Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Assembly of a new growth cone after axotomy: the precursor to axon regeneration

Key Points

  • Before a cut axon can attempt to grow, it first has to assemble a new growth cone at its tip.

  • The mechanism leading to the assembly of a new growth cone includes the following events: membrane seal formation; calcium influx; activation of kinases, phosphatases and proteases; local restructuring of the cytoskeleton; accumulation of Golgi-derived vesicles; and fusion of such vesicles with the plasma membrane. These events are supported by concurrent local protein translation and anterograde transport of proteins that are in transit in the axon, but are probably not supported by new protein synthesis in the cell body.

  • During the formation of a frustrated growth cone or end bulb, vesicles that accumulate at the cut end of an axon fail to fuse with the plasma membrane, and the microtubules point their tips in a retrograde direction. End bulb formation can result from the failure of any one of the events described above.

  • In the future, it may be possible to prevent the failure of growth cone regeneration by stabilizing microtubules with nanomolar concentrations of taxol; by enhancing or enabling the transport of protein translation machinery (for example, mRNA and ribosomes) from the cell body to the site of injury through changing the 'filtering' properties of the axon's initial segment; or by facilitating the fusion of accumulating vesicles with the end bulb membrane.

  • The intrinsic difference in growth cone regenerative capability that is observed between mammalian CNS and PNS axons may be due to differences in the extent of depolymerization of the cytoskeleton after axotomy, signalling pathways, transport of growth-related molecules and/or the propensity for local protein translation.

Abstract

The assembly of a new growth cone is a prerequisite for axon regeneration after injury. Creation of a new growth cone involves multiple processes, including calcium signalling, restructuring of the cytoskeleton, transport of materials, local translation of messenger RNAs and the insertion of new membrane and cell surface molecules. In axons that have an intrinsic ability to regenerate, these processes are executed in a timely fashion. However, in axons that lack regenerative capacity, such as those of the mammalian CNS, several of the steps that are required for regeneration fail, and these axons do not begin the growth process. Identification of the points of failure can suggest targets for promoting regeneration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Key events in the transformation of the proximal tip of a cut axon into a growth cone.
Figure 2: Formation of a retraction bulb and its rescue.
Figure 3: Molecular events in growth cone regeneration.

Similar content being viewed by others

References

  1. Schwab, M. E. Functions of Nogo proteins and their receptors in the nervous system. Nature Rev. Neurosci. 11, 799–811 (2010).

    Article  CAS  Google Scholar 

  2. Schwab, M. E. How hard is the CNS hardware? Nature Neurosci. 13, 1444–1446 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Fitch, M. T. & Silver, J. CNS injury, glial scars, and inflammation: inhibitory extracellular matrices and regeneration failure. Exp. Neurol. 209, 294–301 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Kwok, J. C., Afshari, F., Garcia-Alias, G. & Fawcett, J. W. Proteoglycans in the central nervous system: plasticity, regeneration and their stimulation with chondroitinase ABC. Restor. Neurol. Neurosci. 26, 131–145 (2008).

    PubMed  Google Scholar 

  5. Pasterkamp, R. J. & Verhaagen, J. Semaphorins in axon regeneration: developmental guidance molecules gone wrong? Phil. Trans. R. Soc. B 361, 1499–1511 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Park, K. K., Liu, K., Hu, Y., Kanter, J. L. & He, Z. PTEN/mTOR and axon regeneration. Exp. Neurol. 223, 45–50 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Hannila, S. S. & Filbin, M. T. The role of cyclic AMP signaling in promoting axonal regeneration after spinal cord injury. Exp. Neurol. 209, 321–332 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Wang, Z. & Jin, Y. Genetic dissection of axon regeneration. Curr. Opin. Neurobiol. 21, 189–196 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tom, V. J., Steinmetz, M. P., Miller, J. H., Doller, C. M. & Silver, J. Studies on the development and behavior of the dystrophic growth cone, the hallmark of regeneration failure, in an in vitro model of the glial scar and after spinal cord injury. J. Neurosci. 24, 6531–6539 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Erturk, A., Hellal, F., Enes, J. & Bradke, F. Disorganized microtubules underlie the formation of retraction bulbs and the failure of axonal regeneration. J. Neurosci. 27, 9169–9180 (2007). This live imaging study pinpoints microtubule disassembly as a key intracellular event in injured axons that prevents axonal regeneration after spinal cord injury.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wanner, M. et al. Reevaluation of the growth-permissive substrate properties of goldfish optic nerve myelin and myelin proteins. J. Neurosci. 15, 7500–7508 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gaze, R. M. The Formation of Nerve Connections (Academic, London, New York, 1970).

    Google Scholar 

  13. Lurie, D. I. & Selzer, M. E. Axonal regeneration in the adult lamprey spinal cord. J. Comp. Neurol. 306, 409–416 (1991).

    Article  CAS  PubMed  Google Scholar 

  14. Wu, Z. et al. Caenorhabditis elegans neuronal regeneration is influenced by life stage, ephrin signaling, and synaptic branching. Proc. Natl Acad. Sci. USA 104, 15132–15137 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Friede, R. L. & Bischhausen, R. The fine structure of stumps of transected nerve fibers in subserial sections. J. Neurol. Sci. 44, 181–203 (1980).

    Article  CAS  PubMed  Google Scholar 

  16. Morris, J. H., Hudson, A. R. & Weddell, G. A study of degeneration and regeneration in the divided rat sciatic nerve based on electron microscopy. II. The development of the “regenerating unit”. Z. Zellforsch. Mikrosk. Anat. 124, 103–130 (1972).

    Article  CAS  PubMed  Google Scholar 

  17. Pan, Y. A., Misgeld, T., Lichtman, J. W. & Sanes, J. R. Effects of neurotoxic and neuroprotective agents on peripheral nerve regeneration assayed by time-lapse imaging in vivo. J. Neurosci. 23, 11479–11488 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Windle, W. F. Inhibition of regeneration of severed axons in the spinal cord. Exp. Neurol. 69, 209–211 (1980).

    Article  CAS  PubMed  Google Scholar 

  19. Kerschensteiner, M., Schwab, M. E., Lichtman, J. W. & Misgeld, T. In vivo imaging of axonal degeneration and regeneration in the injured spinal cord. Nature Med. 11, 572–577 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Ylera, B. et al. Chronically CNS-injured adult sensory neurons gain regenerative competence upon a lesion of their peripheral axon. Curr. Biol. 19, 930–936 (2009). The authors cut single axons (using a two-photon laser) in the spinal cords of living mice and studied growth cone formation and subsequent axon growth.

    Article  CAS  PubMed  Google Scholar 

  21. Richardson, P. M. & Issa, V. M. Peripheral injury enhances central regeneration of primary sensory neurones. Nature 309, 791–793 (1984).

    Article  CAS  PubMed  Google Scholar 

  22. Neumann, S. & Woolf, C. J. Regeneration of dorsal column fibers into and beyond the lesion site following adult spinal cord injury. Neuron 23, 83–91 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Knoferle, J. et al. Mechanisms of acute axonal degeneration in the optic nerve in vivo. Proc. Natl Acad. Sci. USA 107, 6064–6069 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Goslin, K. & Banker, G. Experimental observations on the development of polarity by hippocampal neurons in culture. J. Cell. Biol. 108, 1507–1516 (1989).

    Article  CAS  PubMed  Google Scholar 

  25. Dotti, C. G. & Banker, G. A. Experimentally induced alteration in the polarity of developing neurons. Nature 330, 254–256 (1987).

    Article  CAS  PubMed  Google Scholar 

  26. Chuckowree, J. A. & Vickers, J. C. Cytoskeletal and morphological alterations underlying axonal sprouting after localized transection of cortical neuron axons in vitro. J. Neurosci. 23, 3715–3725 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bradke, F. & Dotti, C. G. Differentiated neurons retain the capacity to generate axons from dendrites. Curr. Biol. 10, 1467–1470 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Goslin, K. & Banker, G. Experimental observations on the development of polarity by hippocampal neurons in culture. J. Cell Biol. 108, 1507–1516 (1989).

    Article  CAS  PubMed  Google Scholar 

  29. Bradke, F. & Dotti, C. G. Establishment of neuronal polarity: lessons from cultured hippocampal neurons. Curr. Opin. Neurobiol. 10, 574–581 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Gomis-Ruth, S., Wierenga, C. J. & Bradke, F. Plasticity of polarization: changing dendrites into axons in neurons integrated in neuronal circuits. Curr. Biol. 18, 992–1000 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Verma, P. et al. Axonal protein synthesis and degradation are necessary for efficient growth cone regeneration. J. Neurosci. 25, 331–342 (2005). Study showing that efficient regeneration of sensory axon growth cones requires local protein translation and degradation, but that adult CNS axons lack ribosomes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chierzi, S., Ratto, G. M., Verma, P. & Fawcett, J. W. The ability of axons to regenerate their growth cones depends on axonal type and age, and is regulated by calcium, cAMP and ERK. Eur. J. Neurosci. 21, 2051–2062 (2005).

    Article  PubMed  Google Scholar 

  33. Goldberg, J. L. et al. Retinal ganglion cells do not extend axons by default: promotion by neurotrophic signaling and electrical activity. Neuron 33, 689–702 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Forscher, P., Lin, C. H. & Thompson, C. Novel form of growth cone motility involving site-directed actin filament assembly. Nature 357, 515–518 (1992).

    Article  CAS  PubMed  Google Scholar 

  35. Spira, M. E., Oren, R., Dormann, A. & Gitler, D. Critical calpain-dependent ultrastructural alterations underlie the transformation of an axonal segment into a growth cone after axotomy of cultured Aplysia neurons. J. Comp. Neurol. 457, 293–312 (2003).

    Article  PubMed  Google Scholar 

  36. Sahly, I., Khoutorsky, A., Erez, H., Prager-Khoutorsky, M. & Spira, M. E. On-line confocal imaging of the events leading to structural dedifferentiation of an axonal segment into a growth cone after axotomy. J. Comp. Neurol. 494, 705–720 (2006).

    Article  PubMed  Google Scholar 

  37. Erez, H. et al. Formation of microtubule-based traps controls the sorting and concentration of vesicles to restricted sites of regenerating neurons after axotomy. J. Cell Biol. 176, 497–507 (2007). Live confocal microscope imaging documentation of the sequence of events leading to the polar reorientation of microtubules after axotomy and the ensuing accumulation of Golgi-derived vesicles and endocytic vesicles in separate traps.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nix, P., Hisamoto, N., Matsumoto, K. & Bastiani, M. Axon regeneration requires coordinate activation of p38 and JNK MAPK pathways. Proc. Natl Acad. Sci. USA 108, 10738–10743 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kulbatski, I., Cook, D. J. & Tator, C. H. Calcium entry through L-type calcium channels is essential for neurite regeneration in cultured sympathetic neurons. J. Neurotrauma 21, 357–374 (2004).

    Article  PubMed  Google Scholar 

  40. Kamber, D., Erez, H. & Spira, M. E. Local calcium-dependent mechanisms determine whether a cut axonal end assembles a retarded endbulb or competent growth cone. Exp. Neurol. 219, 112–125 (2009). Live confocal imaging of the subcellular events underlying end bulb formation and its rescue by calpain cleavage of the submembrane spectrin skeleton.

    Article  CAS  PubMed  Google Scholar 

  41. Ghosh-Roy, A., Wu, Z., Goncharov, A., Jin, Y. & Chisholm, A. D. Calcium and cyclic AMP promote axonal regeneration in Caenorhabditis elegans and require DLK-1 kinase. J. Neurosci. 30, 3175–3183 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ziv, N. E. & Spira, M. E. Axotomy induces a transient and localized elevation of the free intracellular calcium concentration to the millimolar range. J. Neurophysiol. 74, 2625–2637 (1995).

    Article  CAS  PubMed  Google Scholar 

  43. Ziv, N. E. & Spira, M. E. Localized and transient elevations of intracellular Ca2+ induce the dedifferentiation of axonal segments into growth cones. J. Neurosci. 17, 3568–3579 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ambron, R. T. & Walters, E. T. Priming events and retrograde injury signals. A new perspective on the cellular and molecular biology of nerve regeneration. Mol. Neurobiol. 13, 61–79 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. Vogelaar, C. F. et al. Axonal mRNAs: characterisation and role in the growth and regeneration of dorsal root ganglion axons and growth cones. Mol. Cell. Neurosci. 42, 102–115 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yan, D., Wu, Z., Chisholm, A. D. & Jin, Y. The DLK-1 kinase promotes mRNA stability and local translation in C. elegans synapses and axon regeneration. Cell 138, 1005–1018 (2009). Real-time imaging study of axon regeneration in C. elegans implicating local translation and signalling in successful axon regeneration.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Spira, M. E., Benbassat, D. & Dormann, A. Resealing of the proximal and distal cut ends of transected axons: electrophysiological and ultrastructural analysis. J. Neurobiol. 24, 300–316 (1993).

    Article  CAS  PubMed  Google Scholar 

  48. Ashery, U., Penner, R. & Spira, M. E. Acceleration of membrane recycling by axotomy of cultured Aplysia neurons. Neuron 16, 641–651 (1996).

    Article  CAS  PubMed  Google Scholar 

  49. Ziv, N. E. & Spira, M. E. Spatiotemporal distribution of Ca2+ following axotomy and throughout the recovery process of cultured Aplysia neurons. Eur. J. Neurosci. 5, 657–668 (1993).

    Article  CAS  PubMed  Google Scholar 

  50. Malkinson, G. & Spira, M. E. Imaging and analysis of evoked excitatory-postsynaptic-calcium-transients by individual presynaptic-boutons of cultured Aplysia sensorimotor synapse. Cell Calcium 47, 315–325 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Mandolesi, G., Madeddu, F., Bozzi, Y., Maffei, L. & Ratto, G. M. Acute physiological response of mammalian central neurons to axotomy: ionic regulation and electrical activity. FASEB J. 18, 1934–1936 (2004). Description of the changes in calcium and electrical activity in mammalian CNS axons after axotomy.

    Article  CAS  PubMed  Google Scholar 

  52. Friel, D. D. & Chiel, H. J. Calcium dynamics: analyzing the Ca2+ regulatory network in intact cells. Trends Neurosci. 31, 8–19 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Navarro, X., Vivo, M. & Valero-Cabre, A. Neural plasticity after peripheral nerve injury and regeneration. Prog. Neurobiol. 82, 163–201 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Rishal, I. & Fainzilber, M. Retrograde signaling in axonal regeneration. Exp. Neurol. 223, 5–10 (2010).

    Article  CAS  PubMed  Google Scholar 

  55. Enes, J. et al. Electrical activity suppresses axon growth through Cav1.2 channels in adult primary sensory neurons. Curr. Biol. 20, 1154–1164 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Fishman, H. M. & Bittner, G. D. Vesicle-mediated restoration of a plasmalemmal barrier in severed axons. News Physiol. Sci. 18, 115–118 (2003).

    PubMed  Google Scholar 

  57. McNeil, P. L. & Kirchhausen, T. An emergency response team for membrane repair. Nature Rev. Mol. Cell Biol. 6, 499–505 (2005).

    Article  CAS  Google Scholar 

  58. Yawo, H. & Kuno, M. How a nerve fiber repairs its cut end: involvement of phospholipase A2. Science 222, 1351–1353 (1983).

    Article  CAS  PubMed  Google Scholar 

  59. Bittner, G. D. & Fishman, H. M. in Axonal Regeneration in the Central Nervous System (eds Ingoglia, N. A. & Murray, M.) 337–370 (Marcel Dekker, New York, 2000).

    Google Scholar 

  60. Krause, T. L., Fishman, H. M., Ballinger, M. L. & Bittner, G. D. Extent and mechanism of sealing in transected giant axons of squid and earthworms. J. Neurosci. 14, 6638–6651 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Regehr, W. G. & Tank, D. W. Calcium concentration dynamics produced by synaptic activation of CA1 hippocampal pyramidal cells. J. Neurosci. 12, 4202–4223 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Xie, X. Y. & Barrett, J. N. Membrane resealing in cultured rat septal neurons after neurite transection: evidence for enhancement by Ca2+-triggered protease activity and cytoskeletal disassembly. J. Neurosci. 11, 3257–3267 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yoo, S., Nguyen, M. P., Fukuda, M., Bittner, G. D. & Fishman, H. M. Plasmalemmal sealing of transected mammalian neurites is a gradual process mediated by Ca2+-regulated proteins. J. Neurosci. Res. 74, 541–551 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Benbassat, D. & Spira, M. E. Survival of isolated axonal segments in culture: morphological, ultrastructural, and physiological analysis. Exp. Neurol. 122, 295–310 (1993).

    Article  CAS  PubMed  Google Scholar 

  65. Erez, H. & Spira, M. E. Local self-assembly mechanisms underlie the differential transformation of the proximal and distal cut axonal ends into functional and aberrant growth cones. J. Comp. Neurol. 507, 1019–1030 (2008). An analysis of the structural reorganization of the distal segment of a cut axon and the mechanisms underlying its failure to reassemble a competent growth cone.

    Article  PubMed  Google Scholar 

  66. George, E. B., Glass, J. D. & Griffin, J. W. Axotomy-induced axonal degeneration is mediated by calcium influx through ion-specific channels. J. Neurosci. 15, 6445–6452 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gitler, D. & Spira, M. E. Real time imaging of calcium-induced localized proteolytic activity after axotomy and its relation to growth cone formation. Neuron 20, 1123–1135 (1998).

    Article  CAS  PubMed  Google Scholar 

  68. Gitler, D. & Spira, M. E. Short window of opportunity for calpain induced growth cone formation after axotomy of Aplysia neurons. J. Neurobiol. 52, 267–279 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Hammarlund, M., Nix, P., Hauth, L., Jorgensen, E. M. & Bastiani, M. Axon regeneration requires a conserved MAP kinase pathway. Science 323, 802–806 (2009). A study showing that growth cone regeneration in C. elegans requires an MAPK signalling pathway.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Liu, H. et al. Matrix metalloproteinase inhibition enhances the rate of nerve regeneration in vivo by promoting dedifferentiation and mitosis of supporting schwann cells. J. Neuropathol. Exp. Neurol. 69, 386–395 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Park, B. et al. Impairment of protein trafficking upon overexpression and mutation of optineurin. PLoS ONE 5, e11547 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sivasankaran, R. et al. PKC mediates inhibitory effects of myelin and chondroitin sulfate proteoglycans on axonal regeneration. Nature Neurosci. 7, 261–268 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Prager-Khoutorsky, M. & Spira, M. E. Neurite retraction and regrowth regulated by membrane retrieval, membrane supply, and actin dynamics. Brain Res. 1251, 65–79 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. Schaefer, A. W. et al. Coordination of actin filament and microtubule dynamics during neurite outgrowth. Dev. Cell 15, 146–162 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Shaw, G. & Bray, D. Movement and extension of isolated growth cones. Exp. Cell Res. 104, 55–62 (1977).

    Article  CAS  PubMed  Google Scholar 

  76. Baas, P. W. & Heidemann, S. R. Microtubule reassembly from nucleating fragments during the regrowth of amputated neurites. J. Cell Biol. 103, 917–927 (1986).

    Article  CAS  PubMed  Google Scholar 

  77. Sheetz, M. P., Sable, J. E. & Dobereiner, H. G. Continuous membrane-cytoskeleton adhesion requires continuous accommodation to lipid and cytoskeleton dynamics. Annu. Rev. Biophys. Biomol. Struct. 35, 417–434 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Carter, J. M., Demizieux, L., Campenot, R. B., Vance, D. E. & Vance, J. E. Phosphatidylcholine biosynthesis via CTP:phosphocholine cytidylyltransferase 2 facilitates neurite outgrowth and branching. J. Biol. Chem. 283, 202–212 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Vance, J. E., Karten, B. & Hayashi, H. Lipid dynamics in neurons. Biochem. Soc. Trans. 34, 399–403 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Sotelo-Silveira, J. R., Calliari, A., Kun, A., Koenig, E. & Sotelo, J. R. RNA trafficking in axons. Traffic 7, 508–515 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Yoo, S., van Niekerk, E. A., Merianda, T. T. & Twiss, J. L. Dynamics of axonal mRNA transport and implications for peripheral nerve regeneration. Exp. Neurol. 223, 19–27 (2010).

    Article  CAS  PubMed  Google Scholar 

  82. Leung, K. M. et al. Asymmetrical β-actin mRNA translation in growth cones mediates attractive turning to netrin-1. Nature Neurosci. 9, 1247–1256 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Gumy, L. F. et al. Transcriptome analysis of embryonic and adult sensory axons reveals changes in mRNA repertoire localization. RNA 17, 85–98 (2010).

    Article  CAS  PubMed  Google Scholar 

  84. Taylor, A. M. et al. Axonal mRNA in uninjured and regenerating cortical mammalian axons. J. Neurosci. 29, 4697–4707 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Court, F. A., Hendriks, W. T., MacGillavry, H. D., Alvarez, J. & van Minnen, J. Schwann cell to axon transfer of ribosomes: toward a novel understanding of the role of glia in the nervous system. J. Neurosci. 28, 11024–11029 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hellal, F. et al. Microtubule stabilization reduces scarring and causes axon regeneration after spinal cord injury. Science 331, 928–931 (2011). This study shows that administration of the clinically approved drug taxol to rats with spinal cord injuries causes axon regeneration and improvement in gait by reducing scarring and inducing axon regeneration.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Bradke, F. & Dotti, C. G. Neuronal polarity: vectorial cytoplasmic flow precedes axon formation. Neuron 19, 1175–1186 (1997).

    Article  CAS  PubMed  Google Scholar 

  88. Zakharenko, S. & Popov, S. Dynamics of axonal microtubules regulate the topology of new membrane insertion into the growing neurites. J. Cell Biol. 143, 1077–1086 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Futerman, A. H. & Banker, G. A. The economics of neurite outgrowth — the addition of new membrane to growing axons. Trends Neurosci. 19, 144–149 (1996).

    Article  CAS  PubMed  Google Scholar 

  90. Richardson, P. M. & Verge, V. M. Axonal regeneration in dorsal spinal roots is accelerated by peripheral axonal transection. Brain Res. 411, 406–408 (1987).

    Article  CAS  PubMed  Google Scholar 

  91. Shoemaker, S. E., Sachs, H. H., Vaccariello, S. A. & Zigmond, R. E. A conditioning lesion enhances sympathetic neurite outgrowth. Exp. Neurol. 194, 432–443 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Cafferty, W. B. et al. Conditioning injury-induced spinal axon regeneration fails in interleukin-6 knock-out mice. J. Neurosci. 24, 4432–4443 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Chong, M. S. et al. The downregulation of GAP-43 is not responsible for the failure of regeneration in freeze-killed nerve grafts in the rat. Exp. Neurol. 129, 311–320 (1994).

    Article  CAS  PubMed  Google Scholar 

  94. Mason, M. R., Lieberman, A. R., Grenningloh, G. & Anderson, P. N. Transcriptional upregulation of SCG10 and CAP-23 is correlated with regeneration of the axons of peripheral and central neurons in vivo. Mol. Cell. Neurosci. 20, 595–615 (2002).

    Article  CAS  PubMed  Google Scholar 

  95. Nilsson, A., Moller, K., Dahlin, L., Lundborg, G. & Kanje, M. Early changes in gene expression in the dorsal root ganglia after transection of the sciatic nerve; effects of amphiregulin and PAI-1 on regeneration. Mol. Brain Res. 136, 65–74 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Rasband, M. N. The axon initial segment and the maintenance of neuronal polarity. Nature Rev. Neurosci. 11, 552–562 (2010).

    Article  CAS  Google Scholar 

  97. Nishimura, K., Akiyama, H., Komada, M. & Kamiguchi, H. βIV-spectrin forms a diffusion barrier against L1CAM at the axon initial segment. Mol. Cell. Neurosci. 34, 422–430 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Nishimura, T. & Goll, D. E. Binding of calpain fragments to calpastatin. J. Biol. Chem. 266, 11842–11850 (1991).

    CAS  PubMed  Google Scholar 

  99. Hirokawa, N., Noda, Y., Tanaka, Y. & Niwa, S. Kinesin superfamily motor proteins and intracellular transport. Nature Rev. Mol. Cell Biol. 10, 682–696 (2009).

    Article  CAS  Google Scholar 

  100. Hammond, J. W. et al. Posttranslational modifications of tubulin and the polarized transport of kinesin-1 in neurons. Mol. Biol. Cell 21, 572–583 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kapitein, L. C. et al. Mixed microtubules steer dynein-driven cargo transport into dendrites. Curr. Biol. 20, 290–299 (2010).

    Article  CAS  PubMed  Google Scholar 

  102. Schafer, D. P. et al. Disruption of the axon initial segment cytoskeleton is a new mechanism for neuronal injury. J. Neurosci. 29, 13242–13254 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Konishi, Y. & Setou, M. Tubulin tyrosination navigates the kinesin-1 motor domain to axons. Nature Neurosci. 12, 559–567 (2009).

    Article  CAS  PubMed  Google Scholar 

  104. Sengottuvel, V., Leibinger, M., Pfreimer, M., Andreadaki, A. & Fischer, D. Taxol facilitates axon regeneration in the mature CNS. J. Neurosci. 31, 2688–2699 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This Review was written as a result of a meeting sponsored by the UK Academic Study Group and the Institute of Advanced Studies of the Hebrew University of Jerusalem, Israel. The laboratory of M.E.S is supported by grants from The Israel Science Foundation, The Israel Ministry of Health, The United States–Israel Binational Science Foundation, the European Commission and the Charles E. Smith Family and Professor Joel Elkes Laboratory for Collaborative Research in Psychobiology. The laboratory of F.B. is supported by the Deutsches Zentrum für Neurodegenerative Erkrankungen, the Deutsche Forschungsgemeinschaft, the International Foundation for Research in Paraplegia and the Human Frontier Science Program. J.W.F. is supported by the UK Medical Research Council, Engineering and Physical Sciences Research Council, European Union Framework 7 Programme Spinal Cord Repair, Plasticise and Angioscaff, Henry Smith Charity, Christopher and Dana Reeve Foundation, and the UK National Institute of Health Research Cambridge Biomedical Research Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James W. Fawcett.

Ethics declarations

Competing interests

James Fawcett is a paid consultant for Acorda Therapeutics, Novartis and Covidien. Frank Bradke and Micha E. Spira declare no competing financial interests.

Supplementary information

Supplementary Information Figure S1

Formation of vesicles traps by microtubules restructuring after axotomy. (PDF 5338 kb)

Supplementary Information S2 (movie)

Uniform microtubule plus end orientation in a control axon of a cultured Aplysia californica neuron. (AVI 1923 kb)

Supplementary Information S2 (PDF 125 kb)

Supplementary Information S3 (movie)

The formation of microtubule-based vesicle traps after axotomy. (AVI 5107 kb)

Supplementary Information (PDF 117 kb)

Supplementary Information S4 (movie)

Accumulation of organelles in the microtubule-based vesicle traps after axotomy. (AVI 4660 kb)

Supplementary Information (PDF 120 kb)

Supplementary Information S5 (movie)

The spatiotemporal relationships between the formation of microtubule-based vesicle traps and the accumulation of organelles. (AVI 7908 kb)

Supplementary Information (PDF 119 kb)

Related links

Related links

FURTHER INFORMATION

Frank Bradke's homepage

Glossary

Local protein translation

Mammalian peripheral nervous system axons and axons in many invertebrate species contain ribosomes, messenger RNAs and a Golgi apparatus or equivalent. In such axons, proteins can be synthesized in the axon tip, and if local translation is prevented, the regeneration of a cut axon is inhibited.

Taxol

Taxol is a compound that at low concentrations promotes the polymerization of tubulin into microtubules and stabilizes microtubules against depolymerization, and hence may promote axon growth over inhibitory substrates.

The conditioning response

A severed peripheral nervous system axon will begin to regenerate after a few hours. If the same axon is cut again 2 or more days later, the speed of axon regeneration increases. This phenomenon is known as the conditioning response.

Axon initial segment

The axon initial segment is the part of the axon that is closest to the cell body and is the point of initiation for action potentials. It may also act as a selective transport filter for some types of axonal cargo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bradke, F., Fawcett, J. & Spira, M. Assembly of a new growth cone after axotomy: the precursor to axon regeneration. Nat Rev Neurosci 13, 183–193 (2012). https://doi.org/10.1038/nrn3176

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn3176

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing