Key Points
-
The recent discovery of nine new human polyomaviruses has reinvigorated the field of polyomavirus research.
-
Integration of the Merkel cell polyomavirus genome into the host cell genome seems to be the major risk factor for the development of Merkel cell carcinoma, a highly lethal cancer.
-
Polyomavirus large and small T antigens bind to and perturb numerous host cell proteins that promote cell cycle entry and viral replication.
-
It seems that polyomaviruses infect humans ubiquitously, and they tend to cause disease in immunosuppressed individuals.
-
The use of different host cell receptors by the different human polyomaviruses seems to dictate the pathology of these viruses.
-
The task is now to more clearly investigate the link between these viruses and both the normal microbiome and disease.
Abstract
During the past 6 years, focused virus hunting has led to the discovery of nine new human polyomaviruses, including Merkel cell polyomavirus, which has been linked to Merkel cell carcinoma, a lethal skin cell cancer. The discovery of so many new and highly divergent human polyomaviruses raises key questions regarding their evolution, tropism, latency, reactivation, immune evasion and contribution to disease. This Review describes the similarities and differences among the new human polyomaviruses and discusses how these viruses might interact with their human host.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Johne, R., Enderlein, D., Nieper, H. & Muller, H. Novel polyomavirus detected in the feces of a chimpanzee by nested broad-spectrum PCR. J. Virol. 79, 3883–3887 (2005).
Groenewoud, M. J. et al. Characterization of novel polyomaviruses from Bornean and Sumatran orang-utans. J. Gen. Virol. 91, 653–658 (2010).
Deuzing, I. et al. Detection and characterization of two chimpanzee polyomavirus genotypes from different subspecies. Virol. J. 7, 347 (2010).
Leendertz, F. H. et al. African great apes are naturally infected with polyomaviruses closely related to Merkel cell polyomavirus. J. Virol. 85, 916–924 (2011).
Howley, P. M. & Livingston, D. M. Small DNA tumor viruses: large contributors to biomedical sciences. Virology 384, 256–259 (2009).
Gardner, S. D., Field, A. M., Coleman, D. V. & Hulme, B. New human papovavirus (BK) isolated from urine after renal transplantation. Lancet 1, 1253–1257 (1971).
Padgett, B. L., Walker, D. L., ZuRhein, G. M., Eckroade, R. J. & Dessel, B. H. Cultivation of papova-like virus from human brain with progressive multifocal leucoencephalopathy. Lancet 1, 1257–1260 (1971).
Kean, J. M., Rao, S., Wang, M. & Garcea, R. L. Seroepidemiology of human polyomaviruses. PLoS Pathog. 5, e1000363 (2009). The largest seroepidemiological study of the new viruses.
Walker, D. L. & Padgett, B. L. The epidemiology of human polyomaviruses. Prog. Clin. Biol. Res. 105, 99–106 (1983).
Stolt, A., Sasnauskas, K., Koskela, P., Lehtinen, M. & Dillner, J. Seroepidemiology of the human polyomaviruses. J. Gen. Virol. 84, 1499–1504 (2003).
Knowles, W. A. Discovery and epidemiology of the human polyomaviruses BK virus (BKV) and JC virus (JCV). Adv. Exp. Med. Biol. 577, 19–45 (2006).
Knowles, W. A. et al. Population-based study of antibody to the human polyomaviruses BKV and JCV and the simian polyomavirus SV40. J. Med. Virol. 71, 115–123 (2003).
Egli, A. et al. Prevalence of polyomavirus BK and JC infection and replication in 400 healthy blood donors. J. Infect. Dis. 199, 837–846 (2009).
Ferenczy, M. W. et al. Molecular biology, epidemiology, and pathogenesis of progressive multifocal leukoencephalopathy, the JC virus-induced demyelinating disease of the human brain. Clin. Microbiol. Rev. 25, 471–506 (2012).
Kuypers, D. R. Management of polyomavirus-associated nephropathy in renal transplant recipients. Nature Rev. Nephrol. 8, 390–402 (2012).
Allander, T. et al. Identification of a third human polyomavirus. J. Virol. 81, 4130–4136 (2007). The discovery of KIPyV, the first new human polyomavirus to be discovered in 36 years.
Gaynor, A. M. et al. Identification of a novel polyomavirus from patients with acute respiratory tract infections. PLoS Pathog. 3, e64 (2007). The discovery of WUPyV by next-generation sequencing.
Siebrasse, E. A. et al. Identification of MW polyomavirus, a novel polyomavirus in human stool. J. Virol. 86, 10321–10326 (2012).
Lim, E. S. et al. Discovery of STL polyomavirus, a polyomavirus of ancestral recombinant origin that encodes a unique T antigen by alternative splicing. Virology 436, 295–303 (2012).
Haycox, C. L. et al. Trichodysplasia spinulosa–a newly described folliculocentric viral infection in an immunocompromised host. J. Investig. Dermatol. Symp. Proc. 4, 268–271 (1999).
van der Meijden, E. et al. Discovery of a new human polyomavirus associated with trichodysplasia spinulosa in an immunocompromized patient. PLoS Pathog. 6, e1001024 (2010). The discovery of TSPyV using rolling-circle amplification to identify a virus that had been detected by electron microscopy.
Feng, H., Shuda, M., Chang, Y. & Moore, P. S. Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science 319, 1096–1100 (2008). The discovery of MCPyV as a result of the recognition that MCC occurs more frequently in immunocompromised patients than in non-immunocompromised individuals. Southern blotting also demonstrates the clonal integration of MCPyV in tumour cells.
Schowalter, R. M., Pastrana, D. V., Pumphrey, K. A., Moyer, A. L. & Buck, C. B. Merkel cell polyomavirus and two previously unknown polyomaviruses are chronically shed from human skin. Cell Host Microbe 7, 509–515 (2010).
Scuda, N. et al. A novel human polyomavirus closely related to the African green monkey-derived lymphotropic polyomavirus. J. Virol. 85, 4586–4590 (2011).
Reyes, A., Semenkovich, N. P., Whiteson, K., Rohwer, F. & Gordon, J. I. Going viral: next-generation sequencing applied to phage populations in the human gut. Nature Rev. Microbiol. 10, 607–617 (2012).
Rector, A., Tachezy, R. & Van Ranst, M. A sequence-independent strategy for detection and cloning of circular DNA virus genomes by using multiply primed rolling-circle amplification. J. Virol. 78, 4993–4998 (2004).
Sauvage, V. et al. Human polyomavirus related to African green monkey lymphotropic polyomavirus. Emerg. Infect. Dis. 17, 1364–1370 (2011).
Yu, G. et al. Discovery of a novel polyomavirus in acute diarrheal samples from children. PLoS ONE 7, e49449 (2012).
Buck, C. B. et al. Complete genome sequence of a tenth human polyomavirus. J. Virol. 86, 10887 (2012).
Johne, R. et al. Taxonomical developments in the family Polyomaviridae. Arch. Virol. 156, 1627–1634 (2011).
Pastrana, D. V. et al. Quantitation of human seroresponsiveness to Merkel cell polyomavirus. PLoS Pathog. 5, e1000578 (2009).
Viscidi, R. P. et al. Age-specific seroprevalence of Merkel cell polyomavirus, BK virus, and JC virus. Clin. Vaccine Immunol. 18, 1737–1743 (2011).
Nguyen, N. L., Le, B. M. & Wang, D. Serologic evidence of frequent human infection with WU and KI polyomaviruses. Emerg. Infect. Dis. 15, 1199–1205 (2009).
Gorelik, L., Goelz, S. & Sandrock, A. W. Asymptomatic reactivation of JC virus in patients treated with natalizumab. N. Engl. J. Med. 361, 2487–2488; author reply 2489–2490 (2009). The worrisome reactivation of JCPyV in patients treated with immunomodulatory therapies.
Feltkamp, M. C., Kazem, S., van der Meijden, E., Lauber, C. & Gorbalenya, A. E. From Stockholm to Malawi: recent developments in studying human polyomaviruses. J. Gen. Virol. 94, 482–496 (2013).
Dalianis, T. & Garcea, R. L. Welcome to the Polyomaviridae. Semin. Cancer Biol. 19, 209–210 (2009).
Jiang, M., Abend, J. R., Johnson, S. F. & Imperiale, M. J. The role of polyomaviruses in human disease. Virology 384, 266–273 (2009).
Tooze, J. & Acheson, N. H. DNA Tumor Viruses (Cold Spring Harbor Laboratory, 1981).
Shuda, M. et al. T antigen mutations are a human tumor-specific signature for Merkel cell polyomavirus. Proc. Natl Acad. Sci. USA 105, 16272–16277 (2008). Mutations in MCPyV large T antigen, found in MCC, disable the ability of the virus to replicate viral origin-containing DNA.
Cheng, J., DeCaprio, J. A., Fluck, M. M. & Schaffhausen, B. S. Cellular transformation by Simian Virus 40 and Murine Polyoma Virus T antigens. Semin. Cancer Biol. 19, 218–228 (2009).
Raghava, S., Giorda, K. M., Romano, F. B., Heuck, A. P. & Hebert, D. N. The SV40 late protein VP4 is a viroporin that forms pores to disrupt membranes for viral release. PLoS Pathog. 7, e1002116 (2011).
Rozenblatt-Rosen, O. et al. Interpreting cancer genomes using systematic host network perturbations by tumour virus proteins. Nature 487, 491–495 (2012).
Krumbholz, A., Bininda-Emonds, O. R., Wutzler, P. & Zell, R. Phylogenetics, evolution, and medical importance of polyomaviruses. Infect. Genet. Evol. 9, 784–799 (2009).
Perez-Losada, M. et al. Comparing phylogenetic codivergence between polyomaviruses and their hosts. J. Virol. 80, 5663–5669 (2006).
Warden, C. D. & Lacey, S. F. Updated phylogenetic analysis of polyomavirus-host co-evolution. J. Bioinfo. Res. 1, 46–49 (2012).
Campbell, K. S. et al. DnaJ/hsp40 chaperone domain of SV40 large T antigen promotes efficient viral DNA replication. Genes Dev. 11, 1098–1110 (1997).
DeCaprio, J. A. et al. SV40 large tumor antigen forms a specific complex with the product of the retinoblastoma susceptibility gene. Cell 54, 275–283 (1988).
Stubdal, H. et al. Inactivation of pRB-related proteins p130 and p107 mediated by the J domain of simian virus 40 large T antigen. Mol. Cell. Biol. 17, 4979–4990 (1997).
Liu, X. et al. Merkel cell polyomavirus large T antigen disrupts lysosome clustering by translocating human Vam6p from the cytoplasm to the nucleus. J. Biol. Chem. 286, 17079–17090 (2011).
Sowd, G. A. & Fanning, E. A wolf in sheep's clothing: SV40 co-opts host genome maintenance proteins to replicate viral DNA. PLoS Pathog. 8, e1002994 (2012).
Yardimci, H. et al. Bypass of a protein barrier by a replicative DNA helicase. Nature 492, 205–209 (2012).
Lilyestrom, W., Klein, M. G., Zhang, R., Joachimiak, A. & Chen, X. S. Crystal structure of SV40 large T-antigen bound to p53: interplay between a viral oncoprotein and a cellular tumor suppressor. Genes Dev. 20, 2373–2382 (2006).
Welcker, M. & Clurman, B. E. The SV40 large T antigen contains a decoy phosphodegron that mediates its interactions with Fbw7/hCdc4. J. Biol. Chem. 280, 7654–7658 (2005).
Fine, D. A. et al. Identification of FAM111A as an SV40 host range restriction and adenovirus helper factor. PLoS Pathog. 8, e1002949 (2012).
Pallas, D. C. et al. Polyoma small and middle T antigens and SV40 small t antigen form stable complexes with protein phosphatase 2A. Cell 60, 167–176 (1990).
Pallas, D. C. et al. The third subunit of protein phosphatase 2A (PP2A), a 55-kilodalton protein which is apparently substituted for by T antigens in complexes with the 36- and 63-kilodalton PP2A subunits, bears little resemblance to T antigens. J. Virol. 66, 886–893 (1992).
Shuda, M., Kwun, H. J., Feng, H., Chang, Y. & Moore, P. S. Human Merkel cell polyomavirus small T antigen is an oncoprotein targeting the 4E-BP1 translation regulator. J. Clin. Invest. 121, 3623–3634 (2011). The finding that MCPyV small T antigen is expressed in most MCCs, is oncogenic and can promote phosphorylation of 4EBP1.
Seo, G. J., Fink, L. H., O'Hara, B., Atwood, W. J. & Sullivan, C. S. Evolutionarily conserved function of a viral microRNA. J. Virol. 82, 9823–9828 (2008).
Seo, G. J., Chen, C. J. & Sullivan, C. S. Merkel cell polyomavirus encodes a microRNA with the ability to autoregulate viral gene expression. Virology 383, 183–187 (2009).
Lee, S. et al. Identification and validation of a novel mature microRNA encoded by the Merkel cell polyomavirus in human Merkel cell carcinomas. J. Clin. Virol. 52, 272–275 (2011).
Sullivan, C. S., Grundhoff, A. T., Tevethia, S., Pipas, J. M. & Ganem, D. SV40-encoded microRNAs regulate viral gene expression and reduce susceptibility to cytotoxic T cells. Nature 435, 682–686 (2005).
Bauman, Y. et al. An identical miRNA of the human JC and BK polyoma viruses targets the stress-induced ligand ULBP3 to escape immune elimination. Cell Host Microbe 9, 93–102 (2011).
Salunke, D. M., Caspar, D. L. D. & Garcea, R. L. Self-assembly of purified polyomavirus capsid protein VP1. Cell 46, 895–904 (1986).
Montross, L. et al. Nuclear assembly of polyomavirus capsids in insect cells expressing the major capsid protein VP1. J. Virol. 65, 4991–4998 (1991).
Cole, C. N., Landers, T., Goff, S. P., Manteuil-Brutlag, S. & Berg, P. Physical and genetic characterization of deletion mutants of simian virus 40 constructed in vitro. J. Virol. 24, 277–294 (1977).
Giorda, K. M., Raghava, S. & Hebert, D. N. The Simian virus 40 late viral protein VP4 disrupts the nuclear envelope for viral release. J. Virol. 86, 3180–3192 (2012).
Neu, U., Stehle, T. & Atwood, W. J. The Polyomaviridae: contributions of virus structure to our understanding of virus receptors and infectious entry. Virology 384, 389–399 (2009). An excellent review of the polyomavirus receptors.
Neu, U. et al. Structure-function analysis of the human JC polyomavirus establishes the LSTc pentasaccharide as a functional receptor motif. Cell Host Microbe 8, 309–319 (2010).
Erickson, K. D., Garcea, R. L. & Tsai, B. Ganglioside GT1b is a putative host cell receptor for the Merkel cell polyomavirus. J. Virol. 83, 10275–10279 (2009).
Stehle, T. & Harrison, S. C. High-resolution structure of a polyomavirus VP1-oligosaccharide complex: implications for assembly and receptor binding. EMBO J. 16, 5139–5148 (1997).
Stehle, T., Yan, Y., Benjamin, T. L. & Harrison, S. C. Structure of murine polyomavirus complexed with an oligosaccharide receptor fragment. Nature 369, 160–163 (1994).
Neu, U., Wang, J., Macejak, D., Garcea, R. L. & Stehle, T. Structures of the major capsid proteins of the human Karolinska Institutet and Washington University polyomaviruses. J. Virol. 85, 7384–7392 (2011).
Neu, U. et al. Structures of Merkel cell polyomavirus VP1 complexes define a sialic acid binding site required for infection. PLoS Pathog. 8, e1002738 (2012). The latest data on structural differences in the VP1 proteins of the new human polyomaviruses.
Magaldi, T. G. et al. Mutations in the GM1 binding site of simian virus 40 VP1 alter receptor usage and cell tropism. J. Virol. 86, 7028–7042 (2012).
Schowalter, R. M., Reinhold, W. C. & Buck, C. B. Entry tropism of BK and Merkel cell polyomaviruses in cell culture. PLoS ONE 7, e42181 (2012).
Gorelik, L. et al. Progressive multifocal leukoencephalopathy (PML) development is associated with mutations in JC virus capsid protein VP1 that change its receptor specificity. J. Infect. Dis. 204, 103–114 (2011).
Reid, C. E. et al. Sequencing and analysis of JC virus DNA from natalizumab-treated PML patients. J. Infect. Dis. 204, 237–244 (2011).
Sunyaev, S. R., Lugovskoy, A., Simon, K. & Gorelik, L. Adaptive mutations in the JC virus protein capsid are associated with progressive multifocal leukoencephalopathy (PML). PLoS Genet. 5, e1000368 (2009).
Dang, X., Wuthrich, C., Gordon, J., Sawa, H. & Koralnik, I. J. JC virus encephalopathy is associated with a novel agnoprotein-deletion JCV variant. PLoS ONE 7, e35793 (2012).
Major, E. O., Amemiya, K., Tornatore, C. S., Houff, S. A. & Berger, J. R. Pathogenesis and molecular biology of progressive multifocal leukoencephalopathy, the JC virus-induced demyelinating disease of the human brain. Clin. Microbiol. Rev. 5, 49–73 (1992).
Pfister, L. A., Letvin, N. L. & Koralnik, I. J. JC virus regulatory region tandem repeats in plasma and central nervous system isolates correlate with poor clinical outcome in patients with progressive multifocal leukoencephalopathy. J. Virol. 75, 5672–5676 (2001).
Gosert, R. et al. Polyomavirus BK with rearranged noncoding control region emerge in vivo in renal transplant patients and increase viral replication and cytopathology. J. Exp. Med. 205, 841–852 (2008).
Pastrana, D. V. et al. Neutralization serotyping of BK polyomavirus infection in kidney transplant recipients. PLoS Pathog. 8, e1002650 (2012).
Freund, R., Garcea, R. L., Sahli, R. & Benjamin, T. L. A single-amino-acid substitution in polyomavirus VP1 correlates with plaque size and hemagglutination behavior. J. Virol. 65, 350–355 (1991).
Bauer, P. H. et al. Genetic and structural analysis of a virulence determinant in polyomavirus VP1. J. Virol. 69, 7925–7931 (1995). The demonstration that MPyV spread in the host is dependent on receptor usage.
Bauer, P. H. et al. Discrimination between sialic acid-containing receptors and pseudoreceptors regulates polyomavirus spread in the mouse. J. Virol. 73, 5826–5832 (1999).
Giroglou, T., Florin, L., Schafer, F., Streeck, R. E. & Sapp, M. Human papillomavirus infection requires cell surface heparan sulfate. J. Virol. 75, 1565–1570 (2001).
Johnson, K. M. et al. Role of heparan sulfate in attachment to and infection of the murine female genital tract by human papillomavirus. J. Virol. 83, 2067–2074 (2009).
Buck, C. B., Pastrana, D. V., Lowy, D. R. & Schiller, J. T. Generation of HPV pseudovirions using transfection and their use in neutralization assays. Methods Mol. Med. 119, 445–462 (2005).
Schowalter, R. M., Pastrana, D. V. & Buck, C. B. Glycosaminoglycans and sialylated glycans sequentially facilitate Merkel cell polyomavirus infectious entry. PLoS Pathog. 7, e1002161 (2011).
Broekema, N. M. & Imperiale, M. J. Efficient propagation of archetype BK and JC polyomaviruses. Virology 422, 235–241 (2012).
Dalianis, T., Ramqvist, T., Andreasson, K., Kean, J. M. & Garcea, R. L. K. I. WU and Merkel cell polyomaviruses: a new era for human polyomavirus research. Semin. Cancer Biol. 19, 270–275 (2009).
Bialasiewicz, S. et al. Presence of the newly discovered human polyomaviruses KI and WU in Australian patients with acute respiratory tract infection. J. Clin. Virol. 41, 63–68 (2008).
Bialasiewicz, S., Whiley, D. M., Lambert, S. B., Nissen, M. D. & Sloots, T. P. Detection of BK, JC, WU, or KI polyomaviruses in faecal, urine, blood, cerebrospinal fluid and respiratory samples. J. Clin. Virol. 45, 249–254 (2009).
Han, T. H., Chung, J. Y., Koo, J. W., Kim, S. W. & Hwang, E. S. WU polyomavirus in children with acute lower respiratory tract infections, South Korea. Emerg. Infect. Dis. 13, 1766–1768 (2007).
Neske, F. et al. WU polyomavirus infection in children, Germany. Emerg. Infect. Dis. 14, 680–681 (2008).
Ren, L. et al. WU polyomavirus in fecal specimens of children with acute gastroenteritis, China. Emerg. Infect. Dis. 15, 134–135 (2009).
Le, B. M. et al. Clinical and epidemiologic characterization of WU polyomavirus infection, St. Louis, Missouri. Emerg. Infect. Dis. 13, 1936–1938 (2007).
Wattier, R. L. et al. Role of human polyomaviruses in respiratory tract disease in young children. Emerg. Infect. Dis. 14, 1766–1768 (2008).
Rao, S., Garcea, R. L., Robinson, C. C. & Simoes, E. A. WU and KI polyomavirus infections in pediatric hematology/oncology patients with acute respiratory tract illness. J. Clin. Virol. 52, 28–32 (2011).
Debiaggi, M. et al. Molecular epidemiology of KI and WU polyomaviruses in infants with acute respiratory disease and in adult hematopoietic stem cell transplant recipients. J. Med. Virol. 82, 153–156 (2010).
Dang, X. et al. Infrequent detection of KI, WU and MC polyomaviruses in immunosuppressed individuals with or without progressive multifocal leukoencephalopathy. PLoS ONE 6, e16736 (2011).
Mourez, T. et al. Polyomaviruses KI and WU in immunocompromised patients with respiratory disease. Emerg. Infect. Dis. 15, 107–109 (2009).
Tolstov, Y. L. et al. Asymptomatic primary Merkel cell polyomavirus infection among adults. Emerg. Infect. Dis. 17, 1371–1380 (2011).
Norja, P., Ubillos, I., Templeton, K. & Simmonds, P. No evidence for an association between infections with WU and KI polyomaviruses and respiratory disease. J. Clin. Virol. 40, 307–311 (2007).
Payungporn, S. et al. Prevalence and molecular characterization of WU/KI polyomaviruses isolated from pediatric patients with respiratory disease in Thailand. Virus Res. 135, 230–236 (2008).
Toker, C. Trabecular carcinoma of the skin. Arch. Dermatol. 105, 107–110 (1972).
Koljonen, V. et al. Chronic lymphocytic leukaemia patients have a high risk of Merkel-cell polyomavirus DNA-positive Merkel-cell carcinoma. Br. J. Cancer 101, 1444–1447 (2009).
de Giorgi, V., Benemei, S., Grazzini, M., Lotti, T. & Geppetti, P. Rapid growth of Merkel cell carcinoma during etanercept treatment of psoriatic arthritis: cause or coincidence? Acta Derm. Venereol. 91, 354–355 (2011).
Paulson, K. G., Iyer, J. G. & Nghiem, P. Asymmetric lateral distribution of melanoma and Merkel cell carcinoma in the United States. J. Am. Acad. Dermatol. 65, 35–39 (2011).
Ohnishi, Y. et al. Merkel cell carcinoma and multiple Bowen's disease: incidental association or possible relationship to inorganic arsenic exposure? J. Dermatol. 24, 310–316 (1997).
Sahi, H. et al. Increased incidence of Merkel cell carcinoma among younger statin users. Cancer Epidemiol. 36, 421–424 (2012).
Rodig, S. J. et al. Improved detection suggests all Merkel cell carcinomas harbor Merkel polyomavirus. J. Clin. Invest. 122, 4645–4653 (2012). This study raises the possibility that all MCCs contain MCPyV.
Schmitt, M., Wieland, U., Kreuter, A. & Pawlita, M. C-terminal deletions of Merkel cell polyomavirus large T-antigen, a highly specific surrogate marker for virally induced malignancy. Int. J. Cancer 131, 2863–2868 (2012).
Kraus, I. et al. The majority of viral-cellular fusion transcripts in cervical carcinomas cotranscribe cellular sequences of known or predicted genes. Cancer Res. 68, 2514–2522 (2008).
Duncavage, E. J. et al. Hybrid capture and next-generation sequencing identify viral integration sites from formalin-fixed, paraffin-embedded tissue. J. Mol. Diagn. 13, 325–333 (2011).
Shuda, M. et al. Human Merkel cell polyomavirus infection I. MCV T antigen expression in Merkel cell carcinoma, lymphoid tissues and lymphoid tumors. Int. J. Cancer 125, 1243–1249 (2009).
Bhatia, K., Goedert, J. J., Modali, R., Preiss, L. & Ayers, L. W. Merkel cell carcinoma subgroups by Merkel cell polyomavirus DNA relative abundance and oncogene expression. Int. J. Cancer 126, 2240–2246 (2010).
Houben, R. et al. An intact retinoblastoma protein-binding site in Merkel cell polyomavirus large T antigen is required for promoting growth of Merkel cell carcinoma cells. Int. J. Cancer 130, 847–856 (2012).
Arora, R. et al. Survivin is a therapeutic target in Merkel cell carcinoma. Sci. Transl. Med. 4, 133ra56 (2012).
Busam, K. J. et al. Merkel cell polyomavirus expression in merkel cell carcinomas and its absence in combined tumors and pulmonary neuroendocrine carcinomas. Am. J. Surg. Pathol. 33, 1378–1385 (2009).
Schrama, D. et al. Merkel cell polyomavirus status is not associated with clinical course of Merkel cell carcinoma. J. Invest. Dermatol. 131, 1631–1638 (2011).
Paik, J. Y. et al. Immunohistochemistry for Merkel cell polyomavirus is highly specific but not sensitive for the diagnosis of Merkel cell carcinoma in the Australian population. Hum. Pathol. 42, 1385–1390 (2011).
Sihto, H. et al. Merkel cell polyomavirus infection, large T antigen, retinoblastoma protein and outcome in Merkel cell carcinoma. Clin. Cancer Res. 17, 4806–4813 (2011).
Hafner, C. et al. Activation of the PI3K/AKT pathway in Merkel cell carcinoma. PLoS ONE 7, e31255 (2012).
Nardi, V. et al. Activation of PI3K signaling in Merkel cell carcinoma. Clin. Cancer Res. 18, 1227–1236 (2012).
Lill, C. et al. P53 mutation is a rare event in Merkel cell carcinoma of the head and neck. Eur. Arch. Otorhinolaryngol. 268, 1639–1646 (2011).
Waltari, M. et al. Association of Merkel cell polyomavirus infection with tumor p53, KIT, stem cell factor, PDGFR-alpha and survival in Merkel cell carcinoma. Int. J. Cancer 129, 619–628 (2011).
Asioli, S., Righi, A., Volante, M., Eusebi, V. & Bussolati, G. p63 expression as a new prognostic marker in Merkel cell carcinoma. Cancer 110, 640–647 (2007).
Asioli, S. et al. Expression of p63 is the sole independent marker of aggressiveness in localised (stage I–II) Merkel cell carcinomas. Mod. Pathol. 24, 1451–1461 (2011).
Hall, B. J. et al. Immunohistochemical prognostication of Merkel cell carcinoma: p63 expression but not polyomavirus status correlates with outcome. J. Cutan. Pathol. 39, 911–917 (2012).
Lim, C. S. et al. Increasing tumor thickness is associated with recurrence and poorer survival in patients with Merkel cell carcinoma. Ann. Surg. Oncol. 19, 3325–3334 (2012).
Higaki-Mori, H. et al. Association of Merkel cell polyomavirus infection with clinicopathological differences in Merkel cell carcinoma. Hum. Pathol. 43, 2282–2291 (2012).
Paulson, K. G. et al. Antibodies to merkel cell polyomavirus T antigen oncoproteins reflect tumor burden in merkel cell carcinoma patients. Cancer Res. 70, 8388–8397 (2010).
Iyer, J. G. et al. Merkel cell polyomavirus-specific CD8+ and CD4+ T-cell responses identified in Merkel cell carcinomas and blood. Clin. Cancer Res. 17, 6671–6680 (2011).
Paulson, K. G. et al. Transcriptome-wide studies of merkel cell carcinoma and validation of intratumoral CD8+ lymphocyte invasion as an independent predictor of survival. J. Clin. Oncol. 29, 1539–1546 (2011). This study shows that patients with MCC who have a strong immune response have an improved prognosis compared with immunocompromised patients.
Tolstov, Y. L. et al. Lack of evidence for direct involvement of Merkel cell polyomavirus (MCV) in chronic lymphocytic leukemia (CLL). Blood 115, 4973–4974 (2010).
Reisinger, D. M. et al. Lack of evidence for basal or squamous cell carcinoma infection with Merkel cell polyomavirus in immunocompetent patients with Merkel cell carcinoma. J. Am. Acad. Dermatol. 63, 400–403 (2010).
Rollison, D. E. et al. Case-control study of Merkel cell polyomavirus infection and cutaneous squamous cell carcinoma. Cancer Epidemiol. Biomarkers Prev. 21, 74–81 (2012).
Abend, J. R., Jiang, M. & Imperiale, M. J. BK virus and human cancer: innocent until proven guilty. Semin. Cancer Biol. 19, 252–260 (2009).
Pino, L. et al. Bladder transitional cell carcinoma and BK virus in a young kidney transplant recipient. Transpl. Infect. Dis. 15, e25–e27 (2012).
Vilkin, A. et al. Presence of JC virus DNA in the tumor tissue and normal mucosa of patients with sporadic colorectal cancer (CRC) or with positive family history and Bethesda criteria. Dig. Dis. Sci. 57, 79–84 (2012).
Garcea, R. L. & Imperiale, M. J. Simian virus 40 infection of humans. J. Virol. 77, 5039–5045 (2003).
Poulin, D. L. & DeCaprio, J. A. Is there a role for SV40 in human cancer? J. Clin. Oncol. 24, 4356–4365 (2006).
Dela Cruz, F. N. Jr et al. Novel polyomavirus associated with brain tumors in free-ranging Raccoons, Western United States. Emerg. Infect. Dis. 19, 77–84 (2013).
Swanson, P. A., Lukacher, A. E. & Szomolanyi-Tsuda, E. Immunity to polyomvirus infection: the polyomavirus–mouse model. Semin. Cancer Biol. 19, 244–251 (2009).
zur Hausen, H. & Gissmann, L. Lymphotropic papovaviruses isolated from African green monkey and human cells. Med. Microbiol. Immunol. 167, 137–153 (1979).
Kanda, T. & Takemoto, K. K. Monkey B-lymphotropic papovavirus mutant capable of replicating in T-lymphoblastoid cells. J. Virol. 55, 96–100 (1985).
Woolford, L. et al. A novel virus detected in papillomas and carcinomas of the endangered western barred bandicoot (Perameles bougainville) exhibits genomic features of both the Papillomaviridae and Polyomaviridae. J. Virol. 81, 13280–13290 (2007).
Sehr, P., Zumbach, K. & Pawlita, M. A generic capture ELISA for recombinant proteins fused to glutathione S-transferase: validation for HPV serology. J. Immunol. Methods 253, 153–162 (2001).
Viscidi, R. P. & Clayman, B. Serological cross reactivity between polyomavirus capsids. Adv. Exp. Med. Biol. 577, 73–84 (2006).
Randhawa, P. et al. Identification of species-specific and cross-reactive epitopes in human polyomavirus capsids using monoclonal antibodies. J. Gen. Virol. 90, 634–639 (2009).
Waterboer, T. et al. Multiplex human papillomavirus serology based on in situ-purified glutathione S-transferase fusion proteins. Clin. Chem. 51, 1845–1853 (2005).
Edgar, R. C. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5, 113 (2004).
Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nature Methods 7, 335–336 (2010).
Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).
Carter, J. J. et al. Association of Merkel cell polyomavirus-specific antibodies with Merkel cell carcinoma. J. Natl Cancer Inst. 101, 1510–1522 (2009).
Gorelik, L. et al. Anti-JC virus antibodies: implications for PML risk stratification. Ann. Neurol. 68, 295–303 (2010).
Faust, H., Pastrana, D. V., Buck, C. B., Dillner, J. & Ekstrom, J. Antibodies to Merkel cell polyomavirus correlate to presence of viral DNA in the skin. J. Infect. Dis. 203, 1096–1100 (2011).
van der Meijden, E. et al. Seroprevalence of trichodysplasia spinulosa-associated polyomavirus. Emerg. Infect. Dis. 17, 1355–1363 (2011).
Nicol, J. T. et al. Seroprevalence and cross-reactivity of human polyomavirus 9. Emerg. Infect. Dis. 18, 1329–1332 (2012).
Trusch, F. et al. Seroprevalence of human polyomavirus 9 and cross-reactivity to African green monkey-derived lymphotropic polyomavirus. J. Gen. Virol. 93, 698–705 (2012).
Acknowledgements
This work was supported in part by US Public Health Service grants P01CA050661, RO1CA93804 and R01CA63113 to J.A.D. and RO1CA37667 to R.L.G. The authors thank D. McDonald for assistance with the bioinformatics.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Related links
Rights and permissions
About this article
Cite this article
DeCaprio, J., Garcea, R. A cornucopia of human polyomaviruses. Nat Rev Microbiol 11, 264–276 (2013). https://doi.org/10.1038/nrmicro2992
Published:
Issue Date:
DOI: https://doi.org/10.1038/nrmicro2992