Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The spectrum of latent tuberculosis: rethinking the biology and intervention strategies

Key Points

  • Latent tuberculosis is defined by the presence of an antigen-specific T cell response in the absence of clinical symptoms. It includes conditions ranging from clearance of the pathogen, maintenance of quiescent infected foci to active subclinical disease, and can be viewed as part of a spectrum of outcomes to infection with Mycobacterium tuberculosis.

  • The pathogenesis of tuberculosis depends on localized granulomatous responses. Different types of granuloma can promote bacterial killing, persistence or replication.

  • Live imaging by positron emission tomography and computed tomography in humans and non-human primates provides powerful new opportunities to analyse tuberculosis lesions in terms of spatial distribution and dynamic behaviour in the presence and absence of drugs.

  • Different granulomas provide different microenvironments that can support heterogeneous subpopulations of bacteria differing in phenotypic adaptation and drug susceptibility. Systems biology approaches will be important in the molecular characterization of the microenvironment within lesions and the corresponding bacterial physiology.

  • Drug strategies based on simple inhibition of individual enzyme targets have proved largely ineffective for the discovery of novel antimicrobials. An improved understanding of actual bactericidal mechanisms will be important in rational targeting of new drugs against persistent bacterial phenotypes.

  • In addition to the development of drugs that are customized against different subpopulations of bacteria, the use of preventive therapy as an intervention for the control of global tuberculosis will benefit from further definition of the spectrum of latent disease. Imaging profiles and biomarkers will assist in clinical trials of new drugs and in the identification of individuals at highest risk disease progression.

Abstract

Immunological tests provide evidence of latent tuberculosis in one third of the global population, which corresponds to more than two billion individuals. Latent tuberculosis is defined by the absence of clinical symptoms but carries a risk of subsequent progression to clinical disease, particularly in the context of co-infection with HIV. In this Review we discuss the biology of latent tuberculosis as part of a broad range of responses that occur following infection with Mycobacterium tuberculosis, which result in the formation of physiologically distinct granulomatous lesions that provide microenvironments with differential ability to support or suppress the persistence of viable bacteria. We then show how this model can be used to develop a rational programme to discover effective drugs for the eradication of M. tuberculosis infection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tuberculosis infection as a spectrum.
Figure 2: Positron emission tomography and computed tomography imaging.
Figure 3: Tuberculous granulomas.
Figure 4: A systems biology approach to the pathology of tuberculosis.
Figure 5: A lesion-based framework for the study of latent tuberculosis and drug development.

Similar content being viewed by others

References

  1. Comstock, G. W., Baum, C. & Snider, D. E. Jr. Isoniazid prophylaxis among Alaskan Eskimos: a final report of the bethel isoniazid studies. Am. Rev. Respir. Dis. 119, 827–830 (1979).

    CAS  PubMed  Google Scholar 

  2. Dye, C. & Williams, B. G. Eliminating human tuberculosis in the twenty-first century. J. R. Soc. Interface 5, 653–662 (2008).

    Article  PubMed  Google Scholar 

  3. Stead, W. W. Management of health care workers after inadvertent exposure to tuberculosis: a guide for the use of preventive therapy. Ann. Intern. Med. 122, 906–912 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Pai, M., Zwerling, A. & Menzies, D. Systematic review: T-cell-based assays for the diagnosis of latent tuberculosis infection: an update. Ann. Intern. Med. 149, 177–184 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Young, D. B., Gideon, H. P. & Wilkinson, R. J. Eliminating latent tuberculosis. Trends Microbiol. 17, 193–188 (2009).

    Article  CAS  Google Scholar 

  6. Mtei, L. et al. High rates of clinical and subclinical tuberculosis among HIV-infected ambulatory subjects in Tanzania. Clin. Infect. Dis. 40, 1500–1507 (2005).

    Article  PubMed  Google Scholar 

  7. Vandiviere, H. M., Loring, W. E., Melvin, I. & Willis, S. The treated pulmonary lesion and its tubercle bacillus. II. The death and resurrection. Am. J. Med. Sci. 232, 30–37 (1956).

    Article  CAS  PubMed  Google Scholar 

  8. Capuano, S. V. 3rd et al. Experimental Mycobacterium tuberculosis infection of cynomolgus macaques closely resembles the various manifestations of human M. tuberculosis infection. Infect. Immun. 71, 5831–5844 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lin, P. L. et al. Early events in Mycobacterium tuberculosis infection in cynomolgus macaques. Infect. Immun. 74, 3790–3803 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Goo, J. M. et al. Pulmonary tuberculoma evaluated by means of FDG PET: findings in 10 cases. Radiology 216, 117–121 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Hara, T., Kosaka, N., Suzuki, T., Kudo, K. & Niino, H. Uptake rates of 18F-fluorodeoxyglucose and 11C-choline in lung cancer and pulmonary tuberculosis: a positron emission tomography study. Chest 124, 893–901 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Yang, C. M., Hsu, C. H., Lee, C. M. & Wang, F. C. Intense uptake of [F-18]-fluoro-2 deoxy-D-glucose in active pulmonary tuberculosis. Ann. Nucl. Med. 17, 407–410 (2003).

    Article  PubMed  Google Scholar 

  13. Park, I. N., Ryu, J. S. & Shim, T. S. Evaluation of therapeutic response of tuberculoma using F-18 FDG positron emission tomography. Clin. Nucl. Med. 33, 1–3 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Canetti, G., Parrot, R., Porven, G. & Le Lirzin, M. Rifamycin levels in the lung and tuberculous lesions in man. Acta Tuberc. Pneumol. Belg. 60, 315–322 (1969).

    CAS  PubMed  Google Scholar 

  15. Kislitsyna, N. A. Comparative evaluation of rifampicin and isoniazid penetration into the pathological foci of the lungs in tuberculosis patients. Probl. Tuberk. 55–57 (1985).

  16. Kislitsyna, N. A. & Kotova, N. I. Rifampicin and isoniazid concentration in the blood and resected lungs in tuberculosis with combined use of the preparations. Probl. Tuberk 8, 63–65 (1980).

    Google Scholar 

  17. Sauermann, R. et al. Antibiotic abscess penetration: fosfomycin levels measured in pus and simulated concentration-time profiles. Antimicrob. Agents Chemother. 49, 4448–4454 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wagner, C., Sauermann, R. & Joukhadar, C. Principles of antibiotic penetration into abscess fluid. Pharmacology 78, 1–10 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Cotran, R. S., Kumar, V. & Robbins, S. L. in Pathologic Basis of Disease (ed. Company, W. B. S.) (Saunders, Philadelphia, 1989).

    Google Scholar 

  20. Dannenberg, A. M. Jr in Pathogenesis of Human Pulmonary Tuberculosis 36–64 (ASM, Washington D. C., 2006). A comprehensive review of five decades of literature on the pathogenesis of tuberculosis in humans and in the rabbit model, including comparisons with other animal models.

    Book  Google Scholar 

  21. Via, L. E. et al. Tuberculous granulomas are hypoxic in guinea pigs, rabbits, and nonhuman primates. Infect. Immun. 76, 2333–2340 (2008). A conclusive demonstration that hypoxia is a relevant phenotype in several non-mouse animal models of TB.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rhoades, E. R., Frank, A. A. & Orme, I. M. Progression of chronic pulmonary tuberculosis in mice aerogenically infected with virulent Mycobacterium tuberculosis. Tuber Lung Dis. 78, 57–66 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Radaeva, T. V., Nikonenko, B. V., Mischenko, V. V., Averbakh, M. M. Jr & Apt, A. S. Direct comparison of low-dose and Cornell-like models of chronic and reactivation tuberculosis in genetically susceptible I/St and resistant B6 mice. Tuberculosis (Edinb.) 85, 65–72 (2005).

    Article  CAS  Google Scholar 

  24. Sissons, J. et al. Multigenic control of tuberculosis resistance: analysis of a QTL on mouse chromosome 7 and its synergism with sst1. Genes Immun. 10, 37–46 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Manabe, Y. C. et al. The aerosol rabbit model of TB latency, reactivation and immune reconstitution inflammatory syndrome. Tuberculosis (Edinb.) 88, 187–196 (2008).

    Article  CAS  Google Scholar 

  26. Kesavan, A. K., Brooks, M., Tufariello, J., Chan, J. & Manabe, Y. C. Tuberculosis genes expressed during persistence and reactivation in the resistant rabbit model. Tuberculosis (Edinb.) 89, 17–21 (2009).

    Article  CAS  Google Scholar 

  27. Tsenova, L. et al. Virulence of selected Mycobacterium tuberculosis clinical isolates in the rabbit model of meningitis is dependent on phenolic glycolipid produced by the bacilli. J. Infect. Dis. 192, 98–106 (2005).

    Article  PubMed  Google Scholar 

  28. Gandotra, S., Schnappinger, D., Monteleone, M., Hillen, W. & Ehrt, S. In vivo gene silencing identifies the Mycobacterium tuberculosis proteasome as essential for the bacteria to persist in mice. Nature Med. 13, 1515–1520 (2007). Demonstration of the use of conditional gene expression systems to study mycobacterial pathogenesis.

    Article  CAS  PubMed  Google Scholar 

  29. Sonnenberg, P. et al. How soon after infection with HIV does the risk of tuberculosis start to increase? A retrospective cohort study in South African gold miners. J. Infect. Dis. 191, 150–158 (2005).

    Article  PubMed  Google Scholar 

  30. Keane, J. et al. Tuberculosis associated with infliximab, a tumor necrosis factor α-neutralizing agent. N. Engl. J. Med. 345, 1098–1104 (2001). The first demonstration that suppressing TNF levels correlates with reactivation of latent TB, the implication being that there is a delicate balance between immune function and the development of disease.

    Article  CAS  PubMed  Google Scholar 

  31. Marino, S. et al. Differences in reactivation of tuberculosis induced from anti-TNF treatments are based on bioavailability in granulomatous tissue. PLoS Comput. Biol. 3, 1909–1924 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Sud, D., Bigbee, C., Flynn, J. L. & Kirschner, D. E. Contribution of CD8+ T cells to control of Mycobacterium tuberculosis infection. J. Immunol. 176, 4296–4314 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Ray, J. C., Flynn, J. L. & Kirschner, D. E. Synergy between individual TNF-dependent functions determines granuloma performance for controlling Mycobacterium tuberculosis infection. J. Immunol. 182, 3706–3717 (2009). Illustrates the use of modelling to understand the complex dynamics of tuberculous granulomas.

    Article  CAS  PubMed  Google Scholar 

  34. Timm, J. et al. Differential expression of iron-, carbon-, and oxygen-responsive mycobacterial genes in the lungs of chronically infected mice and tuberculosis patients. Proc. Natl Acad. Sci. USA 100, 14321–14326 (2003). This is the first study to attempt to relate the transcriptional responses in humans to conditions relevant to disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fenhalls, G. et al. In situ detection of Mycobacterium tuberculosis transcripts in human lung granulomas reveals differential gene expression in necrotic lesions. Infect. Immun. 70, 6330–6338 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Xie, Z., Siddiqi, N. & Rubin, E. J. Differential antibiotic susceptibilities of starved Mycobacterium tuberculosis isolates. Antimicrob. Agents Chemother. 49, 4778–4780 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Paramasivan, C. N., Sulochana, S., Kubendiran, G., Venkatesan, P. & Mitchison, D. A. Bactericidal action of gatifloxacin, rifampin, and isoniazid on logarithmic- and stationary-phase cultures of Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 49, 627–631 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Herbert, D. et al. Bactericidal action of ofloxacin, sulbactam-ampicillin, rifampin, and isoniazid on logarithmic- and stationary-phase cultures of Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 40, 2296–2299 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wayne, L. G. & Sramek, H. A. Metronidazole is bactericidal to dormant cells of Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 38, 2054–2058 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Schnappinger, D. et al. Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: insights into the phagosomal environment. J. Exp. Med. 198, 693–704 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rohde, K. H., Abramovitch, R. B. & Russell, D. G. Mycobacterium tuberculosis invasion of macrophages: linking bacterial gene expression to environmental cues. Cell Host Microbe 2, 352–364 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Tailleux, L. et al. Probing host pathogen cross-talk by transcriptional profiling of both Mycobacterium tuberculosis and infected human dendritic cells and macrophages. PLoS ONE 3, e1403 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Talaat, A. M. et al. Mycobacterial bacilli are metabolically active during chronic tuberculosis in murine lungs: insights from genome-wide transcriptional profiling. J. Bacteriol. 189, 4265–4274 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Voskuil, M. I. et al. Inhibition of respiration by nitric oxide induces a Mycobacterium tuberculosis dormancy program. J. Exp. Med. 198, 705–713 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rodriguez, G. M., Voskuil, M. I., Gold, B., Schoolnik, G. K. & Smith, I. ideR, an essential gene in Mycobacterium tuberculosis: role of IdeR in iron-dependent gene expression, iron metabolism, and oxidative stress response. Infect. Immun. 70, 3371–3381 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fisher, M. A., Plikaytis, B. B. & Shinnick, T. M. Microarray analysis of the Mycobacterium tuberculosis transcriptional response to the acidic conditions found in phagosomes. J. Bacteriol. 184, 4025–4032 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rustad, T. R., Harrell, M. I., Liao, R. & Sherman, D. R. The enduring hypoxic response of Mycobacterium tuberculosis. PLoS ONE 3, e1502 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Converse, P. J. et al. Role of the dosR-dosS two-component regulatory system in Mycobacterium tuberculosis virulence in three animal models. Infect. Immun. 77, 1230–1237 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Malhotra, V. et al. Disruption of response regulator gene, devR, leads to attenuation in virulence of Mycobacterium tuberculosis. FEMS Microbiol. Lett. 231, 237–245 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Dahl, J. L. et al. The relA homolog of Mycobacterium smegmatis affects cell appearance, viability, and gene expression. J. Bacteriol. 187, 2439–2447 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. McKinney, J. D. et al. Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature 406, 735–738 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Munoz-Elias, E. J., Upton, A. M., Cherian, J. & McKinney, J. D. Role of the methylcitrate cycle in Mycobacterium tuberculosis metabolism, intracellular growth, and virulence. Mol. Microbiol 60, 1109–1122 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Rachman, H. et al. Unique transcriptome signature of Mycobacterium tuberculosis in pulmonary tuberculosis. Infect. Immun. 74, 1233–1242 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Garton, N. J. et al. Cytological and transcript analyses reveal fat and lazy persister-like bacilli in tuberculous sputum. PLoS Med. 5, e75 (2008). This work raises new questions about the metabolic consequences of activation of the dormancy regulon in M. tuberculosis and the presence of lipid bodies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Boshoff, H. I. et al. Biosynthesis and recycling of nicotinamide cofactors in Mycobacterium tuberculosis. An essential role for NAD in nonreplicating bacilli. J. Biol. Chem. 283, 19329–19341 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sassetti, C. M. & Rubin, E. J. Genetic requirements for mycobacterial survival during infection. Proc. Natl Acad. Sci. USA 100, 12989–12994 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Beste, D. J. et al. GSMN-TB: a web-based genome-scale network model of Mycobacterium tuberculosis metabolism. Genome Biol. 8, R89 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Raman, K., Rajagopalan, P. & Chandra, N. Flux balance analysis of mycolic acid pathway: targets for anti-tubercular drugs. PLoS Comput. Biol. 1, e46 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bloch, H. & Segal, W. Biochemical differentiation of Mycobacterium tuberculosis grown in vivo and in vitro. J. Bacteriol. 72, 132–141 (1956).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Segal, W. & Bloch, H. Pathogenic and immunogenic differentiation of Mycobacterium tuberculosis grown in vitro and in vivo. Am. Rev. Tuberc. 75, 495–500 (1957).

    CAS  PubMed  Google Scholar 

  61. Lange, R. P., Locher, H. H., Wyss, P. C. & Then, R. L. The targets of currently used antibacterial agents: lessons for drug discovery. Curr. Pharm. Des 13, 3140–3154 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Walsh, C. in Antibiotics: Actions, Origins, Resistance 11–88 (ASM, Washington, D. C., 2003).

    Book  Google Scholar 

  63. Kohanski, M. A., Dwyer, D. J., Wierzbowski, J., Cottarel, G. & Collins, J. J. Mistranslation of membrane proteins and two-component system activation trigger antibiotic-mediated cell death. Cell 135, 679–690 (2008). A must-read illustration of the complexities of the mechanism by which antibiotics cause bacteria to die.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kohanski, M. A., Dwyer, D. J., Hayete, B., Lawrence, C. A. & Collins, J. J. A common mechanism of cellular death induced by bactericidal antibiotics. Cell 130, 797–810 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Singh, R. et al. PA-824 kills nonreplicating Mycobacterium tuberculosis by intracellular NO release. Science 322, 1392–1395 (2008). Identification of new mycobactericidal mechanism under anaerobic conditions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Rao, S. P., Alonso, S., Rand, L., Dick, T. & Pethe, K. The protonmotive force is required for maintaining ATP homeostasis and viability of hypoxic, nonreplicating Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA 105, 11945–11950 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Dhar, N. & McKinney, J. D. Microbial phenotypic heterogeneity and antibiotic tolerance. Curr. Opin. Microbiol. 10, 30–38 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Brehm-Stecher, B. F. & Johnson, E. A. Single-cell microbiology: tools, technologies, and applications. Microbiol. Mol. Biol. Rev. 68, 538–559 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Payne, D. J., Gwynn, M. N., Holmes, D. J. & Pompliano, D. L. Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nature Rev. Drug Discov. 6, 29–40 (2007). A review that describes many of the challenges complicating antibacterial drug development.

    Article  CAS  Google Scholar 

  70. Silver, L. L. Multi-targeting by monotherapeutic antibacterials. Nature Rev. Drug Discov. 6, 41–55 (2007).

    Article  CAS  Google Scholar 

  71. Manjunatha, U. H. et al. Identification of a nitroimidazo-oxazine-specific protein involved in PA-824 resistance in Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA 103, 431–436 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Andries, K. et al. A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science 307, 223–227 (2005). First report of a promising new antimycobacterial agent with activity against replicating and non-replicating cultures.

    Article  CAS  PubMed  Google Scholar 

  73. Terstappen, G. C., Schlupen, C., Raggiaschi, R. & Gaviraghi, G. Target deconvolution strategies in drug discovery. Nature Rev. Drug Discov. 6, 891–903 (2007).

    Article  CAS  Google Scholar 

  74. Boshoff, H. I. et al. The transcriptional responses of Mycobacterium tuberculosis to inhibitors of metabolism: novel insights into drug mechanisms of action. J. Biol. Chem. 279, 40174–40184 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Dartois V., Leong, F. J. & Dick, T. in Antiparasitic and Antibacterial Drug Discovery: From Molecular Targets to Drug Candidates. (ed. Seltzer, P. M.) 415–440 (Wiley-VCH, Weinheim, 2009).

    Book  Google Scholar 

  76. Ciulli, A. & Abell, C. Fragment-based approaches to enzyme inhibition. Curr. Opin. Biotechnol. 18, 489–496 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Nikaido, H. & Jarlier, V. Permeability of the mycobacterial cell wall. Res. Microbiol 142, 437–443 (1991).

    Article  CAS  PubMed  Google Scholar 

  78. Liu, J., Barry, C. E. 3rd, Besra, G. S. & Nikaido, H. Mycolic acid structure determines the fluidity of the mycobacterial cell wall. J. Biol. Chem. 271, 29545–29551 (1996).

    Article  CAS  PubMed  Google Scholar 

  79. Faller, M., Niederweis, M. & Schulz, G. E. The structure of a mycobacterial outer-membrane channel. Science 303, 1189–1192 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Sassetti, C. M., Boyd, D. H. & Rubin, E. J. Genes required for mycobacterial growth defined by high density mutagenesis. Mol. Microbiol. 48, 77–84 (2003).

    Article  CAS  PubMed  Google Scholar 

  81. Pichota, A. et al. Peptide deformylase inhibitors of Mycobacterium tuberculosis: synthesis, structural investigations, and biological results. Bioorg. Med. Chem. Lett. 18, 6568–6572 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. Klotzsche, M., Ehrt, S. & Schnappinger, D. Improved tetracycline repressors for gene silencing in mycobacteria. Nucleic Acids Res. 37, 1778–1788 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ferebee, S. H. & Mount, F. W. Tuberculosis morbidity in a controlled trial of the prophylactic use of isoniazid among household contacts. Am. Rev. Respir. Dis. 85, 490–510 (1962).

    CAS  PubMed  Google Scholar 

  84. Ferebee, S. H., Mount, F. W., Murray, F. J. & Livesay, V. T. A controlled trial of isoniazid prophylaxis in mental institutions. Am. Rev. Respir. Dis. 88, 161–175 (1963).

    CAS  PubMed  Google Scholar 

  85. Wallis, R. S. et al. Biomarkers for tuberculosis disease activity, cure, and relapse. Lancet Infect. Dis. 9, 162–172 (2009).

    Article  CAS  PubMed  Google Scholar 

  86. Ewer, K. et al. Dynamic antigen-specific T-cell responses after point-source exposure to Mycobacterium tuberculosis. Am. J. Respir. Crit. Care Med. 174, 831–839 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Goletti, D. et al. Isoniazid prophylaxis differently modulates T-cell responses to RD1-epitopes in contacts recently exposed to Mycobacterium tuberculosis: a pilot study. Respir. Res. 8, 5 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wilkinson, K. A. et al. Effect of treatment of latent tuberculosis infection on the T cell response to Mycobacterium tuberculosis antigens. J. Infect. Dis. 193, 354–359 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Higuchi, K., Harada, N. & Mori, T. Interferon-γ responses after isoniazid chemotherapy for latent tuberculosis. Respirology 13, 468–472 (2008).

    Article  PubMed  Google Scholar 

  90. Veening, G. J. Long term isoniazid prophylaxis. Controlled trial on INH prophylaxis after recent tuberculin conversion in young adults. Bull. Int. Union Tuberc. 41, 169–171 (1968).

    CAS  PubMed  Google Scholar 

  91. Comstock, G. W. & Woolpert, S. F. in The Mycobacteria: A Sourcebook (eds Kubica, G. P. & Wayne, L. G.) 1071–1082 (Marcel Dekker, New York, 1984).

    Google Scholar 

  92. Lin, P. L. et al. Quantitative comparison of active and latent tuberculosis in the cynomolgus macaque model. Infect Immun. 77, 4631–4642 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to colleagues in the Grand Challenges in Global Health project “Drugs for Treatment of Latent Tuberculosis” for stimulating discussion and to the Bill and Melinda Gates Foundation and the Wellcome Trust for financial support. This work was also funded (in part) by the Intramural Research Program of the National Institutes of Health (NIH), National Institute of Allergy and Infectious Diseases (NIAID) and by NIH RO1 HL075845 (J.L.F.). We also thank our Novartis colleagues in Singapore, Basel, Cambridge and La Jolla for discussions and collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas Young.

Related links

Glossary

Tuberculin skin test

A method of diagnosing Mycobacterium tuberculosis infection by injecting tuberculosis antigens intradermally. A delayed type hypersensitivity response, dependent on the presence of sensitized T cells, is seen in those infected with M. tuberculosis. This does not distinguish latent infection from active tuberculosis.

Purified protein derivative

A precipitate of non-specific molecules from sterilized and filtered cultures of Mycobacterium tuberculosis.

Computed tomography

An imaging technique in which X-ray scans of a subject are compiled to generate a three-dimensional picture of various organs and structures (including brain and lungs).

Positron emission tomography

A nuclear medicine imaging technique using a positron-emitting probe that produces a three-dimensional image of biological processes within the scanned subject.

Granuloma

An organized structure comprising lymphocytes, macrophages, neutrophils and sometimes fibroblasts that often has a necrotic centre, which arises in response to continued antigenic stimulation in the presence of macrophages, for example in response to Mycobacterium tuberculosis infection.

Hypoxia

Low levels of oxygen in tissues.

Paucibacillary

Containing just a few bacilli, as is the case with granulomas that are caused by various mycobacterial diseases.

Caseation

Necrotic degeneration of bodily tissue into a soft crumbly cheese-like mass, where cellular outline is lost. In tuberculosis, this refers to the necrotic centre of a granuloma and is mainly driven by the immune response and is typical of tuberculosis pathogenesis.

Hypoxic response

Changes in gene expression induced by the incubation of Mycobacterium tuberculosis under anaerobic conditions. This comprises an initial transient response (by the DosR hypoxia regulon) followed by the enduring hypoxic response involving expression of a set of 230 genes.

Hypoxia regulon

A cluster of 48 genes that are controlled by the transcriptional regulator DosR, which is upregulated in response to hypoxia but also during exposure to nitric oxide, carbon monoxide, sodium dodecyl sulfate or low pH.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barry, C., Boshoff, H., Dartois, V. et al. The spectrum of latent tuberculosis: rethinking the biology and intervention strategies. Nat Rev Microbiol 7, 845–855 (2009). https://doi.org/10.1038/nrmicro2236

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2236

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing