska, J. F., Cohen, D. A. D., Hyde, M. L. & Prud'homme, M. A comparison of movement direction-related versus load direction-related activity in primate motor cortex, using a two-dimensional reaching task. J. Neurosci. 9, 2080–2102 (1989).

    Article  CAS  PubMed  Google Scholar 

  70. Boline, J. & Ashe, J. On the relations between single cell activity in the motor cortex and the direction and magnitude of three-dimensional dynamic isometric force. Exp. Brain Res. 167, 148–159 (2005).

    Article  PubMed  Google Scholar 

  71. Cheney, P. D. & Fetz, E. E. Functional classes of primate corticomotorneuronal cells and their relation to active force. J. Neurophysiol. 44, 773–791 (1980).

    Article  CAS  PubMed  Google Scholar 

  72. Hepp-Reymond, M. C., Wyss, U. R. & Anner, R. Neuronal coding of static force in the primate motor cortex. J. Physiol. Paris 74, 287–291 (1978).

    CAS  PubMed  Google Scholar 

  73. Humphrey, D. R., Schmidt, E. M. & Thompson, W. D. Predicting measures of motor performance from multiple cortical spike trains. Science 170, 758–761 (1970). This classic study was the first to make real-time predictions of movement-related parameters using single-unit recordings from multiple neurons in the motor cortex.

    Article  CAS  PubMed  Google Scholar 

  74. Fagg, A. H., Ojakangas, G. W., Miller, L. E. & Hatsopoulos, N. G. Kinetic trajectory decoding using motor cortical ensembles. IEEE Trans. Neural Syst. Rehabil. Eng. 17, 487–496 (2009).

    Article  PubMed  Google Scholar 

  75. Oby, E. R. et al. in Statistical Signal Processing for Neuroscience and Neurotechnology (ed. O'Weiss, K. G.) 369–406 (Academic Press, Elsevier, 2010).

    Book  Google Scholar 

  76. Humphrey, D. R. & Reed, D. J. in Motor Control Mechanisms in Health and Disease (ed. Desmedt, J. E.) 347–372 (Raven, 1983).

    Google Scholar 

  77. Burdet, E., Osu, R., Franklin, D. W., Milner, T. E. & Kawato, M. The central nervous system stabilizes unstable dynamics by learning optimal impedance. Nature 414, 446–449 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Franklin, D., Burdet, E., Osu, R., Kawato, M. & Milner, T. Functional significance of stiffness in adaptation of multijoint arm movements to stable and unstable dynamics. Exp. Brain Res. 151, 145–157 (2003).

    Article  PubMed  Google Scholar 

  79. Gribble, P. L., Mullin, L. I., Cothros, N. & Mattar, A. Role of cocontraction in arm movement accuracy. J. Neurophysiol. 89, 2396–2405 (2003).

    Article  PubMed  Google Scholar 

  80. Kim, H. K. et al. The muscle activation method: an approach to impedance control of brain-machine interfaces through a musculoskeletal model of the arm. IEEE Trans. Biomed. Eng. 54, 1520–1529 (2007).

    Article  PubMed  Google Scholar 

  81. Pohlmeyer, E. A., Solla, S. A., Perreault, E. J. & Miller, L. E. Prediction of upper limb muscle activity from motor cortical discharge during reaching. J. Neural Eng. 4, 369–379 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Santucci, D. M., Kralik, J. D., Lebedev, M. A. & Nicolelis, M. A. Frontal and parietal cortical ensembles predict single-trial muscle activity during reaching movements in primates. Eur. J. Neurosci. 22, 1529–1540 (2005).

    Article  PubMed  Google Scholar 

  83. Flint, R. D., Ethier, C., Oby, E. R., Miller, L. E. & Slutzky, M. W. Local field potentials allow accurate decoding of muscle activity. J. Neurophysiol. 108, 18–24 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Pohlmeyer, E. A. et al. Toward the restoration of hand use to a paralyzed monkey: brain-controlled functional electrical stimulation of forearm muscles. PLoS ONE 4, e5924 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Moritz, C. T., Perlmutter, S. I. & Fetz, E. E. Direct control of paralysed muscles by cortical neurons. Nature 456, 639–642 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Xerri, C., Merzenich, M. M., Jenkins, W. & Santucci, S. Representational plasticity in cortical area 3b paralleling tactual-motor skill acquisition in adult monkeys. Cereb. Cortex 9, 264–276 (1999).

    Article  CAS  PubMed  Google Scholar 

  87. Qi, H. X., Chen, L. M. & Kaas, J. H. Reorganization of somatosensory cortical areas 3b and 1 after unilateral section of dorsal columns of the spinal cord in squirrel monkeys. J. Neurosci. 31, 13662–13675 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Shadmehr, R. & Mussa-Ivaldi, F. A. Adaptive representation of dynamics during learning of a motor task. J. Neurosci. 14, 3208–3224 (1994).

    Article  CAS  PubMed  Google Scholar 

  89. Krakauer, J. W., Pine, Z. M., Ghilardi, M. F. & Ghez, C. Learning of visuomotor transformations for vectorial planning of reaching trajectories. J. Neurosci. 20, 8916–8924 (2000).

    Article  CAS  PubMed  Google Scholar 

  90. Cunningham, H. A. Aiming error under transformed spatial mappings suggests a structure for visual-motor maps. J. Exp. Psychol. Hum. Percept. Perform. 15, 493–506 (1989).

    Article  CAS  PubMed  Google Scholar 

  91. Ostry, D. J., Darainy, M., Mattar, A. A., Wong, J. & Gribble, P. L. Somatosensory plasticity and motor learning. J. Neurosci. 30, 5384–5393 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Cressman, E. K. & Henriques, D. Y. P. Sensory recalibration of hand position following visuomotor adaptation. J. Neurophysiol. 102, 3505–3518 (2009).

    Article  PubMed  Google Scholar 

  93. Nasir, S. M., Darainy, M. & Ostry, D. J. Sensorimotor adaptation changes the neural coding of somatosensory stimuli. J. Neurophysiol. 109, 2077–2085 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Lebedev, M. A. et al. Cortical ensemble adaptation to represent velocity of an artificial actuator controlled by a brain-machine interface. J. Neurosci. 25, 4681–4693 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Fetz, E. E. & Finocchio, D. V. Operant conditioning of specific patterns of neural and muscular activity. Science 174, 431–435 (1971).

    Article  CAS  PubMed  Google Scholar 

  96. Moritz, C. T. & Fetz, E. E. Volitional control of single cortical neurons in a brain-machine interface. J. Neural Eng. 8, 025017 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Kennedy, P. R., Bakay, R. A., Moore, M. M., Adams, K. & Goldwaithe, J. Direct control of a computer from the human central nervous system. IEEE Trans. Rehabil. Eng. 8, 198–202 (2000).

    Article  CAS  PubMed  Google Scholar 

  98. Ochoa, J. & Torebjork, E. Sensations evoked by intraneural microstimulation of single mechanoreceptor units innervating the human hand. J. Physiol. 342, 633–654 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wheat, H. E., Goodwin, A. W. & Browning, A. S. Tactile resolution: peripheral neural mechanisms underlying the human capacity to determine positions of objects contacting the fingerpad. J. Neurosci. 15, 5582–5595 (1995).

    Article  CAS  PubMed  Google Scholar 

  100. Knibestol, M. Stimulus-response functions of slowly adapting mechanoreceptors in the human glabrous skin area. J. Physiol. 245, 63–80 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Macefield, V. G., Hager-Ross, C. & Johansson, R. S. Control of grip force during restraint of an object held between finger and thumb: responses of cutaneous afferents from the digits. Exp. Brain Res. 108, 155–171 (1996).

    CAS  PubMed  Google Scholar 

  102. Goodwin, A. W. & Wheat, H. E. Sensory signals in neural populations underlying tactile perception and manipulation. Annu. Rev. Neurosci. 27, 53–77 (2004).

    Article  CAS  PubMed  Google Scholar 

  103. Johansson, R. S. & Westling, G. Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects. Exp. Brain Res. 56, 550–564 (1984).

    Article  CAS  PubMed  Google Scholar 

  104. Monzée, J., Lamarre, Y. & Smith, A. M. The effects of digital anesthesia on force control using a precision grip. J. Neurophysiol. 89, 672–683 (2003).

    Article  PubMed  Google Scholar 

  105. Brochier, T., Boudreau, M. J., Paré, M. & Smith, A. M. The effects of muscimol inactivation of small regions of motor and somatosensory cortex on independent finger movements and force control in the precision grip. Exp. Brain Res. 128, 31–40 (1999).

    Article  CAS  PubMed  Google Scholar 

  106. Sainburg, R. L., Ghilardi, M. F., Poizner, H. & Ghez, C. Control of limb dynamics in normal subjects and patients without proprioception. J. Neurophysiol. 73, 820–835 (1995).

    Article  CAS  PubMed  Google Scholar 

  107. Botvinick, M. & Cohen, J. Rubber hands “feel” touch that eyes see. Nature 391, 756 (1998).

    Article  CAS  PubMed  Google Scholar 

  108. Dunbar, R. I. The social role of touch in humans and primates: behavioural function and neurobiological mechanisms. Neurosci. Biobehav. Rev. 34, 260–268 (2010).

    Article  CAS  PubMed  Google Scholar 

  109. Blabe, C. et al. Assessing the brain–machine interface priiorities from the perspective of spinal cord injury participants. Soc. Neurosci. Abstr. 584.14 (2012).

  110. Penfield, W. & Boldrey, E. Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60, 389–443 (1937).

    Article  Google Scholar 

  111. Rasmussen, T. & Penfield, W. The human sensorimotor cortex as studied by electrical stimulation. Fed. Proc. 6, 184 (1947).

    CAS  PubMed  Google Scholar 

  112. Romo, R., Hernandez, A., Zainos, A. & Salinas, E. Somatosensory discrimination based on cortical microstimulation. Nature 392, 387–390 (1998). In this landmark study, monkeys were trained to discriminate the frequencies of sequential mechanical vibrations applied to the fingertip. They were then able to discriminate the frequency of ICMS pulse trains delivered to S1 when substituted for one or both of the mechanical stimuli.

    Article  CAS  PubMed  Google Scholar 

  113. Fridman, G., Blair, H., Blaisdell, A. & Judy, J. Perceived intensity of somatosensory cortical electrical stimulation. Exp. Brain Res. 203, 499–515 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Semprini, M., Bennicelli, L. & Vato, A. A parametric study of intracortical microstimulation in behaving rats for the development of artificial sensory channels. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2012, 799–802 (2012).

    PubMed  Google Scholar 

  115. Zaaimi, B., Ruiz-Torres, R., Solla, S. A. & Miller, L. E. Multi-electrode stimulation in somatosensory cortex increases probability of detection. J. Neural Engineer. 10, 056013 (2013).

    Article  Google Scholar 

  116. O'Connor, D. H. et al. Neural coding during active somatosensation revealed using illusory touch. Nature Neurosci. 16, 958–965 (2013).

    Article  CAS  PubMed  Google Scholar 

  117. Ramachandran, V. S. & Hirstein, W. The perception of phantom limbs. The D. O. Hebb lecture. Brain 121, 1603–1630 (1998). This paper provides an overview of the phenomenon of the phantom limb, which in turn sheds light on how somatosensory representations evolve after deafferentation.

    Article  PubMed  Google Scholar 

  118. Berg, J. A. et al. Behavioral demonstration of a somatosensory neuroprosthesis. IEEE Trans. Neural Syst. Rehabil. Eng. 21, 500–507 (2013).

    Article  CAS  PubMed  Google Scholar 

  119. Pei, Y. C., Hsiao, S. S., Craig, J. C. & Bensmaia, S. J. Shape invariant coding of motion direction in somatosensory cortex. PLoS Biol. 8, e1000305 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Bensmaia, S. J., Denchev, P. V., Dammann, J. F., Craig, J. C. & Hsiao, S. S. The representation of stimulus orientation in the early stages of somatosensory processing. J. Neurosci. 28, 776–786 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Costanzo, R. M. & Gardner, E. P. Multiple-joint neurons in somatosensory cortex of awake monkeys. Brain Res. 214, 321–333 (1981).

    Article  CAS  PubMed  Google Scholar 

  122. Prud'homme, M. J. L. & Kalaska, J. F. Proprioceptive activity in primate primary somatosensory cortex during active arm reaching movements. J. Neurophysiol. 72, 2280–2301 (1994).

    Article  CAS  PubMed  Google Scholar 

  123. London, B. M. & Miller, L. E. Responses of somatosensory area 2 neurons to actively and passively generated limb movements. J. Neurophysiol. 109, 1505–1513 (2013).

    Article  CAS  PubMed  Google Scholar 

  124. Histed, M. H., Bonin, V. & Reid, R. C. Direct activation of sparse, distributed populations of cortical neurons by electrical microstimulation. Neuron 63, 508–522 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Logothetis, N. K. et al. The effects of electrical microstimulation on cortical signal propagation. Nature Neurosci. 13, 1283–1291 (2010).

    Article  CAS  PubMed  Google Scholar 

  126. Mountcastle, V. B. & Powell, T. P. Central nervous mechanisms subserving position sense and kinesthesis. Bull. Johns Hopkins Hosp. 105, 173–200 (1959).

    CAS  PubMed  Google Scholar 

  127. Diester, I. et al. An optogenetic toolbox designed for primates. Nature Neurosci. 14, 387–397 (2011).

    Article  CAS  PubMed  Google Scholar 

  128. Cardin, J. A. et al. Targeted optogenetic stimulation and recording of neurons in vivo using cell-type-specific expression of Channelrhodopsin-2. Nature Protoc. 5, 247–254 (2010).

    Article  CAS  Google Scholar 

  129. Thomson, E. E., Carra, R. & Nicolelis, M. A. Perceiving invisible light through a somatosensory cortical prosthesis. Nature Commun. 4, 1482 (2013).

    Article  CAS  Google Scholar 

  130. Marasco, P. D., Schultz, A. E. & Kuiken, T. A. Sensory capacity of reinnervated skin after redirection of amputated upper limb nerves to the chest. Brain 132, 1441–1448 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Marasco, P. D., Kim, K., Colgate, J. E., Peshkin, M. A. & Kuiken, T. A. Robotic touch shifts perception of embodiment to a prosthesis in targeted reinnervation amputees. Brain 134, 747–758 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Shokur, S. et al. Expanding the primate body schema in sensorimotor cortex by virtual touches of an avatar. Proc. Natl Acad. Sci. USA 110, 15121–15126 (2013).

    Article  CAS  PubMed  Google Scholar 

  133. Ince, N. F. et al. High accuracy decoding of movement target direction in non-human primates based on common spatial patterns of local field potentials. PLoS ONE 5, e14384 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Rickert, J. et al. Encoding of movement direction in different frequency ranges of motor cortical local field potentials. J. Neurosci. 25, 8815–8824 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Andersen, R. A., Musallam, S. & Pesaran, B. Selecting the signals for a brain-machine interface. Curr. Opin. Neurobiol. 14, 720–726 (2004).

    Article  CAS  PubMed  Google Scholar 

  136. Markowitz, D. A., Wong, Y. T., Gray, C. M. & Pesaran, B. Optimizing the decoding of movement goals from local field potentials in macaque cortex. J. Neurosci. 31, 18412–18422 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Pesaran, B., Pezaris, J. S., Sahani, M., Mitra, P. P. & Andersen, R. A. Temporal structure in neuronal activity during working memory in macaque parietal cortex. Nature Neurosci. 5, 805–811 (2002).

    Article  CAS  PubMed  Google Scholar 

  138. Dangi, S., Orsborn, A. L., Moorman, H. G. & Carmena, J. M. Design and analysis of closed-loop decoder adaptation algorithms for brain–machine interfaces. Neural Comput. 25, 1693–1731 (2013).

    Article  PubMed  Google Scholar 

  139. Buzsáki, G., Anastassiou, C. A. & Koch, C. The origin of extracellular fields and currents — EEG, ECoG, LFP and spikes. Nature Rev. Neurosci. 13, 407–420 (2012).

    Article  CAS  Google Scholar 

  140. Kim, S. P. et al. Divide-and-conquer approach for brain machine interfaces: nonlinear mixture of competitive linear models. Neural Netw. 16, 865–871 (2003).

    Article  PubMed  Google Scholar 

  141. Kim, S. P. et al. A comparison of optimal MIMO linear and nonlinear models for brain-machine interfaces. J. Neural Eng. 3, 145–161 (2006).

    Article  PubMed  Google Scholar 

  142. Shoham, S. et al. Statistical encoding model for a primary motor cortical brain-machine interface. IEEE Trans. Biomed. Eng. 52, 1312–1322 (2005).

    Article  PubMed  Google Scholar 

  143. Yu, B. M. et al. Mixture of trajectory models for neural decoding of goal-directed movements. J. Neurophysiol. 97, 3763–3780 (2007).

    Article  PubMed  Google Scholar 

  144. Yu, B., Cunningham, J., Shenoy, K. & Sahani, M. in Neural Information Processing; Lecture Notes in Computer Science Vol. 4984 (eds Ishikawa, M., Doya, K., Miyamoto, H. & Yamakawa, T.) 586–595 (Springer, 2008).

    Book  Google Scholar 

  145. Palmer, S. S. & Fetz, E. E. Discharge properties of prima te forearm motor units during isometric muscle activity. J. Neurophysiol. 54, 1178–1193 (1985).

    Article  CAS  PubMed  Google Scholar 

  146. Sergio, L. E., Hamel-Paquet, C. & Kalaska, J. F. Motor cortex neural correlates of output kinematics and kinetics during isometric-force and arm-reaching tasks. J. Neurophysiol. 94, 2353–2378 (2005).

    Article  PubMed  Google Scholar 

  147. Fetz, E. E. Are movement parameters recognizably coded in activity of single neurons? Behav. Brain Sci. 15, 679–690 (1992).

    Google Scholar 

  148. Phillips, C. G. Laying the ghost of 'muscles versus movements'. Can. J. Neurol. Sci. 2, 209–218 (1975).

    Article  CAS  PubMed  Google Scholar 

  149. Scott, S. H. & Kalaska, J. F. Reaching movements with similar hand paths but different arm orientations. I. Activity of individual cells in motor cortex. J. Neurophysiol. 77, 826–852 (1997).

    Article  CAS  PubMed  Google Scholar 

  150. Caminiti, R., Johnson, P. B. & Urbano, A. Making arm movements within different parts of space: dynamic aspects in the primate motor cortex. J. Neurosci. 10, 2039–2058 (1990).

    Article  CAS  PubMed  Google Scholar 

  151. Kakei, S., Hoffman, D. S. & Strick, P. L. Muscle and movement representations in the primary motor cortex. Science 285, 2136–2139 (1999).

    Article  CAS  PubMed  Google Scholar 

  152. Oby, E. R., Ethier, C. & Miller, L. E. Movement representation in the primary motor cortex and its contribution to generalizable EMG predictions. J. Neurophysiol. 109, 666–678 (2013).

    Article  PubMed  Google Scholar 

  153. Cherian, A., Krucoff, M. O. & Miller, L. E. Motor cortical prediction of EMG: evidence that a kinetic brain-machine interface may be robust across altered movement dynamics. J. Neurophysiol. 106, 564–575 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Gupta, R. & Ashe, J. Lack of adaptation to random conflicting force fields of variable magnitude. J. Neurophysiol. 97, 738–745 (2007).

    Article  PubMed  Google Scholar 

  155. Hatsopoulos, N., Joshi, J. & O'Leary, J. G. Decoding continuous and discrete motor behaviors using motor and premotor cortical ensembles. J. Neurophysiol. 92, 1165–1174 (2004).

    Article  PubMed  Google Scholar 

  156. Hauschild, M., Mulliken, G. H., Fineman, I., Loeb, G. E. & Andersen, R. A. Cognitive signals for brain–machine interfaces in posterior parietal cortex include continuous 3D trajectory commands. Proc. Natl Acad. Sci. USA 109, 17075–17080 (2012).

    Article  CAS  PubMed  Google Scholar 

  157. Pesaran, B., Nelson, M. J. & Andersen, R. A. Dorsal premotor neurons encode the relative position of the hand, eye, and goal during reach planning. Neuron 51, 125–134 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Musallam, S., Corneil, B. D., Greger, B., Scherberger, H. & Andersen, R. A. Cognitive control signals for neural prosthetics. Science 305, 258–262 (2004).

    Article  CAS  PubMed  Google Scholar 

  159. Ganguly, K. & Carmena, J. M. Neural correlates of skill acquisition with a cortical brain-machine interface. J. Motor Behav. 42, 355–360 (2010).

    Article  Google Scholar 

  160. Heliot, R., Venkatraman, S. & Carmena, J. M. Decoder remapping to counteract neuron loss in brain-machine interfaces. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2010, 1670–1673 (2010).

    PubMed  Google Scholar 

  161. Orsborn, A. L., Dangi, S., Moorman, H. G. & Carmena, J. M. Closed-loop decoder adaptation on intermediate time-scales facilitates rapid BMI performance improvements independent of decoder initialization conditions. IEEE Trans. Neural Syst. Rehabil. Eng. 20, 468–477 (2012).

    Article  PubMed  Google Scholar 

  162. Fishbach, A., Roy, S., Bastianen, C., Miller, L. & Houk, J. Kinematic properties of on-line error corrections in the monkey. Exp. Brain Res. 164, 442–457 (2005).

    Article  PubMed  Google Scholar 

  163. Danziger, Z., Fishbach, A. & Mussa-Ivaldi, F. A. Learning algorithms for human–machine interfaces. IEEE Trans. Biomed. Eng. 56, 1502–1511 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Mahmoudi, B. & Sanchez, J. C. A. Symbiotic brain-machine interface through value-based decision making. PLoS ONE 6, e14760 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Mahmoudi, B., Pohlmeyer, E. A., Prins, N. W., Geng, S. & Sanchez, J. C. Towards autonomous neuroprosthetic control using Hebbian reinforcement learning. J. Neural Eng. 10, 066005 (2013).

    Article  PubMed  Google Scholar 

  166. Judy, J. W. Neural interfaces for upper-limb prosthesis control: opportunities to improve long-term reliability. IEEE Pulse 3, 57–60 (2012).

    Article  PubMed  Google Scholar 

  167. Perge, J. A. et al. Intra-day signal instabilities affect decoding performance in an intracortical neural interface system. J. Neural Eng. 10, 036004 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Polikov, V. S., Tresco, P. A. & Reichert, W. M. Response of brain tissue to chronically implanted neural electrodes. J. Neurosci. Methods 148, 1–18 (2005).

    Article  PubMed  Google Scholar 

  169. Prasad, A. et al. Comprehensive characterization and failure modes of tungsten microwire arrays in chronic neural implants. J. Neural Eng. 9, 056015 (2012).

    Article  PubMed  Google Scholar 

  170. McCreery, D., Pikov, V. & Troyk, P. Neuronal loss due to prolonged controlled-current stimulation with chronically implanted microelectrodes in the cat cerebral cortex. J. Neural Eng. 7, 036005 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Parker, R. A., Davis, T. S., House, P. A., Normann, R. A. & Greger, B. The functional consequences of chronic, physiologically effective intracortical microstimulation. Prog. Brain Res. 194, 145–165 (2011).

    Article  PubMed  Google Scholar 

  172. Chen, K. H. et al. The effect of chronic intracortical microstimulation on the electrode–tissue interface. J. Neural Eng. 11, 026004 (2014).

    Article  PubMed  Google Scholar 

  173. Kane, S. et al. Electrical performance of penetrating microelectrodes chronically implanted in cat cortex. IEEE Trans. Biomed. Eng. 60, 2153–2160 (2013).

    Article  PubMed  Google Scholar 

  174. Cogan, S. F. Neural stimulation and recording electrodes. Annu. Rev. Biomed. Eng. 10, 275–309 (2008).

    Article  CAS  PubMed  Google Scholar 

  175. Simeral, J. D. et al. Some preliminary longitudinal findings from five trial participants using the BrainGate neural interface system. Soc. Neurosci. Abstr. 142.04 (2011).

  176. Grill, W. M., Norman, S. E. & Bellamkonda, R. V. Implanted neural interfaces: biochallenges and engineered solutions. Annu. Rev. Biomed. Eng. 11, 1–24 (2009).

    Article  CAS  PubMed  Google Scholar 

  177. Reichert, W. M. Indwelling Neural Implants: Strategies for Contending with the In Vivo Environment (CRC, 2010).

    Google Scholar 

  178. Sridharan, A., Rajan, S. D. & Muthuswamy, J. Long-term changes in the material properties of brain tissue at the implant–tissue interface. J. Neural Eng. 10, 066001 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Harris, J. P. et al. In vivo deployment of mechanically adaptive nanocomposites for intracortical microelectrodes. J. Neural Eng. 8, 046010 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Ware, T., Simon, D., Rennaker, R. L. & Voit, W. Smart polymers for neural interfaces. Polymer Rev. 53, 108–129 (2013).

    Article  CAS  Google Scholar 

  181. Capadona, J. R., Tyler, D. J., Zorman, C. A., Rowan, S. J. & Weder, C. Mechanically adaptive nanocomposites for neural interfacing. MRS Bull. 37, 581–589 (2012).

    Article  CAS  Google Scholar 

  182. Lind, G., Linsmeier, C. E., Thelin, J. & Schouenborg, J. Gelatine-embedded electrodes—a novel biocompatible vehicle allowing implantation of highly flexible microelectrodes. J. Neural Engineer. 7, 046005 (2010).

    Article  Google Scholar 

  183. Khodagholy, D. et al. Highly conformable conducting polymer electrodes for in vivo recordings. Adv. Mater. 23, H268–H272 (2011).

    Article  CAS  PubMed  Google Scholar 

  184. Kim, T., Branner, A., Gulati, T. & Giszter, S. F. Braided multi-electrode probes: mechanical compliance characteristics and recordings from spinal cords. J. Neural Eng. 10, 045001 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Rousche, P. J. et al. Flexible polyimide-based intracortical electrode arrays with bioactive capability. IEEE Trans. Biomed. Eng. 48, 361–371 (2001).

    Article  CAS  PubMed  Google Scholar 

  186. Moxon, K. A. et al. Nanostructured surface modification of ceramic-based microelectrodes to enhance biocompatibility for a direct brain-machine interface. IEEE Trans. Biomed. Eng. 51, 881–889 (2004).

    Article  PubMed  Google Scholar 

  187. Kim, D.-H. & Martin, D. C. Sustained release of dexamethasone from hydrophilic matrices using PLGA nanoparticles for neural drug delivery. Biomaterials 27, 3031–3037 (2006).

    Article  CAS  PubMed  Google Scholar 

  188. Cho, Y. & Ben Borgens, R. Electrically controlled release of the nerve growth factor from a collagen-carbon nanotube composite for supporting neuronal growth. J. Mater. Chem. B 1, 4166–4170 (2013).

    Article  CAS  Google Scholar 

  189. Keefer, E. W., Botterman, B. R., Romero, M. I., Rossi, A. F. & Gross, G. W. Carbon nanotube coating improves neuronal recordings. Nature Nanotechnol. 3, 434–439 (2008).

    Article  CAS  Google Scholar 

  190. Kotov, N. A. et al. Nanomaterials for Neural Interfaces. Adv. Mater. 21, 3970–4004 (2009).

    Article  CAS  Google Scholar 

  191. Stauffer, W. R. & Cui, X. T. Polypyrrole doped with 2 peptide sequences from laminin. Biomaterials 27, 2405–2413 (2006).

    Article  CAS  PubMed  Google Scholar 

  192. Malarkey, E. & Parpura, V. in Brain Edema XIV Vol. 106 Acta Neurochirurgica Supplementum (eds Czernicki, Z. et al.) 337–341 (Springer, 2010).

    Google Scholar 

  193. Kenney, C. et al. Short-term and long-term safety of deep brain stimulation in the treatment of movement disorders. J. Neurosurg. 106, 621–625 (2007).

    Article  PubMed  Google Scholar 

  194. Rizk, M. et al. A fully implantable 96-channel neural data acquisition system. J. Neural Eng. 6, 026002 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Zhang, F., Aghagolzadeh, M. & Oweiss, K. A. Fully implantable, programmable and multimodal neuroprocessor for wireless, cortically controlled brain-machine interface applications. J. Signal Process. Syst. 69, 351–361 (2012).

    Article  PubMed  Google Scholar 

  196. Borton, D. A., Yin, M., Aceros, J. & Nurmikko, A. An implantable wireless neural interface for recording cortical circuit dynamics in moving primates. J. Neural Eng. 10, 026010 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Harrison, R. R. The design of integrated circuits to observe brain activity. Proc. IEEE 96, 1203–1216 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully thank J. Yau, H. Saal, A. Suminski and K. Otto for their comments on a previous version of the manuscript. The authors also thank G. Tabot for designing figure 1. S.J.B.is supported by US Defense Advanced Research Projects Agency (DARPA) contract #N66001-10-C-4056, US National Science Foundation (NSF) grant IOS-1150209 and US National Institutes of Health (NIH) grant 082865. L.E.M. is supported by grants from the US NIH (NS053603, NS048845) and the US NSF (0932263), with additional funding from the Chicago Community Trust through the Searle Program for Neurological Restoration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lee E. Miller.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Degree of freedom

(DOF). The number of signals required to control a device. The DOF is determined approximately by the number of parameters that defines its configuration.

Decoders

A set of (often linear) coefficients used to transform a large number of signals recorded from the brain into a small number of control signals. A decoder might also be used simply to classify the brain signals into two or more clusters that could be used to control the state of a limb.

Offline analysis

A test of decoder performance, typically using signals previously recorded from an able-bodied subject, enabling comparison of the decoder's 'predictions' with the actual movement-related signals.

Impedance

In electricity, the opposition to alternating current by an electric circuit. In limb movement, a measure of how much the limb resists motion when subjected to a force.

Redundant

A limb having more degrees of freedom (for example, muscles or joint rotations) than are minimally necessary to position and orient its end point. Redundancy conveys flexibility but also requires more complex control algorithms.

Actor–critic

A reinforcement learning approach that consists of having an 'actor' perform an action based on the state of the system and a 'critic' evaluate the consequences of that action. The probability of performing that action given the state is then modified based on the consequences.

Online control

Actual predictions made with a decoder in real-time, allowing the user to control a robotic limb or the motion of a cursor.

Ballistic

A preprogrammed movement that is sufficiently rapid that it cannot be modified by online sensory feedback.

Proprioception

The sense of the relative position and motion of parts of the body (particularly limbs) and of the effort deployed in movement.

Flutter

Low-frequency (5–50 Hz) oscillations.

Verisimilitude

In the context of sensory brain–machine interfaces, the similarity to naturally occurring percepts.

Percutaneous

Literally, 'by way of the skin'. In this context, an interface that penetrates the skin in order to convey signals to and from the nervous system.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bensmaia, S., Miller, L. Restoring sensorimotor function through intracortical interfaces: progress and looming challenges. Nat Rev Neurosci 15, 313–325 (2014). https://doi.org/10.1038/nrn3724

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn3724

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing