Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Notch signalling in vertebrate neural development

Key Points

  • The Notch signalling pathway is one of the few fundamental signalling pathways that govern metazoan development. Notch signals couple cell fate acquisition by an individual cell to the cell fate choices made by its neighbours.

  • The Notch cell-surface receptor defines the central element of this signalling mechanism, and its interaction with the membrane-bound ligands delta or serrate (jagged) expressed in adjacent cells triggers a series of proteolytic events that eventually release the intracellular domain, which, on translocation into the nucleus, guides downstream gene activity.

  • Notch controls cell fate in a context-dependent manner, and a large number of Notch signal modifiers have been identified, defining a complex and intriguing Notch-related genetic circuitry.

  • The outcome of Notch pathway activation depends on how Notch signals integrate their action with other cellular signals and factors in a given cellular environment to affect differentiation, proliferation and apoptotic events.

  • Notch signals have a pleiotropic action in the nervous system, but have been broadly shown to inhibit neuronal differentiation.

  • Notch signals have also been implicated in promoting the differentiation of most glial subtypes, with the exception of oligodendrocytes.

  • Notch signals affect differentiated neurons, and intracellular Notch — although generally undetectable in the nucleus of most cells — can be clearly seen in the nucleus of postmitotic neurons. Modulation of Notch signalling in postmitotic neurons affects the morphology of neurites.

  • Targeted mutations in Notch pathway elements reveal the broad spectrum of processes and tissues that can be affected by Notch, and, in humans, mutations in Notch pathway elements are associated with several disorders.

  • Many molecular aspects of Notch signalling await elucidation, and the mapping of the complex genetic circuitry that is capable of controlling Notch signals remains to be defined. Most importantly, we have no real understanding of how Notch integrates its actions with other cellular signals to control specific developmental events.

Abstract

Signals through the Notch receptors are used throughout development to control cellular fate choices. Loss- and gain-of-function studies revealed both the pleiotropic action of the Notch signalling pathway in development and the potential of Notch signals as tools to influence the developmental path of undifferentiated cells. As we review here, Notch signalling affects the development of the nervous system at many different levels. Understanding the complex genetic circuitry that allows Notch signals to affect specific cell fates in a context-specific manner defines the next challenge, especially as such an understanding might have important implications for regenerative medicine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Drosophila melanogaster embryos stained with an antibody against horseradish peroxidase that recognizes neural tissue.
Figure 2: The core of the Notch signalling pathway.
Figure 3: A schematic summarizing the effects of Notch signal activation on cell fate decisions in the vertebrate nervous system.

Similar content being viewed by others

References

  1. Dexter, G. The analysis of a case of continuous variation in Drosophila by a study of its linkage relation. Am. Nat. 48, 712–758 (1914).

    Article  Google Scholar 

  2. Morgan, T. H. & Bridges, C. B. Sex-linked inheritance in Drosophila. Carnegie Inst. Washington Publ. 237, 87 (1916).

    Google Scholar 

  3. Mohr, O. L. Character changes caused by mutation of an entire region of a chromosome in Drosophila. Genetics 4, 275–282 (1919).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Poulson, D. The effects of certain X-chromosome deficiencies on the embryonic development of Drosophila melanogaster. J. Exp. Zool. 83, 271–325 (1940).

    Article  Google Scholar 

  5. Welshons, W. J. Analysis of a gene in Drosophila. Science 150, 1122–1129 (1965).

    Article  CAS  PubMed  Google Scholar 

  6. Foster, G. G. Is the Notch locus of Drosophila melanogaster a tandem repeat? Correlation of the genetic map and complementation pattern of selected mutations. Genetics 73, 435–438 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Wright, T. R. The genetics of embryogenesis in Drosophila. Adv. Genet. 15, 261–395 (1970). A seminal essay on Notch and critical recapitulation of five decades of Notch research up to that point, with many original data, mainly from Poulson.

    Article  CAS  PubMed  Google Scholar 

  8. Artavanis-Tsakonas, S., Muskavitch, M. A. & Yedvobnick, B. Molecular cloning of Notch, a locus affecting neurogenesis in Drosophila melanogaster. Proc. Natl Acad. Sci. USA 80, 1977–1981 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wharton, K. A., Johansen, K. M., Xu, T. & Artavanis-Tsakonas, S. Nucleotide sequence from the neurogenic locus Notch implies a gene product that shares homology with proteins containing EGF-like repeats. Cell 43, 567–581 (1985). Describes the characterization of the Notch locus, revealing the transmembrane nature of the gene product, essentially uncovering the existence of a novel cell interaction mechanism.

    Article  CAS  PubMed  Google Scholar 

  10. Kidd, S., Kelley, M. R. & Young, M. W. Sequence of the Notch locus of Drosophila melanogaster: relationship of the encoded protein to mammalian clotting and growth factors. Mol. Cell Biol. 6, 3094–3108 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Doe, C. Q. & Goodman, C. S. Early events in insect neurogenesis. II. The role of cell interactions and cell lineage in the determination of neuronal precursor cells. Dev. Biol. 111, 206–219 (1985). Seminal laser ablation experiments in grasshoppers, which reveal the existence of a lateral inhibition mechanism in neuroblast specification within the neurectoderm.

    Article  CAS  PubMed  Google Scholar 

  12. Haines, N. & Irvine, K. D. Glycosylation regulates Notch signalling. Nature Rev. Mol. Cell Biol. 4, 786–797 (2003).

    Article  CAS  Google Scholar 

  13. Stifani, S., Blaumueller, C. M., Redhead, N. J., Hill, R. E. & Artavanis-Tsakonas, S. Human homologs of a Drosophila enhancer of split gene product define a novel family of nuclear proteins. Nature Genet. 2, 119–127 (1992).

    Article  CAS  PubMed  Google Scholar 

  14. Struhl, G. & Adachi, A. Nuclear access and action of Notch in vivo. Cell 93, 649–660 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Schroeter, E. H., Kisslinger, J. A. & Kopan, R. Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature 393, 382–386 (1998). Reference 13 provides the first evidence of nuclear localization signals in the intracellular part of Notch, and references 14 and 15 give a functional demonstration that the intracellular domain may be cleaved and translocated to the nucleus, where it participates in controlling gene activity.

    Article  CAS  PubMed  Google Scholar 

  16. Selkoe, D. & Kopan, R. Notch and presenilin: regulated intramembrane proteolysis links development and degeneration. Annu. Rev. Neurosci. 26, 565–597 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Fortini, M. E. & Artavanis-Tsakonas, S. The suppressor of hairless protein participates in Notch receptor signaling. Cell 79, 273–282 (1994). Shows that suppressor of hairless, which is the main downstream effector of Notch signalling, directly participates in this pathway.

    Article  CAS  PubMed  Google Scholar 

  18. Smoller, D. et al. The Drosophila neurogenic locus mastermind encodes a nuclear protein unusually rich in amino acid homopolymers. Genes Dev. 4, 1688–1700 (1990).

    Article  CAS  PubMed  Google Scholar 

  19. Weinmaster, G. The ins and outs of Notch signaling. Mol. Cell. Neurosci. 9, 91–102 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Kimble, J. & Simpson, P. The LIN-12/Notch signaling pathway and its regulation. Annu. Rev. Cell Dev. Biol. 13, 333–361 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Egan, S. E., St-Pierre, B. & Leow, C. C. Notch receptors, partners and regulators: from conserved domains to powerful functions. Curr. Top. Microbiol. Immunol. 228, 273–324 (1998).

    CAS  PubMed  Google Scholar 

  22. Gridley, T. Notch signaling and inherited disease syndromes. Hum. Mol. Genet. 12, R9–R13 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Hansson, E. M., Lendahl, U. & Chapman, G. Notch signaling in development and disease. Semin. Cancer Biol. 14, 320–328 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Wigge, P. A. & Weigel, D. Arabidopsis genome: life without Notch. Curr. Biol. 11, R112–R114 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Beatus, P., Lundkvist, J., Oberg, C. & Lendahl, U. The Notch 3 intracellular domain represses Notch 1-mediated activation through Hairy/Enhancer of split (HES) promoters. Development 126, 3925–3935 (1999).

    CAS  PubMed  Google Scholar 

  26. Apelqvist, A. et al. Notch signalling controls pancreatic cell differentiation. Nature 400, 877–881 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Fan, X. et al. Notch1 and Notch2 have opposite effects on embryonal brain tumor growth. Cancer Res 64, 7787–7793 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Hu, Q. D. et al. F3/contactin acts as a functional ligand for Notch during oligodendrocyte maturation. Cell 115, 163–175 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Eiraku, M. et al. DNER acts as a neuron-specific Notch ligand during Bergmann glial development. Nature Neurosci. 8, 873–880 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Shawber, C. et al. Notch signaling inhibits muscle cell differentiation through a CBF1-independent pathway. Development 122, 3765–3773 (1996).

    CAS  PubMed  Google Scholar 

  31. Matsuno, K., Go, M. J., Sun, X., Eastman, D. S. & Artavanis-Tsakonas, S. Suppressor of hairless-independent events in Notch signaling imply novel pathway elements. Development. 124, 4265–4273 (1997).

    CAS  PubMed  Google Scholar 

  32. Martinez Arias, A., Zecchini, V. & Brennan, K. CSL-independent Notch signalling: a checkpoint in cell fate decisions during development? Curr. Opin. Genet. Dev. 12, 524–533 (2002).

    Article  PubMed  Google Scholar 

  33. Rebeiz, M., Reeves, N. L. & Posakony, J. W. SCORE: a computational approach to the identification of cis-regulatory modules and target genes in whole-genome sequence data. Site clustering over random expectation. Proc. Natl Acad. Sci. USA 99, 9888–9893 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gerhart, J. 1998 Warkany lecture: signaling pathways in development. Teratology 60, 226–239 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Donoviel, D. B. et al. Mice lacking both presenilin genes exhibit early embryonic patterning defects. Genes Dev. 13, 2801–2810 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. McCright, B., Lozier, J. & Gridley, T. A mouse model of Alagille syndrome: Notch2 as a genetic modifier of Jag1 haploinsufficiency. Development 129, 1075–1082 (2002).

    CAS  PubMed  Google Scholar 

  37. Krebs, L. T. et al. Haploinsufficient lethality and formation of arteriovenous malformations in Notch pathway mutants. Genes Dev. 18, 2469–2473 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Duarte, A. et al. Dosage-sensitive requirement for mouse Dll4 in artery development. Genes Dev. 18, 2474–2478 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gale, N. W. et al. Haploinsufficiency of delta-like 4 ligand results in embryonic lethality due to major defects in arterial and vascular development. Proc. Natl Acad. Sci. USA 101, 15949–15954 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Le Borgne, R., Bardin, A. & Schweisguth, F. The roles of receptor and ligand endocytosis in regulating Notch signaling. Development 132, 1751–1762 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Greenwald, I. LIN-12/Notch signaling: lessons from worms and flies. Genes Dev. 12, 1751–1762 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Artavanis-Tsakonas, S., Rand, M. D. & Lake, R. J. Notch signaling: cell fate control and signal integration in development. Science 284, 770–776 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. Lai, E. C. Notch signaling: control of cell communication and cell fate. Development 131, 965–973 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Mukherjee, A. et al. Regulation of Notch signalling by non-visual β-arrestin. Nature Cell Biol. 7, 1091–1101 (2005).

    Article  CAS  Google Scholar 

  45. Jan, Y. N. & Jan, L. Y. Genetic control of cell fate specification in Drosophila peripheral nervous system. Annu. Rev. Genet. 28, 373–393 (1994).

    Article  CAS  PubMed  Google Scholar 

  46. Coffman, C. R., Skoglund, P., Harris, W. A. & Kintner, C. R. Expression of an extracellular deletion of Xotch diverts cell fate in Xenopus embryos. Cell 73, 659–671 (1993). The idea that activated Notch inhibits cell fate commitment was first proposed on the basis of this study.

    Article  CAS  PubMed  Google Scholar 

  47. Dorsky, R. I., Rapaport, D. H. & Harris, W. A. Xotch inhibits cell differentiation in the Xenopus retina. Neuron 14, 487–496 (1995).

    Article  CAS  PubMed  Google Scholar 

  48. Fortini, M. E., Rebay, I., Caron, L. A. & Artavanis-Tsakonas, S. An activated Notch receptor blocks cell-fate commitment in the developing Drosophila eye. Nature 365, 555–557 (1993).

    Article  CAS  PubMed  Google Scholar 

  49. Chenn, A. & McConnell, S. K. Cleavage orientation and the asymmetric inheritance of Notch1 immunoreactivity in mammalian neurogenesis. Cell 82, 631–641 (1995).

    Article  CAS  PubMed  Google Scholar 

  50. Ishibashi, M. et al. Persistent expression of helix–loop–helix factor HES-1 prevents mammalian neural differentiation in the central nervous system. EMBO J. 13, 1799–1805 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ohtsuka, T., Sakamoto, M., Guillemot, F. & Kageyama, R. Roles of the basic helix–loop–helix genes Hes1 and Hes5 in expansion of neural stem cells of the developing brain. J. Biol. Chem. 276, 30467–30474 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Sakamoto, M., Hirata, H., Ohtsuka, T., Bessho, Y. & Kageyama, R. The basic helix–loop–helix genes Hesr1/Hey1 and Hesr2/Hey2 regulate maintenance of neural precursor cells in the brain. J. Biol. Chem. 278, 44808–44815 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Gaiano, N., Nye, J. S. & Fishell, G. Radial glial identity is promoted by Notch1 signaling in the murine forebrain. Neuron 26, 395–404 (2000). A demonstration that activation of Notch signalling promotes radial glia identity.

    Article  CAS  PubMed  Google Scholar 

  54. Chambers, C. B. et al. Spatiotemporal selectivity of response to Notch1 signals in mammalian forebrain precursors. Development 128, 689–702 (2001).

    CAS  PubMed  Google Scholar 

  55. Mizutani, K. & Saito, T. Progenitors resume generating neurons after temporary inhibition of neurogenesis by Notch activation in the mammalian cerebral cortex. Development 132, 1295–1304 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Weng, A. P. et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 306, 269–271 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Cepko, C. L. The roles of intrinsic and extrinsic cues and bHLH genes in the determination of retinal cell fates. Curr. Opin. Neurobiol. 9, 37–46 (1999).

    Article  CAS  PubMed  Google Scholar 

  58. Ahmad, I., Zaqouras, P. & Artavanis-Tsakonas, S. Involvement of Notch-1 in mammalian retinal neurogenesis: association of Notch-1 activity with both immature and terminally differentiated cells. Mech. Dev. 53, 73–85 (1995).

    Article  CAS  PubMed  Google Scholar 

  59. Dorsky, R. I., Chang, W. S., Rapaport, D. H. & Harris, W. A. Regulation of neuronal diversity in the Xenopus retina by delta signalling. Nature 385, 67–70 (1997). References 59 and 61 describe functional studies implicating Notch signals in the generation of diverse lineages in the vertebrate nervous system.

    Article  CAS  PubMed  Google Scholar 

  60. Bao, Z. Z. & Cepko, C. L. The expression and function of Notch pathway genes in the developing rat eye. J. Neurosci. 17, 1425–1434 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Furukawa, T., Mukherjee, S., Bao, Z. Z., Morrow, E. M. & Cepko, C. L. rax, Hes1, and notch1 promote the formation of Müller glia by postnatal retinal progenitor cells. Neuron 26, 383–394 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Scheer, N., Groth, A., Hans, S. & Campos-Ortega, J. A. An instructive function for Notch in promoting gliogenesis in the zebrafish retina. Development 128, 1099–1107 (2001).

    CAS  PubMed  Google Scholar 

  63. Henrique, D. et al. Maintenance of neuroepithelial progenitor cells by delta–Notch signalling in the embryonic chick retina. Curr. Biol. 7, 661–670 (1997).

    Article  CAS  PubMed  Google Scholar 

  64. Austin, C. P., Feldman, D. E., Ida, J. A. Jr. & Cepko, C. L. Vertebrate retinal ganglion cells are selected from competent progenitors by the action of Notch. Development 121, 3637–3650 (1995).

    CAS  PubMed  Google Scholar 

  65. Hojo, M. et al. Glial cell fate specification modulated by the bHLH gene Hes5 in mouse retina. Development 127, 2515–2522 (2000).

    CAS  PubMed  Google Scholar 

  66. Satow, T. et al. The basic helix–loop–helix gene hesr2 promotes gliogenesis in mouse retina. J. Neurosci. 21, 1265–1273 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Patten, B. A., Peyrin, J. M., Weinmaster, G. & Corfas, G. Sequential signaling through Notch1 and erbB receptors mediates radial glia differentiation. J. Neurosci. 23, 6132–6140 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Morrison, S. J. Neuronal potential and lineage determination by neural stem cells. Curr. Opin. Cell Biol. 13, 666–672 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Bixby, S., Kruger, G. M., Mosher, J. T., Joseph, N. M. & Morrison, S. J. Cell-intrinsic differences between stem cells from different regions of the peripheral nervous system regulate the generation of neural diversity. Neuron 35, 643–656 (2002).

    Article  CAS  PubMed  Google Scholar 

  70. Morrison, S. J. et al. Transient Notch activation initiates an irreversible switch from neurogenesis to gliogenesis by neural crest stem cells. Cell 101, 499–510 (2000). Reports in vivo evidence that Notch signals might regulate the neurogenic and gliogenic capacity of NCSCs.

    Article  CAS  PubMed  Google Scholar 

  71. Kubu, C. J. et al. Developmental changes in Notch1 and numb expression mediated by local cell–cell interactions underlie progressively increasing delta sensitivity in neural crest stem cells. Dev. Biol. 244, 199–214 (2002).

    Article  CAS  PubMed  Google Scholar 

  72. Tanigaki, K. et al. Notch1 and Notch3 instructively restrict bFGF-responsive multipotent neural progenitor cells to an astroglial fate. Neuron 29, 45–55 (2001). Experimental paradigms that show opposing effects of Notch signals on cell fate specification in the glial lineage (see also reference 119).

    Article  CAS  PubMed  Google Scholar 

  73. Yamamoto, S. et al. Transcription factor expression and Notch-dependent regulation of neural progenitors in the adult rat spinal cord. J. Neurosci. 21, 9814–9823 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hitoshi, S. et al. Notch pathway molecules are essential for the maintenance, but not the generation, of mammalian neural stem cells. Genes Dev. 16, 846–858 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Grandbarbe, L. et al. Delta–Notch signaling controls the generation of neurons/glia from neural stem cells in a stepwise process. Development. 130, 1391–1402 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Sestan, N., Artavanis-Tsakonas, S. & Rakic, P. Contact-dependent inhibition of cortical neurite growth mediated by Notch signaling. Science 286, 741–746 (1999). References 76 and 78 describe studies implicating Notch signals in events involving postmitotic, terminally differentiated neurons.

    Article  CAS  PubMed  Google Scholar 

  77. Berezovska, O., Xia, M. Q. & Hyman, B. T. Notch is expressed in adult brain, is coexpressed with presenilin-1, and is altered in Alzheimer disease. J. Neuropathol. Exp. Neurol. 57, 738–745 (1998).

    Article  CAS  PubMed  Google Scholar 

  78. Redmond, L., Oh, S. R., Hicks, C., Weinmaster, G. & Ghosh, A. Nuclear Notch1 signaling and the regulation of dendritic development. Nature Neurosci. 3, 30–40 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Berezovska, O. et al. Notch1 inhibits neurite outgrowth in postmitotic primary neurons. Neuroscience 93, 433–439 (1999).

    Article  CAS  PubMed  Google Scholar 

  80. Qi, H. et al. Processing of the Notch ligand delta by the metalloprotease kuzbanian. Science 283, 91–94 (1999).

    Article  CAS  PubMed  Google Scholar 

  81. Mishra-Gorur, K., Rand, M. D., Perez-Villamil, B. & Artavanis-Tsakonas, S. Down-regulation of delta by proteolytic processing. J. Cell Biol. 159, 313–324 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Pan, D. & Rubin, G. M. Kuzbanian controls proteolytic processing of Notch and mediates lateral inhibition during Drosophila and vertebrate neurogenesis. Cell 90, 271–280 (1997).

    Article  CAS  PubMed  Google Scholar 

  83. Lieber, T., Kidd, S. & Young, M. W. kuzbanian-mediated cleavage of Drosophila Notch. Genes Dev. 16, 209–221 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yavari, R., Adida, C., Bray-Ward, P., Brines, M. & Xu, T. Human metalloprotease-disintegrin Kuzbanian regulates sympathoadrenal cell fate in development and neoplasia. Hum. Mol. Genet. 7, 1161–1167 (1998).

    Article  CAS  PubMed  Google Scholar 

  85. Giniger, E. A role for Abl in Notch signaling. Neuron 20, 667–681 (1998).

    Article  CAS  PubMed  Google Scholar 

  86. Major, R. J. & Irvine, K. D. Influence of Notch on dorsoventral compartmentalization and actin organization in the Drosophila wing. Development 132, 3823–3833 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. Wang, Y. et al. Involvement of Notch signaling in hippocampal synaptic plasticity. Proc. Natl Acad. Sci. USA 101, 9458–9462 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Yoon, K. & Gaiano, N. Notch signaling in the mammalian central nervous system: insights from mouse mutants. Nature Neurosci. 8, 709–715 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Joutel, A. et al. Notch3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia. Nature 383, 707–710 (1996).

    Article  CAS  PubMed  Google Scholar 

  90. Louvi, A., Arboleda-Velasquez, J. & Artavanis-Tsakonas, S. CADASIL: a critical look at Notch disease. Dev. Neurosci. (in the press).

  91. John, G. R. et al. Multiple sclerosis: re-expression of a developmental pathway that restricts oligodendrocyte maturation. Nature Med. 8, 1115–1121 (2002).

    Article  CAS  PubMed  Google Scholar 

  92. Hallahan, A. R. et al. The SmoA1 mouse model reveals that Notch signaling is critical for the growth and survival of sonic hedgehog-induced medulloblastomas. Cancer Res. 64, 7794–7800 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Yokota, N. et al. Identification of differentially expressed and developmentally regulated genes in medulloblastoma using suppression subtraction hybridization. Oncogene 23, 3444–3453 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Purow, B. W. et al. Expression of Notch-1 and its ligands, Delta-like-1 and Jagged-1, is critical for glioma cell survival and proliferation. Cancer Res. 65, 2353–2363 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Cuevas, I. C. et al. Meningioma transcript profiles reveal deregulated Notch signaling pathway. Cancer Res. 65, 5070–5075 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Somasundaram, K. et al. Upregulation of ASCL1 and inhibition of Notch signaling pathway characterize progressive astrocytoma. Oncogene 24, 7073–7083 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Sisodia, S. S. & St George-Hyslop, P. H. γ-Secretase, Notch, Aβ and Alzheimer's disease: where do the presenilins fit in? Nature Rev. Neurosci. 3, 281–290 (2002).

    Article  CAS  Google Scholar 

  98. Levitan, D. & Greenwald, I. Facilitation of lin-12-mediated signalling by sel-12, a Caenorhabditis elegans S182 Alzheimer's disease gene. Nature 377, 351–354 (1995). Seminal study linking Notch signalling with presenilin activity.

    Article  CAS  PubMed  Google Scholar 

  99. Pigino, G., Pelsman, A., Mori, H. & Busciglio, J. Presenilin-1 mutations reduce cytoskeletal association, deregulate neurite growth, and potentiate neuronal dystrophy and tau phosphorylation. J. Neurosci. 21, 834–842 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Saura, C. A. et al. Loss of presenilin function causes impairments of memory and synaptic plasticity followed by age-dependent neurodegeneration. Neuron 42, 23–36 (2004).

    Article  CAS  PubMed  Google Scholar 

  101. Irvine, K. D. Fringe, Notch, and making developmental boundaries. Curr. Opin. Genet. Dev. 9, 434–441 (1999).

    Article  CAS  PubMed  Google Scholar 

  102. Weinmaster, G. & Kintner, C. Modulation of Notch signaling during somitogenesis. Annu. Rev. Cell Dev. Biol. 19, 367–395 (2003).

    Article  CAS  PubMed  Google Scholar 

  103. Zeltser, L. M., Larsen, C. W. & Lumsden, A. A new developmental compartment in the forebrain regulated by Lunatic fringe. Nature Neurosci. 4, 683–684 (2001).

    Article  CAS  PubMed  Google Scholar 

  104. Cheng, Y. C. et al. Notch activation regulates the segregation and differentiation of rhombomere boundary cells in the zebrafish hindbrain. Dev. Cell 6, 539–550 (2004).

    Article  CAS  PubMed  Google Scholar 

  105. Blokzijl, A. et al. Cross-talk between the Notch and TGF-β signaling pathways mediated by interaction of the Notch intracellular domain with Smad3. J. Cell Biol. 163, 723–728 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Dahlqvist, C. et al. Functional Notch signaling is required for BMP4-induced inhibition of myogenic differentiation. Development 130, 6089–6099 (2003).

    Article  CAS  PubMed  Google Scholar 

  107. Itoh, F. et al. Synergy and antagonism between Notch and BMP receptor signaling pathways in endothelial cells. EMBO J. 23, 541–551 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Beck, C. W., Christen, B. & Slack, J. M. Molecular pathways needed for regeneration of spinal cord and muscle in a vertebrate. Dev. Cell 5, 429–439 (2003).

    Article  CAS  PubMed  Google Scholar 

  109. Galceran, J., Sustmann, C., Hsu, S. C., Folberth, S. & Grosschedl, R. LEF1-mediated regulation of Delta-like1 links Wnt and Notch signaling in somitogenesis. Genes Dev. 18, 2718–2723 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Duncan, A. W. et al. Integration of Notch and Wnt signaling in hematopoietic stem cell maintenance. Nature Immunol. 6, 314–322 (2005).

    Article  CAS  Google Scholar 

  111. Nicolas, M. et al. Notch1 functions as a tumor suppressor in mouse skin. Nature Genet. 33, 416–421 (2003).

    Article  CAS  PubMed  Google Scholar 

  112. Hasson, P. et al. EGFR signaling attenuates Groucho-dependent repression to antagonize Notch transcriptional output. Nature Genet. 37, 101–105 (2005).

    Article  CAS  PubMed  Google Scholar 

  113. Kamakura, S. et al. Hes binding to STAT3 mediates crosstalk between Notch and JAK-STAT signalling. Nature Cell Biol. 6, 547–554 (2004).

    Article  CAS  PubMed  Google Scholar 

  114. Jarriault, S. et al. Signalling downstream of activated mammalian Notch. Nature 377, 355–358 (1995).

    Article  CAS  PubMed  Google Scholar 

  115. Ohtsuka, T. et al. Hes1 and Hes5 as Notch effectors in mammalian neuronal differentiation. EMBO J. 18, 2196–2207 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Anthony, T. E., Mason, H. A., Gridley, T., Fishell, G. & Heintz, N. Brain lipid-binding protein is a direct target of Notch signaling in radial glial cells. Genes Dev. 19, 1028–1033 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Hsieh, J. J. et al. Truncated mammalian Notch1 activates CBF1/RBPJk-repressed genes by a mechanism resembling that of Epstein-Barr virus EBNA2. Mol. Cell. Biol. 16, 952–959 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Jarriault, S. et al. Delta-1 activation of Notch-1 signaling results in HES-1 transactivation. Mol. Cell. Biol. 18, 7423–7431 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Wang, S. et al. Notch receptor activation inhibits oligodendrocyte differentiation. Neuron 21, 63–75 (1998).

    Article  PubMed  Google Scholar 

  120. Maier, M. M. & Gessler, M. Comparative analysis of the human and mouse Hey1 promoter: Hey genes are new Notch target genes. Biochem. Biophys. Res. Commun. 275, 652–660 (2000).

    Article  CAS  PubMed  Google Scholar 

  121. Nakagawa, O. et al. Members of the HRT family of basic helix–loop–helix proteins act as transcriptional repressors downstream of Notch signaling. Proc. Natl Acad. Sci. USA 97, 13655–13660 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Kokubo, H., Lun, Y. & Johnson, R. L. Identification and expression of a novel family of bHLH cDNAs related to Drosophila hairy and enhancer of split. Biochem. Biophys. Res. Commun. 260, 459–465 (1999).

    Article  CAS  PubMed  Google Scholar 

  123. Iso, T. et al. HERP, a new primary target of Notch regulated by ligand binding. Mol. Cell. Biol. 21, 6071–6079 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Feng, L. & Heintz, N. Differentiating neurons activate transcription of the brain lipid-binding protein gene in radial glia through a novel regulatory element. Development 121, 1719–1730 (1995).

    CAS  PubMed  Google Scholar 

  125. Go, M. J., Eastman, D. S. & Artavanis-Tsakonas, S. Cell proliferation control by Notch signaling in Drosophila development. Development 125, 2031–2040 (1998).

    CAS  PubMed  Google Scholar 

  126. de Celis, J. F., Tyler, D. M., de Celis, J. & Bray, S. J. Notch signalling mediates segmentation of the Drosophila leg. Development 125, 4617–4626 (1998).

    CAS  PubMed  Google Scholar 

  127. Diaz-Benjumea, F. J. & Cohen, S. M. Serrate signals through Notch to establish a Wingless-dependent organizer at the dorsal/ventral compartment boundary of the Drosophila wing. Development 121, 4215–4225 (1995).

    CAS  PubMed  Google Scholar 

  128. Markopoulou, K. & Artavanis-Tsakonas, S. The expression of the neurogenic locus Notch during the postembryonic development of Drosophila melanogaster and its relationship to mitotic activity. J. Neurogenet. 6, 11–26 (1989).

    Article  CAS  PubMed  Google Scholar 

  129. Moberg, K. H., Schelble, S., Burdick, S. K. & Hariharan, I. K. Mutations in erupted, the Drosophila ortholog of mammalian tumor susceptibility gene 101, elicit non-cell-autonomous overgrowth. Dev. Cell 9, 699–710 (2005).

    Article  CAS  PubMed  Google Scholar 

  130. Thompson, B. J. et al. Tumor suppressor properties of the ESCRT-II complex component Vps25 in Drosophila. Dev. Cell 9, 711–720 (2005).

    Article  CAS  PubMed  Google Scholar 

  131. Baonza, A. & Freeman, M. Control of cell proliferation in the Drosophila eye by Notch signaling. Dev. Cell 8, 529–539 (2005).

    Article  CAS  PubMed  Google Scholar 

  132. Johnston, L. A. & Edgar, B. A. Wingless and Notch regulate cell-cycle arrest in the developing Drosophila wing. Nature 394, 82–84 (1998).

    Article  CAS  PubMed  Google Scholar 

  133. Kiaris, H. et al. Modulation of Notch signaling elicits signature tumors and inhibits hras1-induced oncogenesis in the mouse mammary epithelium. Am. J. Pathol. 165, 695–705 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Tomita, K. et al. Mammalian hairy and Enhancer of split homolog 1 regulates differentiation of retinal neurons and is essential for eye morphogenesis. Neuron 16, 723–734 (1996).

    Article  CAS  PubMed  Google Scholar 

  135. Fischer, A., Schumacher, N., Maier, M., Sendtner, M. & Gessler, M. The Notch target genes Hey1 and Hey2 are required for embryonic vascular development. Genes Dev. 18, 901–911 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Petersen, P. H., Zou, K., Hwang, J. K., Jan, Y. N. & Zhong, W. Progenitor cell maintenance requires numb and numblike during mouse neurogenesis. Nature 419, 929–934 (2002).

    Article  CAS  PubMed  Google Scholar 

  137. Ohnuma, S., Philpott, A., Wang, K., Holt, C. E. & Harris, W. A. p27Xic1, a Cdk inhibitor, promotes the determination of glial cells in Xenopus retina. Cell 99, 499–510 (1999).

    Article  CAS  PubMed  Google Scholar 

  138. Ohnuma, S., Hopper, S., Wang, K. C., Philpott, A. & Harris, W. A. Co-ordinating retinal histogenesis: early cell cycle exit enhances early cell fate determination in the Xenopus retina. Development 129, 2435–2446 (2002).

    CAS  PubMed  Google Scholar 

  139. Louvi, A., Sisodia, S. S. & Grove, E. A. Presenilin 1 in migration and morphogenesis in the central nervous system. Development 131, 3093–3105 (2004).

    Article  CAS  PubMed  Google Scholar 

  140. Wines-Samuelson, M., Handler, M. & Shen, J. Role of presenilin-1 in cortical lamination and survival of Cajal–Retzius neurons. Dev. Biol. 277, 332–346 (2005).

    Article  CAS  PubMed  Google Scholar 

  141. Irvin, D. K., Zurcher, S. D., Nguyen, T., Weinmaster, G. & Kornblum, H. I. Expression patterns of Notch1, Notch2, and Notch3 suggest multiple functional roles for the Notch-DSL signaling system during brain development. J. Comp. Neurol. 436, 167–181 (2001).

    Article  CAS  PubMed  Google Scholar 

  142. Solecki, D. J., Liu, X. L., Tomoda, T., Fang, Y. & Hatten, M. E. Activated Notch2 signaling inhibits differentiation of cerebellar granule neuron precursors by maintaining proliferation. Neuron 31, 557–568 (2001).

    Article  CAS  PubMed  Google Scholar 

  143. Kondo, T. & Raff, M. Basic helix–loop–helix proteins and the timing of oligodendrocyte differentiation. Development 127, 2989–2998 (2000).

    CAS  PubMed  Google Scholar 

  144. Zhou, Q., Choi, G. & Anderson, D. J. The bHLH transcription factor Olig2 promotes oligodendrocyte differentiation in collaboration with Nkx2.2. Neuron 31, 791–807 (2001).

    Article  CAS  PubMed  Google Scholar 

  145. Park, H. C. & Appel, B. Delta–Notch signaling regulates oligodendrocyte specification. Development 130, 3747–3755 (2003).

    Article  CAS  PubMed  Google Scholar 

  146. Givogri, M. I. et al. Central nervous system myelination in mice with deficient expression of Notch1 receptor. J. Neurosci. Res. 67, 309–320 (2002).

    Article  CAS  PubMed  Google Scholar 

  147. Genoud, S. et al. Notch1 control of oligodendrocyte differentiation in the spinal cord. J. Cell Biol. 158, 709–718 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Front cover. J. Cell Biol. 109, November (1989).

  149. Ellisen, L. W. et al. TAN-1, the human homolog of the Drosophila Notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 66, 649–661 (1991). The first study linking Notch activity to human disease.

    Article  CAS  PubMed  Google Scholar 

  150. Garg, V. et al. Mutations in NOTCH1 cause aortic valve disease. Nature 437, 270–274 (2005).

    Article  CAS  PubMed  Google Scholar 

  151. Li, L. et al. Alagille syndrome is caused by mutations in human Jagged1, which encodes a ligand for Notch1. Nature Genet. 16, 243–251 (1997).

    Article  CAS  PubMed  Google Scholar 

  152. Oda, T. et al. Mutations in the human Jagged1 gene are responsible for Alagille syndrome. Nature Genet. 16, 235–242 (1997).

    Article  CAS  PubMed  Google Scholar 

  153. Bulman, M. P. et al. Mutations in the human Delta homologue, DLL3, cause axial skeletal defects in spondylocostal dysostosis. Nature Genet. 24, 438–441 (2000).

    Article  CAS  PubMed  Google Scholar 

  154. Sparrow, D. B. et al. Mutation of the LUNATIC FRINGE gene in humans causes spondylocostal dysostosis with a severe vertebral phenotype. Am. J. Hum. Genet. 78, 28–37 (2006).

    Article  CAS  PubMed  Google Scholar 

  155. Whittock, N. V. et al. Mutated MESP2 causes spondylocostal dysostosis in humans. Am. J. Hum. Genet. 74, 1249–1254 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank our lab colleagues G. Hurlbut, J. Arboleda-Velasquez and A. Veraksa for comments. Special thanks to D. van Vactor and N. Gaiano for their insightful discussions. We were supported by the National Institutes of Health (NIH), USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Spyros Artavanis-Tsakonas.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Related links

Related links

FURTHER INFORMATION

Artavanis-Tsakonas's laboratory

Glossary

Chromosomal walk

A procedure pioneered in David Hogness's laboratory that allows the isolation of overlapping genomic fragments from a genomic phage library.

Paralogues

Two or more genes at distinct chromosomal locations in the same organism that have structural and functional similarities indicating that they derive from a common ancestral gene.

Müller glia

The main glial cell type in the retina.

Ganglion cells

The projection neurons of the retina and the first cells produced during retinal development.

Neurospheres

The multicellular floating clonal derivatives of the neural stem cells placed in culture.

CADASIL

(Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy). An inherited small vessel disease that leads to strokes and vascular cognitive impairment.

Dysproliferative

Indicates abnormal cell proliferation events and derives from the word proliferation and the Greek prefix 'dys', akin to the English 'mis'.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Louvi, A., Artavanis-Tsakonas, S. Notch signalling in vertebrate neural development. Nat Rev Neurosci 7, 93–102 (2006). https://doi.org/10.1038/nrn1847

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1847

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing