Key Points
-
Retroviral Gag proteins encode all the activities that are required for virion assembly and release. These activities include Gag multimerization, interaction with the plasma membrane and encapsidation of the genomic viral RNA.
-
Most retroviruses bud at the plasma membrane. In macrophages, HIV-1 assembly can be visualized in complex plasma membrane invaginations.
-
Retroviruses induce synaptic structures and filopodial processes to promote their cell-to-cell transfer.
-
Retroviral egress requires late-budding activity domains (L-domains) that facilitate the resolution of the membrane stalk connecting the nascent virions to the host cell at the end of assembly. L-domains are short amino acid motifs, encoded by Gag, that recruit the ESCRT pathway, a highly conserved cellular machinery that mediates membrane scission events which resemble the topology observed in retroviral budding.
-
The ESCRT machinery is modular in nature, and it can be subverted by enveloped viruses to facilitate viral assembly and release. Recent advances in studies of viral assembly and release have increased our understanding of the mechanisms that are employed by the core ESCRT machinery in membrane deformation and scission.
-
The mechanism of action of tetherin, an interferon-induced membrane protein that inhibits the release of mammalian enveloped viruses, has also been elucidated, as well as the countermeasures that HIV-1 and related viruses deploy to inhibit its function.
Abstract
The plasma membrane is the final barrier that enveloped viruses must cross during their egress from the infected cell. Here, we review recent insights into the cell biology of retroviral assembly and release; these insights have driven a new understanding of the host proteins, such as the ESCRT machinery, that are used by retroviruses to promote their final separation from the host cell. We also review antiviral host factors such as tetherin, which can directly inhibit the release of retroviral particles. These studies have illuminated the role of the lipid bilayer as the unexpected target for virus restriction by the innate immune response.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Frankel, A. D. & Young, J. A. HIV-1: fifteen proteins and an RNA. Annu. Rev. Biochem. 67, 1–25 (1998).
Gheysen, D. et al. Assembly and release of HIV-1 precursor Pr55gag virus-like particles from recombinant baculovirus-infected insect cells. Cell 59, 103–112 (1989).
Gottlinger, H. G. The HIV-1 assembly machine. AIDS 15 (Suppl. 5), S13–S20 (2001).
Gottlinger, H. G., Sodroski, J. G. & Haseltine, W. A. Role of capsid precursor processing and myristoylation in morphogenesis and infectivity of human immunodeficiency virus type 1. Proc. Natl Acad. Sci. USA 86, 5781–5785 (1989).
Saad, J. S. et al. Structural basis for targeting HIV-1 Gag proteins to the plasma membrane for virus assembly. Proc. Natl Acad. Sci. USA 103, 11364–11369 (2006).
Ono, A., Ablan, S. D., Lockett, S. J., Nagashima, K. & Freed, E. O. Phosphatidylinositol (4,5) bisphosphate regulates HIV-1 Gag targeting to the plasma membrane. Proc. Natl Acad. Sci. USA 101, 14889–14894 (2004).
Chukkapalli, V., Oh, S. J. & Ono, A. Opposing mechanisms involving RNA and lipids regulate HIV-1 Gag membrane binding through the highly basic region of the matrix domain. Proc. Natl Acad. Sci. USA 107, 1600–1605 (2010).
Perez-Caballero, D., Hatziioannou, T., Martin-Serrano, J. & Bieniasz, P. D. Human immunodeficiency virus type 1 matrix inhibits and confers cooperativity on Gag precursor-membrane interactions. J. Virol. 78, 9560–9563 (2004).
Ganser-Pornillos, B. K., Yeager, M. & Sundquist, W. I. The structural biology of HIV assembly. Curr. Opin. Struct. Biol. 18, 203–217 (2008).
Towers, G. J. The control of viral infection by tripartite motif proteins and cyclophilin A. Retrovirology 4, 40 (2007).
Kutluay, S. B. & Bieniasz, P. D. Analysis of the initiating events in HIV-1 particle assembly and genome packaging. PLoS Pathog. 6, e1001200 (2010).
D'Souza, V. & Summers, M. F. How retroviruses select their genomes. Nature Rev. Microbiol. 3, 643–655 (2005).
Accola, M. A., Strack, B. & Gottlinger, H. G. Efficient particle production by minimal Gag constructs which retain the carboxy-terminal domain of human immunodeficiency virus type 1 capsid-p2 and a late assembly domain. J. Virol. 74, 5395–5402 (2000).
Gross, I., Hohenberg, H. & Krausslich, H. G. In vitro assembly properties of purified bacterially expressed capsid proteins of human immunodeficiency virus. Eur. J. Biochem. 249, 592–600 (1997).
Alfadhli, A., Still, A. & Barklis, E. Analysis of human immunodeficiency virus type 1 matrix binding to membranes and nucleic acids. J. Virol. 83, 12196–12203 (2009).
Swanson, C. M., Puffer, B. A., Ahmad, K. M., Doms, R. W. & Malim, M. H. Retroviral mRNA nuclear export elements regulate protein function and virion assembly. EMBO J. 23, 2632–2640 (2004).
Sherer, N. M., Swanson, C. M., Papaioannou, S. & Malim, M. H. Matrix mediates the functional link between human immunodeficiency virus type 1 RNA nuclear export elements and the assembly competency of Gag in murine cells. J. Virol. 83, 8525–8535 (2009).
Bieniasz, P. D. Late budding domains and host proteins in enveloped virus release. Virology 344, 55–63 (2006).
Freed, E. O. Viral late domains. J. Virol. 76, 4679–4687 (2002).
Morita, E. & Sundquist, W. I. Retrovirus budding. Annu. Rev. Cell Dev. Biol. 20, 395–425 (2004).
Carlson, L. A. et al. Three-dimensional analysis of budding sites and released virus suggests a revised model for HIV-1 morphogenesis. Cell Host Microbe 4, 592–599 (2008).
Ono, A. Relationships between plasma membrane microdomains and HIV-1 assembly. Biol. Cell 102, 335–350 (2010).
Nydegger, S., Khurana, S., Krementsov, D. N., Foti, M. & Thali, M. Mapping of tetraspanin-enriched microdomains that can function as gateways for HIV-1. J. Cell Biol. 173, 795–807 (2006).
Sfakianos, J. N. & Hunter, E. M-PMV capsid transport is mediated by Env/Gag interactions at the pericentriolar recycling endosome. Traffic 4, 671–680 (2003).
Linial, M. L. & Eastman, S. W. Particle assembly and genome packaging. Curr. Top. Microbiol. Immunol. 277, 89–110 (2003).
Pelchen-Matthews, A., Kramer, B. & Marsh, M. Infectious HIV-1 assembles in late endosomes in primary macrophages. J. Cell Biol. 162, 443–455 (2003).
Jouvenet, N. et al. Plasma membrane is the site of productive HIV-1 particle assembly. PLoS Biol. 4, e435 (2006).
Jouve, M., Sol-Foulon, N., Watson, S., Schwartz, O. & Benaroch, P. HIV-1 buds and accumulates in “nonacidic” endosomes of macrophages. Cell Host Microbe 2, 85–95 (2007).
Deneka, M., Pelchen-Matthews, A., Byland, R., Ruiz-Mateos, E. & Marsh, M. In macrophages, HIV-1 assembles into an intracellular plasma membrane domain containing the tetraspanins CD81, CD9, and CD53. J. Cell Biol. 177, 329–341 (2007).
Welsch, S. et al. HIV-1 buds predominantly at the plasma membrane of primary human macrophages. PLoS Pathog. 3, e36 (2007).
Bennett, A. E. et al. Ion-abrasion scanning electron microscopy reveals surface-connected tubular conduits in HIV-infected macrophages. PLoS Pathog. 5, e1000591 (2009).
Gousset, K. et al. Real-time visualization of HIV-1 GAG trafficking in infected macrophages. PLoS Pathog. 4, e1000015 (2008).
Sharova, N., Swingler, C., Sharkey, M. & Stevenson, M. Macrophages archive HIV-1 virions for dissemination in trans. EMBO J. 24, 2481–2489 (2005).
Yu, H. J., Reuter, M. A. & McDonald, D. HIV traffics through a specialized, surface-accessible intracellular compartment during trans-infection of T cells by mature dendritic cells. PLoS Pathog. 4, e1000134 (2008).
Groot, F., Welsch, S. & Sattentau, Q. J. Efficient HIV-1 transmission from macrophages to T cells across transient virological synapses. Blood 111, 4660–4663 (2008).
Felts, R. L. et al. 3D visualization of HIV transfer at the virological synapse between dendritic cells and T cells. Proc. Natl Acad. Sci. USA 107, 13336–13341 (2010).
Mothes, W., Sherer, N. M., Jin, J. & Zhong, P. Virus cell-to-cell transmission. J. Virol. 84, 8360–8368 (2010).
Sattentau, Q. Avoiding the void: cell-to-cell spread of human viruses. Nature Rev. Microbiol. 6, 815–826 (2008).
Igakura, T. et al. Spread of HTLV-I between lymphocytes by virus-induced polarization of the cytoskeleton. Science 299, 1713–1716 (2003).
Jolly, C., Kashefi, K., Hollinshead, M. & Sattentau, Q. J. HIV-1 cell to cell transfer across an Env-induced, actin-dependent synapse. J. Exp. Med. 199, 283–293 (2004). References 39 and 40 demonstrate the induction of a polarized synapse that mediates the transfer of HTLV-1 and HIV-1 between T cells.
Jolly, C. & Sattentau, Q. J. Regulated secretion from CD4+ T cells. Trends Immunol. 28, 474–481 (2007).
Rudnicka, D. et al. Simultaneous cell-to-cell transmission of human immunodeficiency virus to multiple targets through polysynapses. J. Virol. 83, 6234–6246 (2009).
Pais-Correia, A. M. et al. Biofilm-like extracellular viral assemblies mediate HTLV-1 cell-to-cell transmission at virological synapses. Nature Med. 16, 83–89 (2010).
Llewellyn, G. N., Hogue, I. B., Grover, J. R. & Ono, A. Nucleocapsid promotes localization of HIV-1 Gag to uropods that participate in virological synapses between T cells. PLoS Pathog. 6, e1001167 (2010).
Sourisseau, M., Sol- Foulon, N., Porrot, F., Blanchet, F. & Schwartz, O. Inefficient human immunodeficiency virus replication in mobile lymphocytes. J. Virol. 81, 1000–1012 (2007).
Chen, P., Hubner, W., Spinelli, M. A. & Chen, B. K. Predominant mode of human immunodeficiency virus transfer between T cells is mediated by sustained Env-dependent neutralization-resistant virological synapses. J. Virol. 81, 12582–12595 (2007).
Martin, N. et al. Virological synapse-mediated spread of human immunodeficiency virus type 1 between T cells is sensitive to entry inhibition. J. Virol. 84, 3516–3527 (2010).
Hubner, W. et al. Quantitative 3D video microscopy of HIV transfer across T cell virological synapses. Science 323, 1743–1747 (2009). A real-time analysis of HIV-1 synaptic transfer, as monitored by three-dimensional fluorescence microscopy.
Fujii, K. et al. Functional role of Alix in HIV-1 replication. Virology 391, 284–292 (2009).
Sowinski, S. et al. Membrane nanotubes physically connect T cells over long distances presenting a novel route for HIV-1 transmission. Nature Cell Biol. 10, 211–219 (2008).
Gottlinger, H. G., Dorfman, T., Sodroski, J. G. & Haseltine, W. A. Effect of mutations affecting the p6 gag protein on human immunodeficiency virus particle release. Proc. Natl Acad. Sci. USA 88, 3195–3199 (1991). The first description of a functional L-domain in an enveloped virus.
Parent, L. J. et al. Positionally independent and exchangeable late budding functions of the Rous sarcoma virus and human immunodeficiency virus Gag proteins. J. Virol. 69, 5455–5460 (1995).
Strack, B., Calistri, A., Accola, M. A., Palu, G. & Gottlinger, H. G. A role for ubiquitin ligase recruitment in retrovirus release. Proc. Natl Acad. Sci. USA 97, 13063–13068 (2000).
Schubert, U. et al. Proteasome inhibition interferes with Gag polyprotein processing, release, and maturation of HIV-1 and HIV-2. Proc. Natl Acad. Sci. USA 97, 13057–13062 (2000).
Patnaik, A., Chau, V. & Wills, J. W. Ubiquitin is part of the retrovirus budding machinery. Proc. Natl Acad. Sci. USA 97, 13069–13074 (2000).
VerPlank, L. et al. Tsg101, a homologue of ubiquitin-conjugating (E2) enzymes, binds the L domain in HIV type 1 Pr55(Gag). Proc. Natl Acad. Sci. USA 98, 7724–7729 (2001).
Martin-Serrano, J., Zang, T. & Bieniasz, P. D. HIV-1 and Ebola virus encode small peptide motifs that recruit Tsg101 to sites of particle assembly to facilitate egress. Nature Med. 7, 1313–1319 (2001).
Garrus, J. E. et al. Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding. Cell 107, 55–65 (2001). References 57 and 58 show that TSG101 is necessary and sufficient for P(S/T)AP-dependent budding.
Demirov, D. G., Ono, A., Orenstein, J. M. & Freed, E. O. Overexpression of the N-terminal domain of TSG101 inhibits HIV-1 budding by blocking late domain function. Proc. Natl Acad. Sci. USA 99, 955–960 (2002).
Martin-Serrano, J., Zang, T. & Bieniasz, P. D. Role of ESCRT-I in retroviral budding. J. Virol. 77, 4794–4804 (2003).
von Schwedler, U. K. et al. The protein network of HIV budding. Cell 114, 701–713 (2003).
Strack, B., Calistri, A., Craig, S., Popova, E. & Gottlinger, H. G. AIP1/ALIX is a binding partner for HIV-1 p6 and EIAV p9 functioning in virus budding. Cell 114, 689–699 (2003).
Martin-Serrano, J., Yarovoy, A., Perez-Caballero, D. & Bieniasz, P. D. Divergent retroviral late-budding domains recruit vacuolar protein sorting factors by using alternative adaptor proteins. Proc. Natl Acad. Sci. USA 100, 12414–12419 (2003). References 61–63 provide the first evidence that different L-domains recruit alternative adaptor proteins that bind the core ESCRT machinery.
Pornillos, O., Alam, S. L., Davis, D. R. & Sundquist, W. I. Structure of the Tsg101 UEV domain in complex with the PTAP motif of the HIV-1 p6 protein. Nature Struct. Biol. 9, 812–817 (2002).
Im, Y. J. et al. Crystallographic and functional analysis of the ESCRT-I /HIV-1 Gag PTAP interaction. Structure 18, 1536–1547 (2010).
Stuchell, M. D. et al. The human endosomal sorting complex required for transport (ESCRT-I) and its role in HIV-1 budding. J. Biol. Chem. 279, 36059–36071 (2004).
Morita, E. et al. Identification of human MVB12 proteins as ESCRT-I subunits that function in HIV budding. Cell Host Microbe 2, 41–53 (2007).
Eastman, S. W., Martin-Serrano, J., Chung, W., Zang, T. & Bieniasz, P. D. Identification of human VPS37C, a component of endosomal sorting complex required for transport-I important for viral budding. J. Biol. Chem. 280, 628–636 (2005).
Pineda-Molina, E. et al. The crystal structure of the C-terminal domain of Vps28 reveals a conserved surface required for Vps20 recruitment. Traffic 7, 1007–1016 (2006).
Langelier, C. et al. Human ESCRT-II complex and its role in human immunodeficiency virus type 1 release. J. Virol. 80, 9465–9480 (2006).
Zhai, Q., Landesman, M. B., Robinson, H., Sundquist, W. I. & Hill, C. P. Identification and structural characterization of the ALIX-binding late domains of simian immunodeficiency virus SIVmac239 and SIVagmTan-1 . J. Virol. 85, 632–637 (2011).
Carlton, J. G., Agromayor, M. & Martin-Serrano, J. Differential requirements for Alix and ESCRT-III in cytokinesis and HIV-1 release. Proc. Natl Acad. Sci. USA 105, 10541–10546 (2008).
Fisher, R. D. et al. Structural and biochemical studies of ALIX/AIP1 and its role in retrovirus budding. Cell 128, 841–852 (2007).
Lee, S., Joshi, A., Nagashima, K., Freed, E. O. & Hurley, J. H. Structural basis for viral late-domain binding to Alix. Nature Struct. Mol. Biol. 14, 194–199 (2007).
Pires, R. et al. A crescent-shaped ALIX dimer targets ESCRT-III CHMP4 filaments. Structure 17, 843–856 (2009).
Vincent, O., Rainbow, L., Tilburn, J., Arst, H. N. Jr & Penalva, M. A. YPXL/I is a protein interaction motif recognized by aspergillus PalA and its human homologue, AIP1/Alix. Mol. Cell Biol. 23, 1647–1655 (2003).
McCullough, J., Fisher, R. D., Whitby, F. G., Sundquist, W. I. & Hill, C. P. ALIX-CHMP4 interactions in the human ESCRT pathway. Proc. Natl Acad. Sci. USA 105, 7687–7691 (2008).
Usami, Y., Popov, S. & Gottlinger, H. G. Potent rescue of human immunodeficiency virus type 1 late domain mutants by ALIX/AIP1 depends on its CHMP4 binding site. J. Virol. 81, 6614–6622 (2007).
Martin-Serrano, J. The role of ubiquitin in retroviral egress. Traffic 8, 1297–1303 (2007).
Martin-Serrano, J., Eastman, S. W., Chung, W. & Bieniasz, P. D. HECT ubiquitin ligases link viral and cellular PPXY motifs to the vacuolar protein-sorting pathway. J. Cell Biol. 168, 89–101 (2005).
Weiss, E. R. et al. Rescue of HIV-1 release by targeting widely divergent NEDD4-type ubiquitin ligases and isolated catalytic HECT domains to Gag. PLoS Pathog. 6, e1001107 (2010).
Williams, R. L. & Urbe, S. The emerging shape of the ESCRT machinery. Nature Rev. Mol. Cell Biol. 8, 355–368 (2007).
Joshi, A., Munshi, U., Ablan, S. D., Nagashima, K. & Freed, E. O. Functional replacement of a retroviral late domain by ubiquitin fusion. Traffic 9, 1972–1983 (2008).
Zhadina, M. & Bieniasz, P. D. Functional interchangeability of late domains, late domain cofactors and ubiquitin in viral budding. PLoS Pathog. 6, e1001153 (2010).
Zhadina, M., McClure, M. O., Johnson, M. C. & Bieniasz, P. D. Ubiquitin-dependent virus particle budding without viral protein ubiquitination. Proc. Natl Acad. Sci. USA 104, 20031–20036 (2007).
Rauch, S. & Martin-Serrano, J. Multiple interactions between the ESCRT machinery and arrestin-related proteins: implications in PPXY-dependent budding. J. Virol. 85, 3546–3556 (2010).
Lin, C. H., MacGurn, J. A., Chu, T., Stefan, C. J. & Emr, S. D. Arrestin-related ubiquitin-ligase adaptors regulate endocytosis and protein turnover at the cell surface. Cell 135, 714–725 (2008).
Schmitt, A. P., Leser, G. P., Morita, E., Sundquist, W. I. & Lamb, R. A. Evidence for a new viral late-domain core sequence, FPIV, necessary for budding of a paramyxovirus. J. Virol. 79, 2988–2997 (2005).
Martin-Serrano, J. & Bieniasz, P. D. A bipartite late-budding domain in human immunodeficiency virus type 1. J. Virol. 77, 12373–12377 (2003).
Dilley, K. A., Gregory, D., Johnson, M. C. & Vogt, V. M. An LYPSL late domain in the gag protein contributes to the efficient release and replication of Rous sarcoma virus. J. Virol. 84, 6276–6287 (2010).
Chung, H. Y. et al. NEDD4L overexpression rescues the release and infectivity of human immunodeficiency virus type 1 constructs lacking PTAP and YPXL late domains. J. Virol. 82, 4884–4897 (2008).
Usami, Y., Popov, S., Popova, E. & Gottlinger, H. G. Efficient and specific rescue of human immunodeficiency virus type 1 budding defects by a Nedd4-like ubiquitin ligase. J. Virol. 82, 4898–4907 (2008).
Jadwin, J. A., Rudd, V., Sette, P., Challa, S. & Bouamr, F. Late domain-independent rescue of a release-deficient Moloney murine leukemia virus by the ubiquitin ligase itch. J. Virol. 84, 704–715 (2010).
Popov, S., Popova, E., Inoue, M. & Gottlinger, H. G. Human immunodeficiency virus type 1 Gag engages the Bro1 domain of ALIX/AIP1 through the nucleocapsid. J. Virol. 82, 1389–1398 (2008).
Dussupt, V. et al. The nucleocapsid region of HIV-1 Gag cooperates with the PTAP and LYPXnL late domains to recruit the cellular machinery necessary for viral budding. PLoS Pathog. 5, e1000339 (2009).
Dussupt, V. et al. Basic residues in the nucleocapsid domain of Gag are critical for late events of HIV-1 budding. J. Virol. 85, 2304–2315 (2011).
Popov, S., Popova, E., Inoue, M. & Gottlinger, H. G. Divergent Bro1 domains share the capacity to bind human immunodeficiency virus type 1 nucleocapsid and to enhance virus-like particle production. J. Virol. 83, 7185–7193 (2009).
Popova, E., Popov, S. & Gottlinger, H. G. Human immunodeficiency virus type 1 nucleocapsid p1 confers ESCRT pathway dependence. J. Virol. 84, 6590–6597 (2010).
Carlton, J. G. & Martin-Serrano, J. Parallels between cytokinesis and retroviral budding: a role for the ESCRT machinery. Science 316, 1908–1912 (2007).
Hanson, P. I., Roth, R., Lin, Y. & Heuser, J. E. Plasma membrane deformation by circular arrays of ESCRT-III protein filaments. J. Cell Biol. 180, 389–402 (2008). This study demonstrates the membrane deformation that is mediated by ESCRT-III.
Ghazi-Tabatabai, S. et al. Structure and disassembly of filaments formed by the ESCRT-III subunit Vps24. Structure 16, 1345–1356 (2008).
Lata, S. et al. Helical structures of ESCRT-III are disassembled by VPS4. Science 321, 1354–1357 (2008). This article describes the helical structures that are formed by ESCRT-III.
Saksena, S., Wahlman, J., Teis, D., Johnson, A. E. & Emr, S. D. Functional reconstitution of ESCRT-III assembly and disassembly. Cell 136, 97–109 (2009).
Wollert, T., Wunder, C., Lippincott-Schwartz, J. & Hurley, J. H. Membrane scission by the ESCRT-III complex. Nature 458, 172–177 (2009). This report provides biochemical evidence of membrane scission by ESCRT-III.
Hurley, J. H. & Hanson, P. I. Membrane budding and scission by the ESCRT machinery: it's all in the neck. Nature Rev. Mol. Cell Biol. 11, 556–566 (2010).
Peel, S., Macheboeuf, P., Martinelli, N. & Weissenhorn, W. Divergent pathways lead to ESCRT-III-catalyzed membrane fission. Trends Biochem. Sci. 36, 199–210 (2011).
Morita, E. et al. ESCRT-III protein requirements for HIV-1 budding. Cell Host Microbe 9, 235–242 (2011).
Baumgartel, V. et al. Live-cell visualization of dynamics of HIV budding site interactions with an ESCRT component. Nature Cell Biol. 13, 469–474 (2011).
Jouvenet, N., Zhadina, M., Bieniasz, P. D. & Simon, S. M. Dynamics of ESCRT protein recruitment during retroviral assembly. Nature Cell Biol. 13, 394–401 (2011). References 108 and 109 use live-imaging techniques to determine for the first time the kinetics of ESCRT recruitment during retroviral assembly.
Rossman, J. S., Jing, X., Leser, G. P. & Lamb, R. A. Influenza virus M2 protein mediates ESCRT-independent membrane scission. Cell 142, 902–913 (2010).
Neil, S. & Bieniasz, P. Human immunodeficiency virus, restriction factors, and interferon. J. Interferon Cytokine Res. 29, 569–580 (2009).
Neil, S. J., Zang, T. & Bieniasz, P. D. Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature 451, 425–430 (2008).
Van Damme, N. et al. The interferon-induced protein BST-2 restricts HIV-1 release and is downregulated from the cell surface by the viral Vpu protein. Cell Host Microbe 3, 245–252 (2008). References 112 and 113 are the first to show that tetherin is the cellular factor responsible for restricting the release of Vpu-defective HIV-1 particles.
Evans, D. T., Serra-Moreno, R., Singh, R. K. & Guatelli, J. C. BST-2/tetherin: a new component of the innate immune response to enveloped viruses. Trends Microbiol. 18, 388–396 (2010).
Neil, S. J., Eastman, S. W., Jouvenet, N. & Bieniasz, P. D. HIV-1 Vpu promotes release and prevents endocytosis of nascent retrovirus particles from the plasma membrane. PLoS Pathog. 2, e39 (2006).
Neil, S. J., Sandrin, V., Sundquist, W. I. & Bieniasz, P. D. An interferon-a-induced tethering mechanism inhibits HIV-1 and Ebola virus particle release but is counteracted by the HIV-1 Vpu protein. Cell Host Microbe 2, 193–203 (2007). References 115 and 116 demonstrate that, in the absence of Vpu, HIV-1 particles are retained by a protease-dependent tether on the plasma membrane and are subsequently endocytosed.
Perez-Caballero, D. et al. Tetherin inhibits HIV-1 release by directly tethering virions to cells. Cell 139, 499–511 (2009). This investigation provides comprehensive biochemical evidence for tetherin directly crosslinking cellular and viral membranes.
Hinz, A. et al. Structural basis of HIV-1 tethering to membranes by the BST-2/tetherin ectodomain. Cell Host Microbe 7, 314–323 (2010).
Schubert, H. L. et al. Structural and functional studies on the extracellular domain of BST2/tetherin in reduced and oxidized conformations. Proc. Natl Acad. Sci. USA 107, 17951–17956 (2010).
Yang, H. et al. Structural insight into the mechanisms of enveloped virus tethering by tetherin. Proc. Natl Acad. Sci. USA 107, 18428–18432 (2010). References 118–120 document the crystal structure of the extracellular domain of tetherin.
Rollason, R., Korolchuk, V., Hamilton, C., Schu, P. & Banting, G. Clathrin-mediated endocytosis of a lipid-raft-associated protein is mediated through a dual tyrosine motif. J. Cell Sci. 120, 3850–3858 (2007).
Rollason, R., Korolchuk, V., Hamilton, C., Jepson, M. & Banting, G. A CD317/tetherin-RICH2 complex plays a critical role in the organization of the subapical actin cytoskeleton in polarized epithelial cells. J. Cell Biol. 184, 721–736 (2009).
Fitzpatrick, K. et al. Direct restriction of virus release and incorporation of the interferon-induced protein BST-2 into HIV-1 particles. PLoS Pathog. 6, e1000701 (2010).
Hammonds, J., Wang, J. J., Yi, H. & Spearman, P. Immunoelectron microscopic evidence for tetherin/BST2 as the physical bridge between HIV-1 virions and the plasma membrane. PLoS Pathog. 6, e1000749 (2010).
Habermann, A. et al. CD317/tetherin is enriched in the HIV-1 envelope and downregulated from the plasma membrane upon virus infection. J. Virol. 84, 4646–4658 (2010).
Andrew, A. J., Miyagi, E., Kao, S. & Strebel, K. The formation of cysteine-linked dimers of BST-2/tetherin is important for inhibition of HIV-1 virus release but not for sensitivity to Vpu. Retrovirology 6, 80 (2009).
Cao, W. et al. Regulation of TLR7/9 responses in plasmacytoid dendritic cells by BST2 and ILT7 receptor interaction. J. Exp. Med. 206, 1603–1614 (2009).
Miyakawa, K. et al. BCA2/Rabring7 promotes tetherin-dependent HIV-1 restriction. PLoS Pathog. 5, e1000700 (2009).
Jouvenet, N. et al. Broad-spectrum inhibition of retroviral and filoviral particle release by tetherin. J. Virol. 83, 1837–1844 (2009).
Yondola, M. A. et al. The budding capability of the influenza virus neuraminidase can be modulated by tetherin. J. Virol. 85, 2480–2491 (2011).
Douglas, J. L. et al. The great escape: viral strategies to counter BST-2/tetherin. PLoS Pathog. 6, e1000913 (2010).
Dube, M., Bego, M. G., Paquay, C. & Cohen, E. A. Modulation of HIV-1-host interaction: role of the Vpu accessory protein. Retrovirology 7, 114 (2010).
Gupta, R. K. et al. Mutation of a single residue renders human tetherin resistant to HIV-1 Vpu-mediated depletion. PLoS Pathog. 5, e1000443 (2009).
McNatt, M. W. et al. Species-specific activity of HIV-1 Vpu and positive selection of tetherin transmembrane domain variants. PLoS Pathog. 5, e1000300 (2009).
Dube, M. et al. Antagonism of tetherin restriction of HIV-1 release by Vpu involves binding and sequestration of the restriction factor in a perinuclear compartment. PLoS Pathog. 6, e1000856 (2010).
Iwabu, Y. et al. HIV-1 accessory protein Vpu internalizes cell-surface BST-2/tetherin through transmembrane interactions leading to lysosomes. J. Biol. Chem. 284, 35060–35072 (2009).
Vigan, R. & Neil, S. J. Determinants of tetherin antagonism in the transmembrane domain of the human immunodeficiency virus type 1 Vpu protein. J. Virol. 84, 12958–12970 (2010).
Kobayashi, T. et al. Identification of amino acids in the human tetherin transmembrane domain responsible for HIV-1 Vpu interaction and susceptibility. J. Virol. 85, 932–945 (2011).
Douglas, J. L. et al. Vpu directs the degradation of the human immunodeficiency virus restriction factor BST-2/Tetherin via a βTrCP-dependent mechanism. J. Virol. 83, 7931–7947 (2009).
Mitchell, R. S. et al. Vpu antagonizes BST-2-mediated restriction of HIV-1 release via b-TrCP and endo-lysosomal trafficking. PLoS Pathog. 5, e1000450 (2009).
Goffinet, C. et al. HIV-1 antagonism of CD317 is species specific and involves Vpu-mediated proteasomal degradation of the restriction factor. Cell Host Microbe 5, 285–297 (2009).
Mangeat, B. et al. HIV-1 Vpu neutralizes the antiviral factor Tetherin/BST-2 by binding it and directing its beta-TrCP2-dependent degradation. PLoS Pathog. 5, e1000574 (2009).
Janvier, K. et al. The ESCRT-0 component HRS is required for HIV-1 Vpu-mediated BST-2/tetherin down-regulation. PLoS Pathog. 7, e1001265 (2011).
Dube, M. et al. Suppression of tetherin-restricting activity upon human immunodeficiency virus type 1 particle release correlates with localization of Vpu in the trans-Golgi network. J. Virol. 83, 4574–4590 (2009).
Pardieu, C. et al. The RING-CH ligase K5 antagonizes restriction of KSHV and HIV-1 particle release by mediating ubiquitin-dependent endosomal degradation of tetherin. PLoS Pathog. 6, e1000843 (2010).
Tokarev, A. A., Munguia, J. & Guatelli, J. C. Serine-threonine ubiquitination mediates downregulation of BST-2/tetherin and relief of restricted virion release by HIV-1 Vpu. J. Virol. 85, 51–63 (2011).
Goffinet, C. et al. Antagonism of CD317 restriction of human immunodeficiency virus type 1 (HIV-1) particle release and depletion of CD317 are separable activities of HIV-1 Vpu. J. Virol. 84, 4089–4094 (2010).
Miyagi, E., Andrew, A. J., Kao, S. & Strebel, K. Vpu enhances HIV-1 virus release in the absence of Bst-2 cell surface down-modulation and intracellular depletion. Proc. Natl Acad. Sci. USA 106, 2868–2873 (2009).
Sauter, D. et al. Tetherin-driven adaptation of Vpu and Nef function and the evolution of pandemic and nonpandemic HIV-1 strains. Cell Host Microbe 6, 409–421 (2009). This study shows that the ability of Vpu to target both tetherin and CD4 is associated only with HIV-1 group M, and the authors suggest that this attribute may have been essential for pandemic spread.
Jia, B. et al. Species-specific activity of SIV Nef and HIV-1 Vpu in overcoming restriction by tetherin/BST2. PLoS Pathog. 5, e1000429 (2009).
Zhang, F. et al. Nef proteins from simian immunodeficiency viruses are tetherin antagonists. Cell Host Microbe 6, 54–67 (2009). References 150 and 151 demonstrate that the Nef proteins of SIVs target primate tetherin.
Gupta, R. K. et al. Simian immunodeficiency virus envelope glycoprotein counteracts tetherin/BST-2/CD317 by intracellular sequestration. Proc. Natl Acad. Sci. USA 106, 20889–20894 (2009).
Le Tortorec, A. & Neil, S. J. Antagonism to and intracellular sequestration of human tetherin by the human immunodeficiency virus type 2 envelope glycoprotein. J. Virol. 83, 11966–11978 (2009).
Serra-Moreno, R., Jia, B., Breed, M., Alvarez, X. & Evans, D. T. Compensatory changes in the cytoplasmic tail of gp41 confer resistance to tetherin/BST-2 in a pathogenic Nef-deleted SIV. Cell Host Microbe 9, 46–57 (2011).
Lim, E. S., Malik, H. S. & Emerman, M. Ancient adaptive evolution of tetherin shaped the functions of Vpu and Nef in human immunodeficiency virus and primate lentiviruses. J. Virol. 84, 7124–7134 (2010).
Liu, J., Chen, K., Wang, J. H. & Zhang, C. Molecular evolution of the primate antiviral restriction factor tetherin. PLoS ONE 5, e11904 (2010).
Gummuluru, S., Kinsey, C. M. & Emerman, M. An in vitro rapid-turnover assay for human immunodeficiency virus type 1 replication selects for cell-to-cell spread of virus. J. Virol. 74, 10882–10891 (2000).
Casartelli, N. et al. Tetherin restricts productive HIV-1 cell-to-cell transmission. PLoS Pathog. 6, e1000955 (2010).
Jolly, C., Booth, N. J. & Neil, S. J. Cell-cell spread of human immunodeficiency virus type 1 overcomes tetherin/BST-2-mediated restriction in T cells. J. Virol. 84, 12185–12199 (2010).
Kuhl, B. D. et al. Tetherin restricts direct cell-to-cell infection of HIV-1. Retrovirology 7, 115 (2010).
Okumura, A., Lu, G., Pitha-Rowe, I. & Pitha, P. M. Innate antiviral response targets HIV-1 release by the induction of ubiquitin-like protein ISG15. Proc. Natl Acad. Sci. USA 103, 1440–1445 (2006).
Pincetic, A., Kuang, Z., Seo, E. J. & Leis, J. The interferon-induced gene ISG15 blocks retrovirus release from cells late in the budding process. J. Virol. 84, 4725–4736 (2010).
Lippincott-Schwartz, J. & Patterson, G. H. Development and use of fluorescent protein markers in living cells. Science 300, 87–91 (2003).
Groves, J. T., Parthasarathy, R. & Forstner, M. B. Fluorescence imaging of membrane dynamics. Annu. Rev. Biomed. Eng. 10, 311–338 (2008).
Gomez, C. Y. & Hope, T. J. Mobility of human immunodeficiency virus type 1 Pr55Gag in living cells. J. Virol. 80, 8796–806 (2006).
Larson, D. R., Johnson, M. C., Webb, W. W. & Vogt, V. M. Visualization of retrovirus budding with correlated light and electron microscopy. Proc. Natl Acad. Sci. USA 102, 15453–15458 (2005).
Jouvenet, N., Bieniasz, P. D. & Simon, S. M. Imaging the biogenesis of individual HIV-1 virions in live cells. Nature 454, 236–240 (2008). This work uses TIRFM to document the first real-time imaging of single mammalian-virus particles assembling at the plasma membrane.
Ivanchenko, S. et al. Dynamics of HIV-1 assembly and release. PLoS Pathog. 5, e1000652 (2009).
Jouvenet, N., Simon, S. M. & Bieniasz, P. D. Imaging the interaction of HIV-1 genomes and Gag during assembly of individual viral particles. Proc. Natl Acad. Sci. USA 106, 19114–19119 (2009).
Fusco, D. et al. Single mRNA molecules demonstrate probabilistic movement in living mammalian cells. Curr. Biol. 13, 161–167 (2003).
Kemler, I., Meehan, A. & Poeschla, E. M. Live-cell coimaging of the genomic RNAs and Gag proteins of two lentiviruses. J. Virol. 84, 6352–6366 (2010).
Hurley, J. H. & Emr, S. D. The ESCRT complexes: structure and mechanism of a membrane-trafficking network. Annu. Rev. Biophys. Biomol. Struct. 35, 277–298 (2006).
McDonald, B. & Martin-Serrano, J. No strings attached: the ESCRT machinery in viral budding and cytokinesis. J. Cell Sci. 122, 2167–2177 (2009).
Obita, T. et al. Structural basis for selective recognition of ESCRT-III by the AAA ATPase Vps4. Nature 449, 735–739 (2007).
Stuchell-Brereton, M. D. et al. ESCRT-III recognition by VPS4 ATPases. Nature 449, 740–744 (2007).
Zamborlini, A. et al. Release of autoinhibition converts ESCRT-III components into potent inhibitors of HIV-1 budding. Proc. Natl Acad. Sci. USA 103, 19140–19145 (2006). This report provides the first evidence for autoinhibitory mechanisms in ESCRT-III.
Lata, S. et al. Structural basis for autoinhibition of ESCRT-III CHMP3. J. Mol. Biol. 378, 818–827 (2008).
Scott, A. et al. Structural and mechanistic studies of VPS4 proteins. EMBO J. 24, 3658–3669 (2005).
Acknowledgements
We thank N. Sherer, C. Jolly and M. Agromayor for critical reading of this manuscript, and S. Willey for help with some of the figures. We also acknowledge the many important studies from colleagues in the field that we have been unable cite owing to space constraints. J.M.S. is funded by the UK Lister Institute of Preventive Medicine, the European Molecular Biology Organisation (EMBO) Young Investigator Programme, the UK Medical Research Council (grant number G0802777) and the UK Wellcome Trust (grant number WT093056MA). S.J.D.N. is funded by a UK Wellcome Trust Research Career Development Fellowship (grant number WT082274MA) and the UK Medical Research Council (grant number G0801937).
Author information
Authors and Affiliations
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Related links
Glossary
- Virological synapse
-
An organized structure that forms at the junction between the infected cell and the uninfected target cell. This structure facilitates retroviral transfer in the absence of cell-to-cell fusion.
- Cytonemes
-
Thin membranous bridges that connect two cells in the absence of a cytoplasmic connection.
- ESCRT
-
(Endosomal sorting complex required for transport). A conserved cellular machinery for the sorting of ubiquitylated cargo proteins into vesicles that bud away from the cytoplasm, and the subsequent scission of the membrane neck. This machinery is also required for abscission, the last step in cell division. The recruitment of ESCRT proteins through retroviral late-budding domains (L-domains) is essential for viral assembly.
- Vpu
-
A small integral membrane protein that is encoded by HIV-1. Vpu binds to human tetherin and counteracts its antiviral activity.
- Tetherin
-
A mammalian interferon-induced type II membrane protein that inhibits the release of enveloped viral particles from infected cells.
- Gag
-
A polyprotein encoded by all retroviruses that is processed to form the structural components of the mature viral particle.
- Photoactivatable
-
Pertaining to a fluorescent protein: able to increase in fluorescence when excited by 488 nm light.
- Photoconvertible
-
Pertaining to a fluorescent protein: able to change the emission spectrum on exposure to ultraviolet light.
- Total internal reflection fluorescence microscopy
-
A microscopy technique that is based on the selective illumination of the molecules in a thin section near the coverslip. This technique is particularly suitable to the study of events that occur near or at the plasma membrane.
- Fluorescence resonance energy transfer
-
A phenomenon of quantum mechanics that occurs when a pair of donor and acceptor fluorophores are less than 10 nm from each other, allowing excitation of the acceptor by emission from the donor.
- Fluorescence recovery after photobleaching
-
A technique that consists of photobleaching fluorescent molecules in a defined region of the cell, followed by assessing the recovery of fluorescence in this region. The results provide diffusion coefficients of the fluorescent protein as an indication of its mobility.
- Virus-like particles
-
Non-infectious viral particles that lack viral genetic material.
- Electron tomography
-
An experimental strategy that is based on electron microscopy and allows three-dimensional reconstruction of biological samples.
- Tetraspanins
-
A large group of structurally related, small membrane proteins that share the capacity to associate with themselves and with transmembrane receptors. They control viral infections and several cellular processes, including migration, cell-to-cell fusion and signalling.
- Uropods
-
Cytoplasmic protrusions at the rear of a polarized cell. In activated T cells, uropods are enriched for cell adhesion molecules.
- NEDD4-like HECT ubiquitin ligases
-
A family of E3 ubiquitin ligases that contain WW domains which bind to PPXY-dependent late-budding domains (L-domains) and are required for recruitment of the ESCRT machinery.
- siRNA
-
(Small interfering RNA). A double-stranded, short RNA molecule that induces RNA interference and silencing of a target mRNA.
- HIV-1 group M
-
The major phylogenetic group of HIV-1 that resulted in the HIV/AIDS pandemic. This group was originally derived from a zoonotic transfer of simian immunodeficiency virus from chimpanzees (SIVcpz) to a human. HIV-1 groups N, O and P represent separate zoonotic events, and the spread of these viruses is geographically limited.
Rights and permissions
About this article
Cite this article
Martin-Serrano, J., Neil, S. Host factors involved in retroviral budding and release. Nat Rev Microbiol 9, 519–531 (2011). https://doi.org/10.1038/nrmicro2596
Published:
Issue Date:
DOI: https://doi.org/10.1038/nrmicro2596