Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Reelin, lipoprotein receptors and synaptic plasticity

Key Points

  • The low-density lipoprotein (LDL) receptor gene family forms a class of multifunctional lipoprotein receptors that mediate the cellular uptake of cholesterol and other lipids. They also transmit, modulate and integrate a broad range of extracellular signals that include, for example, the control of cellular proliferation, migration, development and neurotransmission.

  • Reelin, a large extracellular signalling molecule, controls neuronal migration and positioning during brain development by binding to the apolipoprotein E (APOE) receptors very low-density lipoprotein receptor (VLDLR) and APOE receptor 2 (APOER2).

  • In the adult brain, reelin signalling assumes a new role in the control of synaptic plasticity by regulating the activity of NMDA (N-methyl-D-aspartate) receptors. This also involves differential splicing of one of the reelin receptors, APOER2.

  • Reelin signalling through APOE receptors also stabilizes microtubules and prevents tau (τ) hyperphosphorylation and thereby possibly the formation of neurofibrillary tangles, a histopathological hallmark of Alzheimer's disease.

  • Genetic defects in the reelin pathway disrupt normal brain development and cause mental retardation in humans.

  • Cholesterol is a key component of cellular membranes and as such has a crucial role in synaptic functions, as well as in the processing of the amyloid-β (Aβ) protein. This short peptide is not only the main component of the plaques in the brains of patients with Alzheimer's disease but also a modulator of synaptic plasticity.

  • APOE, a cholesterol-carrying ligand for the lipoprotein receptors of the LDL receptor gene family, is genetically associated with late-onset Alzheimer's disease. The emerging functions of Aβ, cholesterol and APOE receptors in neurons and particularly in synapses point towards a probable role for these signal-transducing lipoprotein receptors in the disease process.

Abstract

Apolipoprotein E (APOE) is a cholesterol transport protein and an isoform-specific major risk factor for neurodegenerative diseases. The lipoprotein receptors that bind APOE have recently been recognized as pivotal components of the neuronal signalling machinery. The interaction between APOE receptors and one of their ligands, reelin, allows them to function directly as signal transduction receptors at the plasma membrane to control not only neuronal positioning during brain development, but also synaptic plasticity in the adult brain. Here, we review the molecular mechanisms through which APOE, cholesterol, reelin and APOE receptors control synaptic functions that are essential for cognition, learning, memory, behaviour and neuronal survival.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reelin-initiated signalling events in neurons.
Figure 2: Expression of reelin in the adult rodent brain.
Figure 3: Regulation of the NMDA receptor complex at the synapse.
Figure 4: Potential roles of APOE in neurons or in the synapse and possible implications for Alzheimer's disease.

Similar content being viewed by others

References

  1. Schmechel, D. E. et al. Increased amyloid β-peptide deposition in cerebral cortex as a consequence of apolipoprotein E genotype in late-onset Alzheimer disease. Proc. Natl Acad. Sci. USA 90, 9649–9653 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Strittmatter, W. J. et al. Apolipoprotein E: high-avidity binding to β-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc. Natl Acad. Sci. USA 90, 1977–1981 (1993). References 1 and 2 are the seminal papers that revealed the isoform-selective role of APOE in the development of late-onset AD.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. D'Arcangelo, G. et al. Reelin is a ligand for lipoprotein receptors. Neuron 24, 471–479 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Hiesberger, T. et al. Direct binding of Reelin to VLDL receptor and ApoE receptor 2 induces tyrosine phosphorylation of disabled-1 and modulates τ phosphorylation. Neuron 24, 481–489 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Trommsdorff, M. et al. Reeler/Disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2. Cell 97, 689–701 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Simons, M. et al. Cholesterol depletion inhibits the generation of β-amyloid in hippocampal neurons. Proc. Natl Acad. Sci. USA 95, 6460–6464 (1998). The first report on the role of membrane cholesterol homeostasis in the regulation of Aβ peptide generation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mauch, D. H. et al. CNS synaptogenesis promoted by glia-derived cholesterol. Science 294, 1354–1357 (2001). Reveals the role of cholesterol production and transport from glia to neurons for the generation of new synapses.

    Article  CAS  PubMed  Google Scholar 

  8. D'Arcangelo, G. et al. A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature 374, 719–723 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Falconer, D. S. Two new mutants 'trembler' and 'reeler' with neurological actions in the house mouse. J. Genet. 50, 192–201 (1951).

    Article  CAS  PubMed  Google Scholar 

  10. Takahara, T. et al. Dysfunction of the Orleans reeler gene arising from exon skipping due to transposition of a full-length copy of an active L1 sequence into the skipped exon. Hum. Mol. Genet. 5, 989–993 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Bar, I. & Goffinet, A. M. Evolution of cortical lamination: the reelin/Dab1 pathway. Novartis Found. Symp. 228, 114–125; discussion 125–128 (2000).

    CAS  PubMed  Google Scholar 

  12. Rice, D. S. & Curran, T. Role of the reelin signaling pathway in central nervous system development. Annu. Rev. Neurosci. 24, 1005–1039 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Tissir, F. & Goffinet, A. M. Reelin and brain development. Nature Rev. Neurosci. 4, 496–505 (2003). A superb review of the importance of the reelin signalling pathway during brain development.

    Article  CAS  Google Scholar 

  14. Forster, E., Zhao, S. & Frotscher, M. Laminating the hippocampus. Nature Rev. Neurosci. 7, 259–267 (2006).

    Article  CAS  Google Scholar 

  15. Caviness, V. S. Jr. Neocortical histogenesis in normal and reeler mice: a developmental study based upon [3H]thymidine autoradiography. Brain Res. 256, 293–302 (1982).

    Article  PubMed  Google Scholar 

  16. Caviness, V. S. Jr. & Sidman, R. L. Time of origin or corresponding cell classes in the cerebral cortex of normal and reeler mutant mice: an autoradiographic analysis. J. Comp. Neurol. 148, 141–151 (1973).

    Article  PubMed  Google Scholar 

  17. Mariani, J., Crepel, F., Mikoshiba, K., Changeux, J. P. & Sotelo, C. Anatomical, physiological and biochemical studies of the cerebellum from Reeler mutant mouse. Philos. Trans. R. Soc. Lond. B Biol. Sci. 281, 1–28 (1977).

    Article  CAS  PubMed  Google Scholar 

  18. Wallace, V. A. Purkinje-cell-derived Sonic hedgehog regulates granule neuron precursor cell proliferation in the developing mouse cerebellum. Curr. Biol. 9, 445–448 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Howell, B. W., Hawkes, R., Soriano, P. & Cooper, J. A. Neuronal position in the developing brain is regulated by mouse disabled-1. Nature 389, 733–737 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Sheldon, M. et al. Scrambler and yotari disrupt the disabled gene and produce a reeler-like phenotype in mice. Nature 389, 730–733 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Sweet, H. O., Bronson, R. T., Johnson, K. R., Cook, S. A. & Davisson, M. T. Scrambler, a new neurological mutation of the mouse with abnormalities of neuronal migration. Mamm. Genome 7, 798–802 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Gotthardt, M. et al. Interactions of the low density lipoprotein receptor gene family with cytosolic adaptor and scaffold proteins suggest diverse biological functions in cellular communication and signal transduction. J. Biol. Chem. 275, 25616–25624 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Hirotsune, S. et al. The reeler gene encodes a protein with an EGF-like motif expressed by pioneer neurons. Nature Genet. 10, 77–83 (1995). Together with references 5, 10, 19, 20 and 21, this paper establishes the sequence of reelin, VLDLR and APOER2, and DAB1 in a linear pathway at the neuronal plasma membrane.

    Article  CAS  PubMed  Google Scholar 

  24. Howell, B. W., Herrick, T. M. & Cooper, J. A. Reelin-induced tryosine phosphorylation of disabled 1 during neuronal positioning. Genes Dev. 13, 643–648 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Stolt, P. C. et al. Origins of peptide selectivity and phosphoinositide binding revealed by structures of disabled-1 PTB domain complexes. Structure 11, 569–579 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Trommsdorff, M., Borg, J. P., Margolis, B. & Herz, J. Interaction of cytosolic adaptor proteins with neuronal apolipoprotein E receptors and the amyloid precursor protein. J. Biol. Chem. 273, 33556–33560 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Yun, M. et al. Crystal structures of the Dab homology domains of mouse disabled 1 and 2. J. Biol. Chem. 278, 36572–36581 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Strasser, V. et al. Receptor clustering is involved in Reelin signaling. Mol. Cell Biol. 24, 1378–1386 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Riddell, D. R., Sun, X. M., Stannard, A. K., Soutar, A. K. & Owen, J. S. Localization of apolipoprotein E receptor 2 to caveolae in the plasma membrane. J. Lipid Res. 42, 998–1002 (2001).

    CAS  PubMed  Google Scholar 

  30. Mayer, H., Duit, S., Hauser, C., Schneider, W. J. & Nimpf, J. Reconstitution of the Reelin signaling pathway in fibroblasts demonstrates that Dab1 phosphorylation is independent of receptor localization in lipid rafts. Mol. Cell Biol. 26, 19–27 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Utsunomiya-Tate, N. et al. Reelin molecules assemble together to form a large protein complex, which is inhibited by the function-blocking CR-50 antibody. Proc. Natl Acad. Sci. USA 97, 9729–9734 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bock, H. H. & Herz, J. Reelin activates SRC family tyrosine kinases in neurons. Curr. Biol. 13, 18–26 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Arnaud, L., Ballif, B. A., Forster, E. & Cooper, J. A. Fyn tyrosine kinase is a critical regulator of disabled-1 during brain development. Curr. Biol. 13, 9–17 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Beffert, U. et al. Reelin-mediated signaling locally regulates protein kinase B/Akt and glycogen synthase kinase 3β. J. Biol. Chem. 277, 49958–49964 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Assadi, A. H. et al. Interaction of reelin signaling and Lis1 in brain development. Nature Genet. 35, 270–276 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Arnaud, L., Ballif, B. A. & Cooper, J. A. Regulation of protein tyrosine kinase signaling by substrate degradation during brain development. Mol. Cell Biol. 23, 9293–9302 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Morimura, T., Hattori, M., Ogawa, M. & Mikoshiba, K. Disabled1 regulates the intracellular trafficking of reelin receptors. J. Biol. Chem. 280, 16901–16908 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Bock, H. H., Jossin, Y., May, P., Bergner, O. & Herz, J. Apolipoprotein E receptors are required for reelin-induced proteasomal degradation of the neuronal adaptor protein Disabled-1. J. Biol. Chem. 279, 33471–33479 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Herz, J. & Bock, H. H. Lipoprotein receptors in the nervous system. Annu. Rev. Biochem. 71, 405–434 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Herz, J. & Beffert, U. Apolipoprotein E receptors: linking brain development and Alzheimer's disease. Nature Rev. Neurosci. 1, 51–58 (2000).

    Article  CAS  Google Scholar 

  41. Ohkubo, N. et al. Apolipoprotein E and Reelin ligands modulate τ phosphorylation through an apolipoprotein E receptor/disabled-1/glycogen synthase kinase-3β cascade. FASEB J. 17, 295–297 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Brich, J. et al. Genetic modulation of τ phosphorylation in the mouse. J. Neurosci. 23, 187–192 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Homayouni, R., Rice, D. S., Sheldon, M. & Curran, T. Disabled-1 binds to the cytoplasmic domain of amyloid precursor-like protein 1. J. Neurosci. 19, 7507–7515 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Howell, B. W., Lanier, L. M., Frank, R., Gertler, F. B. & Cooper, J. A. The disabled 1 phosphotyrosine-binding domain binds to the internalization signals of transmembrane glycoproteins and to phospholipids. Mol. Cell Biol. 19, 5179–5188 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hoe, H. S., Tran, T. S., Matsuoka, Y., Howell, B. W. & Rebeck, G. W. Dab1 and Reelin effects on APP and ApoEr2 trafficking and processing. J. Biol. Chem. 1 Sept 2006 (doi: 10.1074/jbc.M602162200).

  46. Bacskai, B. J., Xia, M. Q., Strickland, D. K., Rebeck, G. W. & Hyman, B. T. The endocytic receptor protein LRP also mediates neuronal calcium signaling via N-methyl-D-aspartate receptors. Proc. Natl Acad. Sci. USA 97, 11551–11556 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Qiu, Z., Crutcher, K. A., Hyman, B. T. & Rebeck, G. W. ApoE isoforms affect neuronal N-methyl-D-aspartate calcium responses and toxicity via receptor-mediated processes. Neuroscience 122, 291–303 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Qiu, Z., Strickland, D. K., Hyman, B. T. & Rebeck, G. W. α 2-Macroglobulin exposure reduces calcium responses to N-methyl-D-aspartate via low density lipoprotein receptor-related protein in cultured hippocampal neurons. J. Biol. Chem. 277, 14458–14466 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. May, P. et al. Neuronal LRP1 functionally associates with postsynaptic proteins and is required for normal motor function in mice. Mol. Cell. Biol. 24, 8872–8883 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Simons, K. & Toomre, D. Lipid rafts and signal transduction. Nature Rev. Mol. Cell. Biol. 1, 31–39 (2000).

    Article  CAS  Google Scholar 

  51. Fassbender, K. et al. Simvastatin strongly reduces levels of Alzheimer's disease β-amyloid peptides Aβ 42 and Aβ 40 in vitro and in vivo. Proc. Natl Acad. Sci. USA 98, 5856–5861 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kamenetz, F. et al. APP processing and synaptic function. Neuron 37, 925–937 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Boyles, J. K. et al. A role for apolipoprotein E, apolipoprotein A-I, and low density lipoprotein receptors in cholesterol transport during regeneration and remyelination of the rat sciatic nerve. J. Clin. Invest. 83, 1015–1031 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Boyles, J. K., Pitas, R. E., Wilson, E., Mahley, R. W. & Taylor, J. M. Apolipoprotein E associated with astrocytic glia of the central nervous system and with nonmyelinating glia of the peripheral nervous system. J. Clin. Invest. 76, 1501–1513 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Pitas, R. E., Boyles, J. K., Lee, S. H., Hui, D. & Weisgraber, K. H. Lipoproteins and their receptors in the central nervous system. Characterization of the lipoproteins in cerebrospinal fluid and identification of apolipoprotein B, E(LDL) receptors in the brain. J. Biol. Chem. 262, 14352–14360 (1987).

    CAS  PubMed  Google Scholar 

  56. Pfrieger, F. W. & Barres, B. A. Synaptic efficacy enhanced by glial cells in vitro. Science 277, 1684–1687 (1997).

    Article  CAS  PubMed  Google Scholar 

  57. Masliah, E. et al. Neurodegeneration in the central nervous system of apoE-deficient mice. Exp. Neurol. 136, 107–122 (1995).

    Article  CAS  PubMed  Google Scholar 

  58. Buttini, M. et al. Expression of human apolipoprotein E3 or E4 in the brains of Apoe−/− mice: isoform-specific effects on neurodegeneration. J. Neurosci. 19, 4867–4880 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Raber, J. et al. Isoform-specific effects of human apolipoprotein E on brain function revealed in ApoE knockout mice: increased susceptibility of females. Proc. Natl Acad. Sci. USA 95, 10914–10919 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kotti, T. J., Ramirez, D. M., Pfeiffer, B. E., Huber, K. M. & Russell, D. W. Brain cholesterol turnover required for geranylgeraniol production and learning in mice. Proc. Natl Acad. Sci. USA 103, 3869–3874 (2006). An original study that reveals the role of de novo cholesterol biosynthesis, pathway intermediates and turnover for synaptic neurotransmission in mouse brains.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lund, E. G. et al. Knockout of the cholesterol 24-hydroxylase gene in mice reveals a brain-specific mechanism of cholesterol turnover. J. Biol. Chem. 278, 22980–22988 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Gordon, I., Grauer, E., Genis, I., Sehayek, E. & Michaelson, D. M. Memory deficits and cholinergic impairments in apolipoprotein E-deficient mice. Neurosci. Lett. 199, 1–4 (1995).

    Article  CAS  PubMed  Google Scholar 

  63. Valastro, B., Ghribi, O., Poirier, J., Krzywkowski, P. & Massicotte, G. AMPA receptor regulation and LTP in the hippocampus of young and aged apolipoprotein E-deficient mice. Neurobiol. Aging 22, 9–15 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Kelly, A. & Lynch, M. A. LTP occludes the interaction between arachidonic acid and ACPD and NGF and ACPD. Neuroreport 9, 4087–4091 (1998).

    Article  CAS  PubMed  Google Scholar 

  65. Anderson, R. et al. Behavioural, physiological and morphological analysis of a line of apolipoprotein E knockout mouse. Neuroscience 85, 93–110 (1998).

    Article  CAS  PubMed  Google Scholar 

  66. Trommer, B. L. et al. ApoE isoform affects LTP in human targeted replacement mice. Neuroreport 15, 2655–2658 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Kitamura, H. W. et al. Age-dependent enhancement of hippocampal long-term potentiation in knock-in mice expressing human apolipoprotein E4 instead of mouse apolipoprotein E. Neurosci. Lett. 369, 173–178 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Nathan, B. P. et al. Differential effects of apolipoproteins E3 and E4 on neuronal growth in vitro. Science 264, 850–852 (1994).

    Article  CAS  PubMed  Google Scholar 

  69. Chang, S. et al. Lipid- and receptor-binding regions of apolipoprotein E4 fragments act in concert to cause mitochondrial dysfunction and neurotoxicity. Proc. Natl Acad. Sci. USA 102, 18694–18699 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Huang, Y. et al. Apolipoprotein E fragments present in Alzheimer's disease brains induce neurofibrillary tangle-like intracellular inclusions in neurons. Proc. Natl Acad. Sci. USA 98, 8838–8843 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Mahley, R. W., Weisgraber, K. H. & Huang, Y. Apolipoprotein E4: a causative factor and therapeutic target in neuropathology, including Alzheimer's disease. Proc. Natl Acad. Sci. USA 103, 5644–5651 (2006). An excellent review of potential mechanisms through which APOE*ε4 might cause neuropathology and AD.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Allen, J. S., Bruss, J. & Damasio, H. The aging brain: the cognitive reserve hypothesis and hominid evolution. Am. J. Hum. Biol. 17, 673–689 (2005).

    Article  PubMed  Google Scholar 

  73. Zhuo, M. et al. Role of tissue plasminogen activator receptor LRP in hippocampal long-term potentiation. J. Neurosci. 20, 542–549 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Moestrup, S. K., Gliemann, J. & Pallesen, G. Distribution of the α 2-macroglobulin receptor/low density lipoprotein receptor-related protein in human tissues. Cell Tissue Res. 269, 375–382 (1992).

    Article  CAS  PubMed  Google Scholar 

  75. Melchor, J. P. & Strickland, S. Tissue plasminogen activator in central nervous system physiology and pathology. Thromb. Haemost. 93, 655–660 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Pawlak, R., Magarinos, A. M., Melchor, J., McEwen, B. & Strickland, S. Tissue plasminogen activator in the amygdala is critical for stress-induced anxiety-like behavior. Nature Neurosci. 6, 168–174 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Tsirka, S. E., Rogove, A. D., Bugge, T. H., Degen, J. L. & Strickland, S. An extracellular proteolytic cascade promotes neuronal degeneration in the mouse hippocampus. J. Neurosci. 17, 543–552 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Harris-White, M. E. & Frautschy, S. A. Low density lipoprotein receptor-related proteins (LRPs), Alzheimer's and cognition. Curr. Drug Targets CNS Neurol. Disord. 4, 469–480 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Pang, P. T. & Lu, B. Regulation of late-phase LTP and long-term memory in normal and aging hippocampus: role of secreted proteins tPA and BDNF. Ageing Res. Rev. 3, 407–430 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Baranes, D. et al. Tissue plasminogen activator contributes to the late phase of LTP and to synaptic growth in the hippocampal mossy fiber pathway. Neuron 21, 813–825 (1998).

    Article  CAS  PubMed  Google Scholar 

  81. Lavdas, A. A., Grigoriou, M., Pachnis, V. & Parnavelas, J. G. The medial ganglionic eminence gives rise to a population of early neurons in the developing cerebral cortex. J. Neurosci. 19, 7881–7888 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Weeber, E. J. et al. Reelin and ApoE receptors cooperate to enhance hippocampal synaptic plasticity and learning. J. Biol. Chem. 277, 39944–39952 (2002).

    Article  CAS  PubMed  Google Scholar 

  83. Beffert, U. et al. Functional dissection of Reelin signaling by site-directed disruption of Disabled-1 adaptor binding to apolipoprotein E receptor 2: distinct roles in development and synaptic plasticity. J. Neurosci. 26, 2041–2052 (2006). References 82 and 83 are the original articles that first reported on the role of reelin as an enhancer of LTP, memory and learning, and on the regulation in vivo of the cytoplasmic domain of APOER2 through regulated splicing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Beffert, U. et al. Modulation of synaptic plasticity and memory by Reelin involves differential splicing of the lipoprotein receptor Apoer2. Neuron 47, 567–579 (2005).

    Article  CAS  PubMed  Google Scholar 

  85. Stockinger, W. et al. The reelin receptor ApoER2 recruits JNK-interacting proteins-1 and-2. J. Biol. Chem. 275, 25625–25632 (2000).

    Article  CAS  PubMed  Google Scholar 

  86. Chen, Y. et al. Reelin modulates NMDA receptor activity in cortical neurons. J. Neurosci. 25, 8209–8216 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hoe, H. S. et al. Apolipoprotein E receptor 2 interactions with the N-methyl-D-aspartate receptor. J. Biol. Chem. 281, 3425–3431 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Brandes, C. et al. Alternative splicing in the ligand binding domain of mouse ApoE receptor-2 produces receptor variants binding reelin but not α 2-macroglobulin. J. Biol. Chem. 276, 22160–22169 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Qiu, S. et al. Cognitive disruption and altered hippocampus synaptic function in Reelin haploinsufficient mice. Neurobiol. Learn. Mem. 85, 228–242 (2006). A detailed electrophysiological study on the heterozygous reeler mouse reveals profound defects in cognition, hippocampal functions and the regulation of GABA-mediated inhibitory circuitry.

    Article  CAS  PubMed  Google Scholar 

  90. Sinagra, M. et al. Reelin, very-low-density lipoprotein receptor, and apolipoprotein E receptor 2 control somatic NMDA receptor composition during hippocampal maturation in vitro. J. Neurosci. 25, 6127–6136 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Niu, S., Renfro, A., Quattrocchi, C. C., Sheldon, M. & D'Arcangelo, G. Reelin promotes hippocampal dendrite development through the VLDLR/ApoER2-Dab1 pathway. Neuron 41, 71–84 (2004).

    Article  CAS  PubMed  Google Scholar 

  92. Borrell, V. et al. Reelin regulates the development and synaptogenesis of the layer-specific entorhino-hippocampal connections. J. Neurosci. 19, 1345–1358 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Del Rio, J. A. et al. A role for Cajal–Retzius cells and reelin in the development of hippocampal connections. Nature 385, 70–74 (1997).

    Article  CAS  PubMed  Google Scholar 

  94. Guidotti, A. et al. Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder: a postmortem brain study. Arch. Gen. Psychiatry 57, 1061–1069 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. Impagnatiello, F. et al. A decrease of reelin expression as a putative vulnerability factor in schizophrenia. Proc. Natl Acad. Sci. USA 95, 15718–15723 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Fatemi, S. H., Kroll, J. L. & Stary, J. M. Altered levels of Reelin and its isoforms in schizophrenia and mood disorders. Neuroreport 12, 3209–3215 (2001).

    Article  CAS  PubMed  Google Scholar 

  97. Fatemi, S. H., Earle, J. A. & McMenomy, T. Reduction in Reelin immunoreactivity in hippocampus of subjects with schizophrenia, bipolar disorder and major depression. Mol. Psychiatry 5, 654–663, 571 (2000).

    Article  CAS  PubMed  Google Scholar 

  98. Fatemi, S. H. et al. Reelin signaling is impaired in autism. Biol. Psychiatry 57, 777–787 (2005).

    Article  CAS  PubMed  Google Scholar 

  99. Kamiya, A. et al. A schizophrenia-associated mutation of DISC1 perturbs cerebral cortex development. Nature Cell Biol. 7, 1167–1178 (2005).

    Article  CAS  PubMed  Google Scholar 

  100. Coyle, J. T. Glutamate and schizophrenia: beyond the dopamine hypothesis. Cell. Mol. Neurobiol. 14 Jun 2006 (doi: 10.007.s10571-006-9062-8).

  101. Salinger, W. L., Ladrow, P. & Wheeler, C. Behavioral phenotype of the reeler mutant mouse: effects of RELN gene dosage and social isolation. Behav. Neurosci. 117, 1257–1275 (2003).

    Article  PubMed  Google Scholar 

  102. Grayson, D. R. et al. Reelin promoter hypermethylation in schizophrenia. Proc. Natl Acad. Sci. USA 102, 9341–9346 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Heinrich, C. et al. Reelin deficiency and displacement of mature neurons, but not neurogenesis, underlie the formation of granule cell dispersion in the epileptic hippocampus. J. Neurosci. 26, 4701–4713 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Haas, C. A. et al. Role for reelin in the development of granule cell dispersion in temporal lobe epilepsy. J. Neurosci. 22, 5797–5802 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Yip, Y. P. et al. Components of the reelin signaling pathway are expressed in the spinal cord. J. Comp. Neurol. 470, 210–219 (2004).

    Article  CAS  PubMed  Google Scholar 

  106. Yip, J. W., Yip, Y. P., Nakajima, K. & Capriotti, C. Reelin controls position of autonomic neurons in the spinal cord. Proc. Natl Acad. Sci. USA 97, 8612–8616 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Villeda, S. A., Akopians, A. L., Babayan, A. H., Basbaum, A. I. & Phelps, P. E. Absence of Reelin results in altered nociception and aberrant neuronal positioning in the dorsal spinal cord. Neuroscience 139, 1385–1396 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Hong, S. E. et al. Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with human RELN mutations. Nature Genet. 26, 93–96 (2000).

    Article  CAS  PubMed  Google Scholar 

  109. Boycott, K. M. et al. Homozygous deletion of the very low density lipoprotein receptor gene causes autosomal recessive cerebellar hypoplasia with cerebral gyral simplification. Am. J. Hum. Genet. 77, 477–483 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Heckenlively, J. R. et al. Mouse model of subretinal neovascularization with choroidal anastomosis. Retina 23, 518–522 (2003).

    Article  PubMed  Google Scholar 

  111. Bruckner, K. & Klein, R. Signaling by Eph receptors and their ephrin ligands. Curr. Opin. Neurobiol 8, 375–382 (1998). Neuronal activity modulates the formation and secretion of Aβ peptides, which in turn feed back to the synapse and suppress synaptic activity through NMDA receptors.

    Article  CAS  PubMed  Google Scholar 

  112. Zisch, A. H. & Pasquale, E. B. The Eph family: a multitude of receptors that mediate cell recognition signals. Cell Tissue Res. 290, 217–226 (1997).

    Article  CAS  PubMed  Google Scholar 

  113. Grunwald, I. C. et al. Hippocampal plasticity requires postsynaptic ephrinBs. Nature Neurosci. 7, 33–40 (2004).

    Article  CAS  PubMed  Google Scholar 

  114. Grunwald, I. C. et al. Kinase-independent requirement of EphB2 receptors in hippocampal synaptic plasticity. Neuron 32, 1027–1040 (2001).

    Article  CAS  PubMed  Google Scholar 

  115. Henderson, J. T. et al. The receptor tyrosine kinase EphB2 regulates NMDA-dependent synaptic function. Neuron 32, 1041–1056 (2001).

    Article  CAS  PubMed  Google Scholar 

  116. Dalva, M. B. et al. EphB receptors interact with NMDA receptors and regulate excitatory synapse formation. Cell 103, 945–956 (2000).

    CAS  PubMed  Google Scholar 

  117. Takasu, M. A., Dalva, M. B., Zigmond, R. E. & Greenberg, M. E. Modulation of NMDA receptor-dependent calcium influx and gene expression through EphB receptors. Science 295, 491–495 (2002). Together with reference 116, this paper reports that Ephs and ephrins control NMDA receptor functions through mechanisms that resemble those involving reelin and APOE receptors.

    Article  CAS  PubMed  Google Scholar 

  118. Townsend, M., Shankar, G. M., Mehta, T., Walsh, D. M. & Selkoe, D. J. Effects of secreted oligomers of amyloid β-protein on hippocampal synaptic plasticity: a potent role for trimers. J. Physiol. 572, 477–492 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Walsh, D. M. et al. Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416, 535–539 (2002).

    Article  CAS  PubMed  Google Scholar 

  120. Snyder, E. M. et al. Regulation of NMDA receptor trafficking by amyloid-β. Nature Neurosci. 8, 1051–1058 (2005).

    Article  CAS  PubMed  Google Scholar 

  121. Bock, H. H. et al. Phosphatidylinositol 3-kinase interacts with the adaptor protein Dab1 in response to Reelin signaling and is required for normal cortical lamination. J. Biol. Chem. 278, 38772–38779 (2003).

    Article  CAS  PubMed  Google Scholar 

  122. Ballif, B. A. et al. Activation of a Dab1/CrkL/C3G/Rap1 pathway in Reelin-stimulated neurons. Curr. Biol. 14, 606–610 (2004).

    Article  CAS  PubMed  Google Scholar 

  123. Shu, T. et al. Ndel1 operates in a common pathway with LIS1 and cytoplasmic dynein to regulate cortical neuronal positioning. Neuron 44, 263–277 (2004).

    Article  CAS  PubMed  Google Scholar 

  124. Niethammer, M. et al. NUDEL is a novel Cdk5 substrate that associates with LIS1 and cytoplasmic dynein. Neuron 28, 697–711 (2000).

    Article  CAS  PubMed  Google Scholar 

  125. Smith, D. S. et al. Regulation of cytoplasmic dynein behaviour and microtubule organization by mammalian Lis1. Nature Cell Biol. 2, 767–775 (2000).

    Article  CAS  PubMed  Google Scholar 

  126. Tanaka, T. et al. Lis1 and doublecortin function with dynein to mediate coupling of the nucleus to the centrosome in neuronal migration. J. Cell Biol. 165, 709–721 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Sasaki, S. et al. A LIS1/NUDEL/cytoplasmic dynein heavy chain complex in the developing and adult nervous system. Neuron 28, 681–696 (2000).

    Article  CAS  PubMed  Google Scholar 

  128. Ramos-Moreno, T., Galazo, M. J., Porrero, C., Martinez-Cerdeno, V. & Clasca, F. Extracellular matrix molecules and synaptic plasticity: immunomapping of intracellular and secreted Reelin in the adult rat brain. Eur. J. Neurosci. 23, 401–422 (2006).

    Article  PubMed  Google Scholar 

  129. Lan, J. Y. et al. Protein kinase C modulates NMDA receptor trafficking and gating. Nature Neurosci. 4, 382–390 (2001).

    Article  CAS  PubMed  Google Scholar 

  130. Dunah, A. W. & Standaert, D. G. Dopamine D1 receptor-dependent trafficking of striatal NMDA glutamate receptors to the postsynaptic membrane. J. Neurosci. 21, 5546–5558 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Heeren, J. et al. Impaired recycling of apolipoprotein E4 is associated with intracellular cholesterol accumulation. J. Biol. Chem. 279, 55483–55492 (2004).

    Article  CAS  PubMed  Google Scholar 

  132. Heeren, J. et al. Recycling of apoprotein E is associated with cholesterol efflux and high density lipoprotein internalization. J. Biol. Chem. 278, 14370–14378 (2003).

    Article  CAS  PubMed  Google Scholar 

  133. Ehehalt, R., Keller, P., Haass, C., Thiele, C. & Simons, K. Amyloidogenic processing of the Alzheimer β-amyloid precursor protein depends on lipid rafts. J. Cell. Biol. 160, 113–123 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support by grants from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Herz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Herz's laboratory

Glossary

Preplate

The preplate or primordial plexiform layer (PPL) is a layer composed of afferent and efferent fibres and scattered neurons above the ventricular zone at the embryonic stages of development (Carnegie stages 14–22).

Cortical plate

Outer neural tube region that post-mitotic neuroblasts migrate to along radial glia to form adult cortical layers.

Lissencephaly

Literally meaning 'smooth brain', lissencephaly is a human brain disorder that is characterized by the absence or reduction of the cerebral convolutions.

Quantitative trait loci

(QTLs). Genetic polymorphisms that affect the expression of a continuously distributed phenotype. Typically, QTLs are statistically associated with trait variations that depend on multiple interacting loci.

Long-term potentiation

(LTP). An enduring increase in the amplitude of excitatory postsynaptic potentials as a result of high-frequency stimulation of afferent pathways. It is measured both as the amplitude or differential of excitatory postsynaptic potentials and as the magnitude of the postsynaptic cell population spike. LTP is most frequently studied in the hippocampus and is often considered to be the cellular basis of learning and memory in vertebrates.

Morris water maze test

A task used to assess long-term spatial memory, most commonly in rodents. Animals use an array of extra-maze cues to locate a hidden escape platform that is submerged below the water surface. Learning in this task is hippocampus-dependent.

Ganglionic eminence

The proliferative zone of the ventral telencephalon, which gives rise to the basal ganglia, and also generates some cortical neurons and glia. It consists of lateral, caudal and medial subdivisions.

Late-phase LTP

Transcription- and translation-dependent LTP that is typically induced with multiple, spaced trains of high-frequency stimulation. This type of LTP persists for more than 3 hours.

Alternative splicing

A post-transcriptional process through which a pre-mRNA molecule, containing several introns and exons, can lead to different functional mRNA molecules, and consequently proteins, that originate from a single gene.

Dominant-negative

Describes a mutant molecule that could form a heteromeric complex with the normal molecule, knocking out the activity of the entire complex.

Long-term depression

(LTD). A long-lasting decrease in synaptic strength that can be induced in hippocampal area CA1 by either low-frequency stimulation (NMDA receptor-dependent) or stimulation of group I metabotropic glutamate receptors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herz, J., Chen, Y. Reelin, lipoprotein receptors and synaptic plasticity. Nat Rev Neurosci 7, 850–859 (2006). https://doi.org/10.1038/nrn2009

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2009

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing