Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Waves of resistance: Staphylococcus aureus in the antibiotic era

Key Points

  • Staphylococcus aureus is notorious for its ability to become resistant to antibiotics. Antibiotic resistance in this organism has occurred in epidemic waves, beginning with the emergence of strains that were resistant to penicillin and progressing to the present pandemic of community-associated methicillin-resistant S. aureus (CA-MRSA). This article reviews the recent evolutionary history of drug-resistant strains of S. aureus.

  • We discuss the molecular epidemiology of the epidemics of penicillin- and methicillin-resistant strains of S. aureus that have occurred since 1940 and their common features.

  • The evolution of the mobile chromosome cassette element SCCmec, which carries mecA, the gene that determines resistance to methicillin and the entire class of β-lactam antibiotics, is also reviewed.

  • The clinical and molecular epidemiology of CA-MRSA is then discussed, along with the virulence determinants that are present in CA-MRSA strains and the possible genetic basis of the epidemicity and disease severity that is associated with these strains.

  • Finally, we look at antimicrobial therapy in the era of CA-MRSA.

Abstract

Staphylococcus aureus is notorious for its ability to become resistant to antibiotics. Infections that are caused by antibiotic-resistant strains often occur in epidemic waves that are initiated by one or a few successful clones. Methicillin-resistant S. aureus (MRSA) features prominently in these epidemics. Historically associated with hospitals and other health care settings, MRSA has now emerged as a widespread cause of community infections. Community or community-associated MRSA (CA-MRSA) can spread rapidly among healthy individuals. Outbreaks of CA-MRSA infections have been reported worldwide, and CA-MRSA strains are now epidemic in the United States. Here, we review the molecular epidemiology of the epidemic waves of penicillin- and methicillin-resistant strains of S. aureus that have occurred since 1940, with a focus on the clinical and molecular epidemiology of CA-MRSA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The four waves of antibiotic resistance in Staphylococcus aureus.
Figure 2: An example of a multilocus sequence typing scheme and the designation of clonal complexes.
Figure 3: Distribution of antibiotic-susceptible and -resistant Staphylococcus aureus among clonal complexes.
Figure 4: Comparison of the methicillin resistance cassettes that are typical of hospital- or community-acquired methicillin-resistant Staphylococcus aureus.

Similar content being viewed by others

References

  1. Kluytmans, J., van Belkum, A. & Verbrugh, H. Nasal carriage of Staphylococcus aureus: epidemiology, underlying mechanisms, and associated risks. Clin. Microbiol. Rev. 10, 505–520 (1997). Review of S. aureus colonization of humans.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gorwitz, R. J. et al. Changes in the prevalence of nasal colonization with Staphylococcus aureus in the United States, 2001–2004. J. Infect. Dis. 197, 1226–1234 (2008).

    Article  PubMed  Google Scholar 

  3. Miller, L. G. & Diep, B. A. Clinical practice: colonization, fomites, and virulence: rethinking the pathogenesis of community-associated methicillin-resistant Staphylococcus aureus infection. Clin. Infect. Dis. 46, 752–760 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Kazakova, S. V. et al. A clone of methicillin-resistant Staphylococcus aureus among professional football players. N. Engl. J. Med. 352, 468–475 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Lowy, F. D. Staphylococcus aureus infections. N. Engl. J. Med. 339, 520–532 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Muto, C. A. et al. SHEA guideline for preventing nosocomial transmission of multidrug-resistant strains of Staphylococcus aureus and Enterococcus. Infect. Control Hosp. Epidemiol. 24, 362–386 (2003).

    Article  PubMed  Google Scholar 

  7. Grundmann, H., Aires-de-Sousa, M., Boyce, J. & Tiemersma, E. Emergence and resurgence of meticillin-resistant Staphylococcus aureus as a public-health threat. Lancet 368, 874–885 (2006).

    Article  PubMed  Google Scholar 

  8. Kaplan, S. L. et al. Three-year surveillance of community-acquired Staphylococcus aureus infections in children. Clin. Infect. Dis. 40, 1785–1791 (2005).

    Article  PubMed  Google Scholar 

  9. Hersh, A. L., Chambers, H. F., Maselli, J. H. & Gonzales, R. National trends in ambulatory visits and antibiotic prescribing for skin and soft-tissue infections. Arch. Intern. Med. 168, 1585–1591 (2008).

    Article  PubMed  Google Scholar 

  10. Klevens, R. M. et al. Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA 298, 1763–1771 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Hope, R., Livermore, D. M., Brick, G., Lillie, M. & Reynolds, R. Non-susceptibility trends among staphylococci from bacteraemias in the UK and Ireland, 2001–2006. J. Antimicrobiol. Chemother. 62 (Suppl. 2), 65–74 (2008).

    Google Scholar 

  12. Laupland, K. B., Ross, T. & Gregson, D. B. Staphylococcus aureus bloodstream infections: risk factors, outcomes, and the influence of methicillin resistance in Calgary, Canada, 2000–2006. J. Infect. Dis. 198, 336–343 (2008).

    Article  PubMed  Google Scholar 

  13. European Antimicrobial Resistance Surveillance System. Annual Report 2007. (EARSS, Bilthoven, 2008).

  14. Moran, G. J. et al. Methicillin-resistant S. aureus infections among patients in the emergency department. N. Engl. J. Med. 355, 666–674 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Fridkin, S. K. et al. Methicillin-resistant Staphylococcus aureus disease in three communities. N. Engl. J. Med. 352, 1436–1444 (2005). First large study characterizing the outbreak of CA-MRSA that was caused by USA300 in the United States.

    Article  CAS  PubMed  Google Scholar 

  16. Larsen, A., Stegger, M., Goering, R., Sorum, M. & Skov, R. Emergence and dissemination of the methicillin resistant Staphylococcus aureus USA300 clone in Denmark (2000–2005). Euro Surveill. 12, 22–24 (2007).

    Article  Google Scholar 

  17. Larsen, A. R. et al. Epidemiology of European community-associated methicillin-resistant Staphylococcus aureus clonal complex 80 type IV strains isolated in Denmark from 1993 to 2004. J. Clin. Microbiol. 46, 62–68 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Wannet, W. J. et al. Emergence of virulent methicillin-resistant Staphylococcus aureus strains carrying Panton-Valentine leucocidin genes in The Netherlands. J. Clin. Microbiol. 43, 3341–3345 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Deurenberg, R. H. et al. Cross-border dissemination of methicillin-resistant Staphylococcus aureus, Euregio Meuse-Rhin region. Emerg. Infect. Dis. 15, 727–734 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vandenesch, F. et al. Community-acquired methicillin-resistant Staphylococcus aureus carrying Panton-Valentine leukocidin genes: worldwide emergence. Emerg. Infect. Dis. 9, 978–984 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Stam-Bolink, E. M., Mithoe, D., Baas, W. H., Arends, J. P. & Moller, A. V. Spread of a methicillin-resistant Staphylococcus aureus ST80 strain in the community of the northern Netherlands. Eur. J. Clin. Microbiol. Infect. Dis. 26, 723–727 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Huang, Y. C., Hwang, K. P., Chen, P. Y., Chen, C. J. & Lin, T. Y. Prevalence of methicillin-resistant Staphylococcus aureus nasal colonization among Taiwanese children in 2005 and 2006. J. Clin. Microbiol. 45, 3992–3995 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nimmo, G. R. & Coombs, G. W. Community-associated methicillin-resistant Staphylococcus aureus (MRSA) in Australia. Int. J. Antimicrob. Agents 31, 401–410 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Kanerva, M. et al. Community-associated methicillin-resistant Staphylococcus aureus, isolated in Finland in 2004 to 2006. J. Clin. Microbiol. 7, 2655–2657 (2009).

    Article  Google Scholar 

  25. Park, S. H. et al. Emergence of community-associated methicillin-resistant Staphylococcus aureus strains as a cause of healthcare-associated bloodstream infections in Korea. Infect. Control Hosp. Epidemiol. 30, 146–155 (2009).

    Article  PubMed  Google Scholar 

  26. Gardella, N. et al. Community-associated methicillin-resistant Staphylococcus aureus, eastern Argentina. Diagn. Microbiol. Infect. Dis. 62, 343–347 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Francois, P. et al. Methicillin-resistant Staphylococcus aureus, Geneva, Switzerland, 1993–2005. Emerg. Infect. Dis. 14, 304–307 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Fang, H., Hedin, G., Li, G. & Nord, C. E. Genetic diversity of community-associated methicillin-resistant Staphylococcus aureus in southern Stockholm, 2000–2005. Clin. Microbiol. Infect. 14, 370–376 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Conly, J. M. & Johnston, B. L. The emergence of methicillin-resistant Staphylococcus aureus as a community-acquired pathogen in Canada. Can. J. Infect. Dis. 14, 249–251 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Francis, J. S. et al. Severe community-onset pneumonia in healthy adults caused by methicillin-resistant Staphylococcus aureus carrying the Panton-Valentine leukocidin genes. Clin. Infect. Dis. 40, 100–107 (2005).

    Article  PubMed  Google Scholar 

  31. Gonzalez, B. E. et al. Pulmonary manifestations in children with invasive community-acquired Staphylococcus aureus infection. Clin. Infect. Dis. 41, 583–590 (2005).

    Article  PubMed  Google Scholar 

  32. Kallen, A. J. et al. Staphylococcus aureus community-acquired pneumonia during the 2006 to 2007 influenza season. Ann. Emerg. Med. 53, 358–365 (2009).

    Article  PubMed  Google Scholar 

  33. Lina, G. et al. Involvement of Panton-Valentine leukocidin-producing Staphylococcus aureus in primary skin infections and pneumonia. Clin. Infect. Dis. 29, 1128–1132 (1999). Epidemiological study suggesting that PVL is an important virulence factor in severe pneumonia.

    Article  CAS  PubMed  Google Scholar 

  34. Kirby, W. Extraction of a highly potent penicillin inactivator from penicillin resistant staphylococci. Science 99, 452–453 (1944).

    Article  CAS  PubMed  Google Scholar 

  35. Barber, M. & Rozwadowska-Dowzenko, M. Infection by penicillin-resistant staphylococci. Lancet 1, 641–644 (1948).

    Article  Google Scholar 

  36. Roundtree, P. & Freeman, V. Infections caused by a particular phage type of Staphylococcus aureus. Med. J. Aust. 42, 157–161 (1956).

    Google Scholar 

  37. Blair, J. E. & Carr, M. Distribution of phage groups of Staphylococcus aureus in the years 1927 through 1947. Science 132, 1247–1248 (1960).

    Article  CAS  PubMed  Google Scholar 

  38. Bynoe, E. T., Elder, R. H. & Comtois, R. D. Phage-typing and antibiotic-resistance of staphylococci isolated in a general hospital. Can. J. Microbiol. 2, 346–358 (1956).

    Article  CAS  PubMed  Google Scholar 

  39. Roundtree, P. & Beard, M. Further observations on infections with phage type 80 staphylococci in Australia. Med. J. Aust. 2, 789–795 (1958).

    Google Scholar 

  40. Jevons, M. P. & Parker, M. T. The evolution of new hospital strains of Staphylococcus aureus. J. Clin. Pathol. 17, 243–250 (1964).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Barber, M. Methicillin-resistant staphylococci. J. Clin. Pathol. 14, 385–393 (1961).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jevons, M. “Celbenin”-resistant staphylococci. BMJ 1, 124–125 (1961).

    Article  PubMed Central  Google Scholar 

  43. Crisostomo, M. I. et al. The evolution of methicillin resistance in Staphylococcus aureus: similarity of genetic backgrounds in historically early methicillin-susceptible and -resistant isolates and contemporary epidemic clones. Proc. Natl Acad. Sci. USA 98, 9865–9870 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Barrett, F. F., McGehee, R. F. Jr & Finland, M. Methicillin-resistant Staphylococcus aureus at Boston City Hospital. Bacteriologic and epidemiologic observations. N. Engl J. Med. 279, 441–448 (1968).

    Article  CAS  PubMed  Google Scholar 

  45. Bran, J. L., Levison, M. E. & Kaye, D. Survey for methicillin-resistant staphylococci. Antimicrob. Agents Chemother. 1, 235–236 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mato, R. et al. Clonal types and multidrug resistance patterns of methicillin-resistant Staphylococcus aureus (MRSA) recovered in Italy during the 1990s. Microb. Drug Resist. 10, 106–113 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Enright, M. C. et al. The evolutionary history of methicillin-resistant Staphylococcus aureus (MRSA). Proc. Natl Acad. Sci. USA 99, 7687–7692 (2002). Description of the MRSA clones and SCC mec allotypes present in a worldwide collection of mainly nosocomial isolates.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Robinson, D. A. & Enright, M. C. Evolutionary models of the emergence of methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 47, 3926–3934 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Deurenberg, R. H. & Stobberingh, E. E. The evolution of Staphylococcus aureus. Infect. Genet. Evol. 8, 747–763 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Crossley, K., Landesman, B. & Zaske, D. An outbreak of infections caused by strains of Staphylococcus aureus resistant to methicillin and aminoglycosides. II. Epidemiologic studies. J. Infect. Dis. 139, 280–287 (1979).

    Article  CAS  PubMed  Google Scholar 

  51. Peacock, J. E. Jr, Marsik, F. J. & Wenzel, R. P. Methicillin-resistant Staphylococcus aureus: introduction and spread within a hospital. Ann. Intern. Med. 93, 526–532 (1980).

    Article  PubMed  Google Scholar 

  52. Hiramatsu, K. et al. Dissemination in Japanese hospitals of strains of Staphylococcus aureus heterogeneously resistant to vancomycin. Lancet 350, 1670–1673 (1997).

    Article  CAS  PubMed  Google Scholar 

  53. Weigel, L. M. et al. Genetic analysis of a high-level vancomycin-resistant isolate of Staphylococcus aureus. Science 302, 1569–1571 (2003).

    CAS  PubMed  Google Scholar 

  54. O'Brien, F. G. et al. Diversity among community isolates of methicillin-resistant Staphylococcus aureus in Australia. J. Clin. Microbiol. 42, 3185–3190 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Coombs, G. W. et al. Genetic diversity among community methicillin-resistant Staphylococcus aureus strains causing outpatient infections in Australia. J. Clin. Microbiol. 42, 4735–4743 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Udo, E. E., Pearman, J. W. & Grubb, W. B. Genetic analysis of community isolates of methicillin-resistant Staphylococcus aureus in Western Australia. J. Hosp. Infect. 25, 97–108 (1993).

    Article  CAS  PubMed  Google Scholar 

  57. CDC. Four pediatric deaths from community-acquired methicillin-resistant Staphylococcus aureus — Minnesota and North Dakota, 1997–1999. MMWR Morb. Mortal. Wkly Rep. 48, 707–710 (1999).

  58. Herold, B. C. et al. Community-acquired methicillin-resistant Staphylococcus aureus in children with no identified predisposing risk. JAMA 279, 593–598 (1998). A report of CA-MRSA in children in Chicago, which stimulated an awareness of the scope of the epidemic.

    Article  CAS  PubMed  Google Scholar 

  59. Baggett, H. C. et al. Community-onset methicillin-resistant Staphylococcus aureus associated with antibiotic use and the cytotoxin Panton-Valentine leukocidin during a furunculosis outbreak in rural Alaska. J. Infect. Dis. 189, 1565–1573 (2004).

    Article  PubMed  Google Scholar 

  60. CDC. Community-associated methicillin-resistant Staphylococcus aureus infections in Pacific Islanders — Hawaii, 2001–2003. MMWR Morb. Mortal. Wkly Rep. 53, 767–770 (2004).

  61. Aiello, A. E., Lowy, F. D., Wright, L. N. & Larson, E. L. Meticillin-resistant Staphylococcus aureus among US prisoners and military personnel: review and recommendations for future studies. Lancet Infect. Dis. 6, 335–341 (2006).

    Article  PubMed  Google Scholar 

  62. Diep, B. A. et al. Emergence of multidrug-resistant, community-associated, methicillin-resistant Staphylococcus aureus clone USA300 in men who have sex with men. Ann. Intern. Med. 148, 249–257 (2008).

    Article  PubMed  Google Scholar 

  63. Johansson, P. J., Gustafsson, E. B. & Ringberg, H. High prevalence of MRSA in household contacts. Scand. J. Infect. Dis. 39, 764–768 (2007).

    Article  PubMed  Google Scholar 

  64. Adcock, P. M., Pastor, P., Medley, F., Patterson, J. E. & Murphy, T. V. Methicillin-resistant Staphylococcus aureus in two child care centers. J. Infect. Dis. 178, 577–580 (1998).

    Article  CAS  PubMed  Google Scholar 

  65. Liu, C. et al. A population-based study of the incidence and molecular epidemiology of methicillin-resistant Staphylococcus aureus disease in San Francisco, 2004–2005. Clin. Infect. Dis. 46, 1637–1646 (2008). A population-based study of the USA300 epidemic in San Francisco, a city with a high prevalence of CA-MRSA.

    Article  CAS  PubMed  Google Scholar 

  66. Seybold, U. et al. Emergence of community-associated methicillin-resistant Staphylococcus aureus USA300 genotype as a major cause of health care-associated blood stream infections. Clin. Infect. Dis. 42, 647–656 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Gilbert, M. et al. Outbreak in Alberta of community-acquired (USA300) methicillin-resistant Staphylococcus aureus in people with a history of drug use, homelessness or incarceration. Can. Med. Assoc. J. 175, 149–154 (2006).

    Article  Google Scholar 

  68. Mulvey, M. R. et al. Community-associated methicillin-resistant Staphylococcus aureus, Canada. Emerg. Infect. Dis. 11, 844–850 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Stemper, M. E., Shukla, S. K. & Reed, K. D. Emergence and spread of community-associated methicillin-resistant Staphylococcus aureus in rural Wisconsin, 1989 to 1999. J. Clin. Microbiol. 42, 5673–5680 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  70. David, M. Z., Rudolph, K. M., Hennessy, T. W., Boyle-Vavra, S. & Daum, R. S. Molecular epidemiology of methicillin-resistant Staphylococcus aureus, rural southwestern Alaska. Emerg. Infect. Dis. 14, 1693–1699 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Pan, E. S. et al. Increasing prevalence of methicillin-resistant Staphylococcus aureus infection in California jails. Clin. Infect. Dis. 37, 1384–1388 (2003). The first description of USA300.

    Article  PubMed  Google Scholar 

  72. Pannaraj, P. S., Hulten, K. G., Gonzalez, B. E., Mason, E. O. Jr & Kaplan, S. L. Infective pyomyositis and myositis in children in the era of community-acquired, methicillin-resistant Staphylococcus aureus infection. Clin. Infect. Dis. 43, 953–960 (2006).

    Article  PubMed  Google Scholar 

  73. Diep, B. A., Sensabaugh, G. F., Somboona, N. S., Carleton, H. A. & Perdreau-Remington, F. Widespread skin and soft-tissue infections due to two methicillin-resistant Staphylococcus aureus strains harboring the genes for Panton-Valentine leucocidin. J. Clin. Microbiol. 42, 2080–2084 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Chavez-Bueno, S. et al. Inducible clindamycin resistance and molecular epidemiologic trends of pediatric community-acquired methicillin-resistant Staphylococcus aureus in Dallas, Texas. Antimicrob. Agents Chemother. 49, 2283–2288 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Enright, M. C., Day, N. P., Davies, C. E., Peacock, S. J. & Spratt, B. G. Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. J. Clin. Microbiol. 38, 1008–1015 (2000). Description of the MLST method and how it can be applied to elucidate the population structure of S. aureus.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Feil, E. J., Li, B. C., Aanensen, D. M., Hanage, W. P. & Spratt, B. G. eBURST: inferring patterns of evolutionary descent among clusters of related bacterial genotypes from multilocus sequence typing data. J. Bacteriol. 186, 1518–1530 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Turner, K. M., Hanage, W. P., Fraser, C., Connor, T. R. & Spratt, B. G. Assessing the reliability of eBURST using simulated populations with known ancestry. BMC Microbiol. 7, 30 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Shopsin, B. et al. Evaluation of protein A gene polymorphic region DNA sequencing for typing of Staphylococcus aureus strains. J. Clin. Microbiol. 37, 3556–3563 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Feil, E. J. et al. How clonal is Staphylococcus aureus? J. Bacteriol. 185, 3307–3316 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Tenover, F. C. et al. Characterization of Staphylococcus aureus isolates from nasal cultures collected from individuals in the United States in 2001 to 2004. J. Clin. Microbiol. 46, 2837–2841 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Goering, R. V. et al. Molecular epidemiology of methicillin-resistant and methicillin-susceptible Staphylococcus aureus isolates from global clinical trials. J. Clin. Microbiol. 46, 2842–2847 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hallin, M. et al. Genetic relatedness between methicillin-susceptible and methicillin-resistant Staphylococcus aureus: results of a national survey. J. Antimicrob. Chemother. 59, 465–472 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Feng, Y. et al. Evolution and pathogenesis of Staphylococcus aureus: lessons learned from genotyping and comparative genomics. FEMS Microbiol. Rev. 32, 23–37 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Feil, E. J. & Enright, M. C. Analyses of clonality and the evolution of bacterial pathogens. Curr. Opin. Microbiol. 7, 308–313 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Lindsay, J. A. et al. Microarrays reveal that each of the ten dominant lineages of Staphylococcus aureus has a unique combination of surface-associated and regulatory genes. J. Bacteriol. 188, 669–676 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Nubel, U. et al. Frequent emergence and limited geographic dispersal of methicillin-resistant Staphylococcus aureus. Proc. Natl Acad. Sci. USA 105, 14130–14135 (2008). Evidence that MRSA infections are locally derived as opposed to internationally translocated, and that SCC mec has entered S. aureus strains on numerous occasions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Gomes, A. R., Westh, H. & de Lencastre, H. Origins and evolution of methicillin-resistant Staphylococcus aureus clonal lineages. Antimicrob. Agents Chemother. 50, 3237–3244 (2006). Analysis of penicillin-susceptible and penicillin-resistant genotypes of S. aureus , carried out before the emergence of MRSA.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Robinson, D. A. et al. Re-emergence of early pandemic Staphylococcus aureus as a community-acquired meticillin-resistant clone. Lancet 365, 1256–1258 (2005).

    Article  PubMed  Google Scholar 

  89. Cox, R. A., Conquest, C., Mallaghan, C. & Marples, R. R. A major outbreak of methicillin-resistant Staphylococcus aureus caused by a new phage-type (EMRSA-16). J. Hosp. Infect. 29, 87–106 (1995).

    Article  CAS  PubMed  Google Scholar 

  90. Johnson, A. P. et al. Dominance of EMRSA-15 and -16 among MRSA causing nosocomial bacteraemia in the UK: analysis of isolates from the European Antimicrobial Resistance Surveillance System (EARSS). J. Antimicrob. Chemother. 48, 143–144 (2001).

    Article  CAS  PubMed  Google Scholar 

  91. McDougal, L. K. et al. Pulsed-field gel electrophoresis typing of oxacillin-resistant Staphylococcus aureus isolates from the United States: establishing a national database. J. Clin. Microbiol. 41, 5113–5120 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ito, T. et al. Structural comparison of three types of staphylococcal cassette chromosome mec integrated in the chromosome in methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 45, 1323–1336 (2001). Comparison of the genetic structure and organization of SCC mec I, SCC mec II and SCC mec III.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ma, X. X. et al. Novel type of staphylococcal cassette chromosome mec identified in community-acquired methicillin-resistant Staphylococcus aureus strains. Antimicrob. Agents Chemother. 46, 1147–1152 (2002). Genetic structure and organization of SCC mec IV.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Oliveira, D. C., Milheirico, C. & de Lencastre, H. Redefining a structural variant of staphylococcal cassette chromosome mec, SCCmec type VI. Antimicrob. Agents Chemother. 50, 3457–3459 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Higuchi, W., Takano, T., Teng, L. J. & Yamamoto, T. Structure and specific detection of staphylococcal cassette chromosome mec type VII. Biochem. Biophys. Res. Commun. 377, 752–756 (2008).

    Article  CAS  PubMed  Google Scholar 

  96. Zhang, K., McClure, J. A., Elsayed, S. & Conly, J. M. Novel staphylococcal cassette chromosome mec type, tentatively designated type VIII, harboring class A mec and type ccr gene complexes in a Canadian epidemic strain of methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 53, 531–540 (2009).

    Article  CAS  PubMed  Google Scholar 

  97. Ruppe, E. et al. Diversity of staphylococcal cassette chromosome mec structures in methicillin-resistant Staphylococcus epidermidis and Staphylococcus haemolyticus strains among outpatients from four countries. Antimicrob. Agents Chemother. 53, 442–449 (2009).

    Article  CAS  PubMed  Google Scholar 

  98. Okuma, K. et al. Dissemination of new methicillin-resistant Staphylococcus aureus clones in the community. J. Clin. Microbiol. 40, 4289–4294 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lina, G. et al. Staphylococcal chromosome cassette evolution in Staphylococcus aureus inferred from ccr gene complex sequence typing analysis. Clin. Microbiol. Infect. 12, 1175–1184 (2006). Sequence typing of SCC mec allotypes to define possible origins and evolution.

    Article  CAS  PubMed  Google Scholar 

  100. Oliveira, D. C., Tomasz, A. & de Lencastre, H. The evolution of pandemic clones of methicillin-resistant Staphylococcus aureus: identification of two ancestral genetic backgrounds and the associated mec elements. Microb. Drug Resist. 7, 349–361 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. Hanssen, A. M., Kjeldsen, G. & Sollid, J. U. Local variants of staphylococcal cassette chromosome mec in sporadic methicillin-resistant Staphylococcus aureus and methicillin-resistant coagulase-negative staphylococci: evidence of horizontal gene transfer? Antimicrob. Agents Chemother. 48, 285–296 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Hanssen, A. M. & Ericson Sollid, J. U. SCCmec in staphylococci: genes on the move. FEMS Immunol. Med. Microbiol. 46, 8–20 (2006).

    Article  CAS  PubMed  Google Scholar 

  103. Wu, S., Piscitelli, C., de Lencastre, H. & Tomasz, A. Tracking the evolutionary origin of the methicillin resistance gene: cloning and sequencing of a homologue of mecA from a methicillin susceptible strain of Staphylococcus sciuri. Microb. Drug Resist. 2, 435–441 (1996).

    Article  CAS  PubMed  Google Scholar 

  104. Diep, B. A. et al. The arginine catabolic mobile element and staphylococcal chromosomal cassette mec linkage: convergence of virulence and resistance in the USA300 clone of methicillin-resistant Staphylococcus aureus. J. Infect. Dis. 197, 1523–1530 (2008).

    Article  CAS  PubMed  Google Scholar 

  105. Kennedy, A. D. et al. Epidemic community-associated methicillin-resistant Staphylococcus aureus: recent clonal expansion and diversification. Proc. Natl Acad. Sci. USA 105, 1327–1332 (2008). Deep sequence analysis of closely related USA300 strains and a comparison of their virulence in a mouse model.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Bartels, M. D., Boye, K., Rhod Larsen, A., Skov, R. & Westh, H. Rapid increase of genetically diverse methicillin-resistant Staphylococcus aureus, Copenhagen, Denmark. Emerg. Infect. Dis. 13, 1533–1540 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Gottlieb, T., Su, W. Y., Merlino, J. & Cheong, E. Y. Recognition of USA300 isolates of community-acquired methicillin-resistant Staphylococcus aureus in Australia. Med. J. Aust. 189, 179–180 (2008).

    PubMed  Google Scholar 

  108. Arias, C. A. et al. MRSA USA300 clone and VREF — a US–Colombian connection? N. Engl. J. Med. 359, 2177–2179 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Maree, C. L., Daum, R. S., Boyle-Vavra, S., Matayoshi, K. & Miller, L. G. Community-associated methicillin-resistant Staphylococcus aureus isolates causing healthcare-associated infections. Emerg. Infect. Dis. 13, 236–242 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Gonzalez, B. E. et al. Community-associated strains of methicillin-resistant Staphylococcus aureus as the cause of healthcare-associated infection. Infect. Control Hosp. Epidemiol. 27, 1051–1056 (2006).

    Article  PubMed  Google Scholar 

  111. Tristan, A. et al. Global distribution of Panton-Valentine leukocidin positive methicillin-resistant Staphylococcus aureus, 2006. Emerg. Infect. Dis. 13, 594–600 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Larsen, A. R. et al. Emergence and characterization of community-associated methicillin-resistant Staphyloccocus aureus infections in Denmark, 1999 to 2006. J. Clin. Microbiol. 47, 73–78 (2009).

    Article  CAS  PubMed  Google Scholar 

  113. Rollason, J. et al. Epidemiology of community-acquired meticillin-resistant Staphylococcus aureus obtained from the UK West Midlands region. J. Hosp. Infect. 70, 314–320 (2008).

    Article  CAS  PubMed  Google Scholar 

  114. Holmes, A. et al. Staphylococcus aureus isolates carrying Panton-Valentine leucocidin genes in England and Wales: frequency, characterization, and association with clinical disease. J. Clin. Microbiol. 43, 2384–2390 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Huijsdens, X. W. et al. Community-acquired MRSA and pig-farming. Ann. Clin. Microbiol. Antimicrob. 5, 26 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Loeffler, A. et al. First isolation of MRSA ST398 from UK animals: a new challenge for infection control teams? J. Hosp. Infect. 72, 269–271 (2009).

    Article  CAS  PubMed  Google Scholar 

  117. Crum, N. F. et al. Fifteen-year study of the changing epidemiology of methicillin-resistant Staphylococcus aureus. Am. J. Med. 119, 943–951 (2006).

    Article  PubMed  Google Scholar 

  118. Davis, S. L. et al. Epidemiology and outcomes of community-associated methicillin-resistant Staphylococcus aureus infection. J. Clin. Microbiol. 45, 1705–1711 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Diep, B. A. et al. Complete genome sequence of USA300, an epidemic clone of community-acquired meticillin-resistant Staphylococcus aureus. Lancet 367, 731–739 (2006). Comparative genomics of USA300 and other MRSA strains.

    Article  CAS  PubMed  Google Scholar 

  120. Voyich, J. M. et al. Insights into mechanisms used by Staphylococcus aureus to avoid destruction by human neutrophils. J. Immunol. 175, 3907–3919 (2005).

    Article  CAS  PubMed  Google Scholar 

  121. Li, M. et al. Evolution of virulence in epidemic community-associated MRSA. Proc. Natl Acad. Sci. USA 106, 5883–5888 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Montgomery, C. P. et al. Comparison of virulence in community-associated methicillin-resistant Staphylococcus aureus pulsotypes USA300 and USA400 in a rat model of pneumonia. J. Infect. Dis. 198, 561–570 (2008).

    Article  CAS  PubMed  Google Scholar 

  123. Wang, R. et al. Identification of novel cytolytic peptides as key virulence determinants for community-associated MRSA. Nature Med. 13, 1510–1514 (2007).

    Article  CAS  PubMed  Google Scholar 

  124. Rooijakkers, S. H. et al. Early expression of SCIN and CHIPS drives instant immune evasion by Staphylococcus aureus. Cell. Microbiol. 8, 1282–1293 (2006).

    Article  CAS  PubMed  Google Scholar 

  125. van Wamel, W. J., Rooijakkers, S. H., Ruyken, M., van Kessel, K. P. & van Strijp, J. A. The innate immune modulators staphylococcal complement inhibitor and chemotaxis inhibitory protein of Staphylococcus aureus are located on β-hemolysin-converting bacteriophages. J. Bacteriol. 188, 1310–1315 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Deleo, F. R., Diep, B. A. & Otto, M. Host defense and pathogenesis in Staphylococcus aureus infections. Infect. Dis. Clin. North Am. 23, 17–34 (2009). Review of the virulence factors found in S. aureus.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Li, M. et al. The antimicrobial peptide-sensing system aps of Staphylococcus aureus. Mol. Microbiol. 66, 1136–1147 (2007).

    Article  CAS  PubMed  Google Scholar 

  128. Wright, J. Staphylococcal leucocidin (Neisser-Wechsberg type) and antileucocidin. Lancet 227, 1002–1005 (1936).

    Article  Google Scholar 

  129. Woodin, A. M. Purification of the two components of leucocidin from Staphylococcus aureus. Biochem. J. 75, 158–165 (1960).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Kaneko, J., Kimura, T., Narita, S., Tomita, T. & Kamio, Y. Complete nucleotide sequence and molecular characterization of the temperate staphylococcal bacteriophage ΦPVL carrying Panton-Valentine leukocidin genes. Gene 215, 57–67 (1998).

    Article  CAS  PubMed  Google Scholar 

  131. Meyer, F., Girardot, R., Piemont, Y., Prevost, G. & Colin, D. A. Analysis of the specificity of Panton-Valentine leucocidin and gamma-hemolysin F component binding. Infect. Immun. 77, 266–273 (2009).

    Article  CAS  PubMed  Google Scholar 

  132. Colin, D. A., Mazurier, I., Sire, S. & Finck-Barbancon, V. Interaction of the two components of leukocidin from Staphylococcus aureus with human polymorphonuclear leukocyte membranes: sequential binding and subsequent activation. Infect. Immun. 62, 3184–3188 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Konig, B., Prevost, G., Piemont, Y. & Konig, W. Effects of Staphylococcus aureus leukocidins on inflammatory mediator release from human granulocytes. J. Infect. Dis. 171, 607–613 (1995).

    Article  CAS  PubMed  Google Scholar 

  134. Woodin, A. M. & Wieneke, A. A. The participation of calcium, adenosine triphosphate and adenosine triphosphatase in the extrusion of the granule proteins from the polymorphonuclear leucocyte. Biochem. J. 90, 498–509 (1964).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Genestier, A. L. et al. Staphylococcus aureus Panton-Valentine leukocidin directly targets mitochondria and induces Bax-independent apoptosis of human neutrophils. J. Clin. Invest. 115, 3117–3127 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Colin, D. A. & Monteil, H. Control of the oxidative burst of human neutrophils by staphylococcal leukotoxins. Infect. Immun. 71, 3724–3729 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Gillet, Y. et al. Association between Staphylococcus aureus strains carrying gene for Panton-Valentine leukocidin and highly lethal necrotising pneumonia in young immunocompetent patients. Lancet 359, 753–759 (2002).

    Article  CAS  PubMed  Google Scholar 

  138. Gillet, Y. et al. Factors predicting mortality in necrotizing community-acquired pneumonia caused by Staphylococcus aureus containing Panton-Valentine leukocidin. Clin. Infect. Dis. 45, 315–321 (2007).

    Article  PubMed  Google Scholar 

  139. Kuehnert, M. J. et al. Prevalence of Staphylococcus aureus nasal colonization in the United States, 2001–2002. J. Infect. Dis. 193, 172–179 (2006).

    Article  CAS  PubMed  Google Scholar 

  140. Ellington, M. J. et al. Is Panton-Valentine leucocidin associated with the pathogenesis of Staphylococcus aureus bacteraemia in the UK? J. Antimicrob. Chemother. 60, 402–405 (2007).

    Article  CAS  PubMed  Google Scholar 

  141. Voyich, J. M. et al. Is Panton-Valentine leukocidin the major virulence determinant in community-associated methicillin-resistant Staphylococcus aureus disease? J. Infect. Dis. 194, 1761–1770 (2006).

    Article  CAS  PubMed  Google Scholar 

  142. Montgomery, C. P. & Daum, R. S. Transcription of inflammatory genes in the lung after infection with community-associated methicillin-resistant Staphylococcus aureus: a role for Panton-Valentine leukocidin? Infect. Immun. 77, 2159–2167 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Bubeck Wardenburg, J., Bae, T., Otto, M., Deleo, F. R. & Schneewind, O. Poring over pores: α-hemolysin and Panton-Valentine leukocidin in Staphylococcus aureus pneumonia. Nature Med. 13, 1405–1406 (2007).

    Article  PubMed  CAS  Google Scholar 

  144. Bubeck Wardenburg, J., Palazzolo-Ballance, A. M., Otto, M., Schneewind, O. & DeLeo, F. R. Panton-Valentine leukocidin is not a virulence determinant in murine models of community-associated methicillin-resistant Staphylococcus aureus disease. J. Infect. Dis. 198, 1166–1170 (2008).

    Article  PubMed  Google Scholar 

  145. Diep, B. A. et al. Contribution of Panton-Valentine leukocidin in community-associated methicillin-resistant Staphylococcus aureus pathogenesis. PLoS ONE 3, e3198 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Brown, E. L. et al. The Panton-Valentine leukocidin vaccine protects mice against lung and skin infections caused by Staphylococcus aureus USA300. Clin. Microbiol. Infect. 15, 156–164 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Labandeira-Rey, M. et al. Staphylococcus aureus Panton-Valentine leukocidin causes necrotizing pneumonia. Science 315, 1130–1133 (2007).

    Article  CAS  PubMed  Google Scholar 

  148. Bhakdi, S. & Tranum-Jensen, J. Alpha-toxin of Staphylococcus aureus. Microbiol. Rev. 55, 733–751 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Burlak, C. et al. Global analysis of community-associated methicillin-resistant Staphylococcus aureus exoproteins reveals molecules produced in vitro and during infection. Cell. Microbiol. 9, 1172–1190 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Coulter, S. N. et al. Staphylococcus aureus genetic loci impacting growth and survival in multiple infection environments. Mol. Microbiol. 30, 393–404 (1998).

    Article  CAS  PubMed  Google Scholar 

  151. Degnan, B. A. et al. Inhibition of human peripheral blood mononuclear cell proliferation by Streptococcus pyogenes cell extract is associated with arginine deiminase activity. Infect. Immun. 66, 3050–3058 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Gorwitz, R. J. et al. Strategies for clinical management of MRSA in the community: summary of an expert's meeting convened by the Centers for Disease Control and Prevention. CDC [online], (2006).

  153. Barton, M. et al. Guidelines for the prevention and management of community-acquired methicillin-resistant Staphylococcus aureus: a perspective for Canadian health care practitioners. Can. J. Infect. Dis. Med. Microbiol. 17 (Suppl. C), 4–24 (2006).

    Article  Google Scholar 

  154. Nathwani, D. et al. Guidelines for UK practice for the diagnosis and management of methicillin-resistant Staphylococcus aureus (MRSA) infections presenting in the community. J. Antimicrob. Chemother. 61, 976–994 (2008).

    Article  CAS  PubMed  Google Scholar 

  155. Llera, J. L. & Levy, R. C. Treatment of cutaneous abscess: a double-blind clinical study. Ann. Emerg. Med. 14, 15–19 (1985).

    Article  CAS  PubMed  Google Scholar 

  156. Lee, M. C. et al. Management and outcome of children with skin and soft tissue abscesses caused by community-acquired methicillin-resistant Staphylococcus aureus. Pediatr. Infect. Dis. J. 23, 123–127 (2004).

    Article  PubMed  Google Scholar 

  157. Khatib, R. et al. Persistent Staphylococcus aureus bacteremia: incidence and outcome trends over time. Scand. J. Infect. Dis. 41, 4–9 (2009).

    Article  CAS  PubMed  Google Scholar 

  158. Hawkins, C. et al. Persistent Staphylococcus aureus bacteremia: an analysis of risk factors and outcomes. Arch. Intern. Med. 167, 1861–1867 (2007).

    Article  PubMed  Google Scholar 

  159. Dombrowski, J. C. & Winston, L. G. Clinical failures of appropriately-treated methicillin-resistant Staphylococcus aureus infections. J. Infect. 57, 110–115 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Lodise, T. P., Lomaestro, B., Graves, J. & Drusano, G. L. Larger vancomycin doses (at least four grams per day) are associated with an increased incidence of nephrotoxicity. Antimicrob. Agents Chemother. 52, 1330–1336 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Steinkraus, G., White, R. & Friedrich, L. Vancomycin MIC creep in non-vancomycin-intermediate Staphylococcus aureus (VISA), vancomycin-susceptible clinical methicillin-resistant S. aureus (MRSA) blood isolates from 2001–2005. J. Antimicrob. Chemother. 60, 788–794 (2007).

    Article  CAS  PubMed  Google Scholar 

  162. Wang, G., Hindler, J. F., Ward, K. W. & Bruckner, D. A. Increased vancomycin MICs for Staphylococcus aureus clinical isolates from a university hospital during a 5-year period. J. Clin. Microbiol. 44, 3883–3886 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Arbeit, R. D., Maki, D., Tally, F. P., Campanaro, E. & Eisenstein, B. I. The safety and efficacy of daptomycin for the treatment of complicated skin and skin-structure infections. Clin. Infect. Dis. 38, 1673–1681 (2004).

    Article  CAS  PubMed  Google Scholar 

  164. Shorr, A. F., Kunkel, M. J. & Kollef, M. Linezolid versus vancomycin for Staphylococcus aureus bacteraemia: pooled analysis of randomized studies. J. Antimicrobiol. Chemother. 56, 923–929 (2005).

    Article  CAS  Google Scholar 

  165. Wunderink, R. G., Cammarata, S. K., Oliphant, T. H. & Kollef, M. H. Continuation of a randomized, double-blind, multicenter study of linezolid versus vancomycin in the treatment of patients with nosocomial pneumonia. Clin. Ther. 25, 980–992 (2003).

    Article  CAS  PubMed  Google Scholar 

  166. Weigelt, J. et al. Linezolid versus vancomycin in treatment of complicated skin and soft tissue infections. Antimicrob. Agents Chemother. 49, 2260–2266 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Kaplan, S. L. et al. Linezolid versus vancomycin for treatment of resistant Gram-positive infections in children. Pediatr. Infect. Dis. J. 22, 677–686 (2003).

    Article  PubMed  Google Scholar 

  168. Fowler, V. G. Jr et al. Daptomycin versus standard therapy for bacteremia and endocarditis caused by Staphylococcus aureus. N. Engl. J. Med. 355, 653–665 (2006).

    Article  CAS  PubMed  Google Scholar 

  169. Lentino, J. R., Narita, M. & Yu, V. L. New antimicrobial agents as therapy for resistant gram-positive cocci. Eur. J. Clin. Microbiol. Infect. Dis. 27, 3–15 (2008).

    Article  CAS  PubMed  Google Scholar 

  170. Pan, A., Lorenzotti, S. & Zoncada, A. Registered and investigational drugs for the treatment of methicillin-resistant Staphylococcus aureus infection. Recent Pat. Antiinfect. Drug Discov. 3, 10–33 (2008).

    Article  CAS  PubMed  Google Scholar 

  171. Koga, T. et al. In vitro and in vivo antibacterial activities of CS-023 (RO4908463), a novel parenteral carbapenem. Antimicrob. Agents Chemother. 49, 3239–3250 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Parish, D. & Scheinfeld, N. Ceftaroline fosamil, a cephalosporin derivative for the potential treatment of MRSA infection. Curr. Opin. Investig. Drugs 9, 201–209 (2008).

    CAS  PubMed  Google Scholar 

  173. Anderson, S. D. & Gums, J. G. Ceftobiprole: an extended-spectrum anti-methicillin-resistant Staphylococcus aureus cephalosporin. Ann. Pharmacother. 42, 806–816 (2008).

    Article  CAS  PubMed  Google Scholar 

  174. Shaw, K. J. et al. In vitro activity of TR-700, the antibacterial moiety of the prodrug TR-701, against linezolid-resistant strains. Antimicrob. Agents Chemother. 52, 4442–4447 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Dajcs, J. J. et al. Lysostaphin is effective in treating methicillin-resistant Staphylococcus aureus endophthalmitis in the rabbit. Curr. Eye Res. 22, 451–457 (2001).

    Article  CAS  PubMed  Google Scholar 

  176. Lawton, E. M., Ross, R. P., Hill, C. & Cotter, P. D. Two-peptide lantibiotics: a medical perspective. Mini Rev. Med. Chem. 7, 1236–1247 (2007).

    Article  CAS  PubMed  Google Scholar 

  177. Stapleton, P. D., Shah, S., Ehlert, K., Hara, Y. & Taylor, P. W. The β-lactam-resistance modifier (-)-epicatechin gallate alters the architecture of the cell wall of Staphylococcus aureus. Microbiology 153, 2093–2103 (2007).

    Article  CAS  PubMed  Google Scholar 

  178. Bubeck Wardenburg, J. & Schneewind, O. Vaccine protection against Staphylococcus aureus pneumonia. J. Exp. Med. 205, 287–294 (2008).

    Article  PubMed  CAS  Google Scholar 

  179. Shinefield, H. et al. Use of a Staphylococcus aureus conjugate vaccine in patients receiving hemodialysis. N. Engl. J. Med. 346, 491–496 (2002).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

F.R.D. is supported by the Intramural Research Program of the National Institute of Allergy and Infectious Disease (NIAID) and the National Institutes of Health (NIH) and H.F.C. is supported by the NIH, NIAID grant number R01 AI070289.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry F. Chambers.

Supplementary information

Related links

Related links

DATABASES

Entrez Genome Project

MRSA strain COL

MRSA strain MW2

MRSA strain USA300

Staphylococcus aureus

Staphylococcus epidermidis

FURTHER INFORMATION

Henry F. Chambers' homepage

eBURST

SCCmec

Glossary

Necrotizing fasciitis

A rapidly progressive, tissue-destructive infection of the deep soft tissue and muscle, which spreads along the fibrous connective tissue that separates and binds muscles.

Necrotizing pneumonia

An infection of the lung, usually caused by bacteria, that produces death and destruction of the lung tissue and is often accompanied by abscess formation.

Panton–Valentine leukocidin

A bacteriophage-encoded, two-component, β-pore-forming toxin that integrates into the membranes of macrophages, monocytes and neutrophils and is cytolytic for these cells.

Phage type

An intraspecies strain, clone or type of bacterium that is differentiated and defined on the basis of its susceptibility to lysis by one or a panel of species-specific bacteriophages (viruses that propagate in bacterial cells).

Pulsed-field gel electrophoresis

A method for the separation of large fragments of DNA that is used in molecular epidemiology to visualize the bacterial strain-specific genome fingerprints that are generated by restriction digestion of whole genomes.

Multilocus sequence typing

An unambiguous procedure for characterizing isolates of bacterial species using the sequences of internal fragments of (usually) seven housekeeping genes. Approximately 450–500 bp internal fragments of each gene are used, as these can be accurately sequenced on both strands using an automated DNA sequencer.

SCCmec allotype

A variant of the chromosomal cassette (a mobile element in staphylococci) that encodes the gene (mecA) that is responsible for resistance to β-lactam antibiotics; specific allotypes are defined according to differences in the sequence or genetic organization of two regions, mecA and the ccr, which encodes the recombinase function that excises and integrates the cassette at a specific location in the staphylococcal chromosome.

Staphylokinase

A secreted 15.5 kDa fibrin-specific protein produced by S. aureus that forms a complex with plasminogen to generate plasmin, a proteolytic enzyme that cleaves fibrin.

Staphylococcal complement inhibitor

A secreted 9.8 kDa protein that inhibits the activation of human complement, thereby interfering with the phagocytosis and killing of staphylococci by neutrophils.

Staphylococcus aureus chemotaxis inhibitory protein

A secreted 14.1 kDa protein that inhibits the recruitment of neutrophils and the inflammatory response by blocking the C5a receptor and the N-formyl-methionyl-leucyl-phenylalanine receptor.

Superantigen

A bacterial protein that non-specifically activates T cells, resulting in an inappropriate and massive release of cytokines and chemokines.

Lysostaphin

A zinc metalloenzyme produced by Staphylococcus simulans that specifically lyses the S. aureus cell wall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chambers, H., DeLeo, F. Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat Rev Microbiol 7, 629–641 (2009). https://doi.org/10.1038/nrmicro2200

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2200

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing