Key Points
-
An important aspect of growth control in enterobacteria is regulation of production of the translational machinery.
-
Stable RNA (rRNA and tRNA) promoters are unusually dependent on high negative superhelicity for optimal expression. This superhelicity facilitates the wrapping of DNA around the polymerase and enhances its untwisting in the −10 region.
-
Stringent control and growth-rate control of stable RNA transcription are mechanistically distinct and dependent on different, but overlapping, elements of promoter structure.
-
Growth-rate control of a promoter and its dependence on negative superhelicity are correlated, while ppGpp, the effector of the stringent response, is antagonized by high negative superhelicity.
-
The transcription factor FIS acts as a topological homeostat for some stable RNA promoters by locally constraining superhelicity, thereby decreasing the sensitivity of expression to fluctuations in superhelical density.
-
The effective, or available, superhelicity of promoter DNA is determined by competition between abundant nucleoid-associated proteins, which constrain negative supercoils, and RNA polymerase, thereby balancing the compaction and availability of DNA.
-
Transcription regulation during growth-phase transitions is correlated with changes in negative superhelicity, adaptive changes in the RNA polymerase that alter the responses of transcription machinery to supercoiling, and changes in the composition of the nucleoid-associated proteins that affect the availability of negative supercoils.
-
The global control of transcription throughout the life cycle of Escherichia coli can be formalized as an interacting network of gene products and low-molecular-weight effectors that control RNA polymerase selectivity and effective superhelicity.
Abstract
A fundamental principle of exponential bacterial growth is that no more ribosomes are produced than are necessary to support the balance between nutrient availability and protein synthesis. Although this conclusion was first expressed more than 40 years ago, a full understanding of the molecular mechanisms involved remains elusive and the issue is still controversial. There is currently agreement that, although many different systems are undoubtedly involved in fine-tuning this balance, an important control, and in our opinion perhaps the main control, is regulation of the rate of transcription initiation of the stable (ribosomal and transfer) RNA transcriptons. In this review, we argue that regulation of DNA supercoiling provides a coherent explanation for the main modes of transcriptional control — stringent control, growth-rate control and growth-phase control — during the normal growth of Escherichia coli.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Browning, D. F. & Busby, S. J. W. The regulation of bacterial transcription initiation. Nature Rev. Microbiol. 2, 57–65 (2004).
Buckle, M., Pemberton, I. K., Jacquet, M. A. & Buc, H. The kinetics of sigma subunit directed promoter recognition by E. coli RNA polymerase. J. Mol. Biol. 285, 955–964 (1999).
Pemberton, I. K., Muskhelishvili, G., Travers, A. A. & Buckle, M. FIS modulates the kinetics of successive interactions of RNA polymerase with the core and upstream regions of the tyrT promoter. J. Mol. Biol. 318, 651–653 (2002).
Drew, H. R., Weeks, J. R. & Travers, A. A. Negative supercoiling induces spontaneous unwinding of a bacterial promoter. EMBO J. 4, 1025–1032 (1985).
Spassky, A., Rimsky, S., Buc, H. & Busby, S. Correlation between the conformation of Escherichia coli −10 hexamer sequences and promoter strength: use of orthophenanthroline cuprous complex as a structural index. EMBO J. 6, 1871–1879 (1988).
Amouyal, M. & Buc, H. Topological unwinding by RNA polymerase of strong and weak promoters: a comparison between the lac wild-type and the UV5 sites of Escherichia coli. J. Mol. Biol. 195, 795–808 (1987). Classic demonstration of the topological partioning between twist and writhe in an RNA polymerase–DNA complex.
Saucier, J. M. & Wang, J. C. Angular alteration of the DNA helix by E. coli RNA polymerase. Nature New Biol. 239, 167–170 (1972).
Rivetti, C., Guthold, M. & Bustamante, C. Wrapping of DNA around the E. coli RNA polymerase open promoter complex. EMBO J. 18, 4464–4475 (1999). Atomic force microscopy visualization of DNA wrapping around RNA polymerase.
Siebenlist, U. RNA polymerase unwinds an 11-base pair segment of a phage T7 promoter. Nature 279, 651–652 (1979).
Jovanovich, S. B. & Lebowitz, J. Estimation of the effect of coumermycin A1 on Salmonella typhimurium promoters by using random operon fusions. J. Bacteriol. 169, 4431–4435 (1987).
Dorman, C. J., Barr, G. C., Bhriain, N. N. & Higgins, C. F. DNA supercoiling and the anaerobic and growth phase regulation of tonB gene expression. J. Bacteriol. 170, 2816–2826 (1988).
Sun, L. & Fuchs, J. A. Regulation of the Escherichia coli nrd operon: role of DNA supercoiling. J. Bacteriol. 176, 4617–4626 (1994).
Wu, Y. & Datta, P. Influence of DNA topology on expression of the tdc operon in Escherichia coli K-12. Mol. Gen. Genet. 247, 764–767 (1995).
Mirkin, S. M., Bogdanova, E. S., Gorlenko, Z. M., Gragerov, A. I. & Larionov, O. A. DNA supercoiling and transcription in Escherichia coli: influence of RNA polymerase mutations. Mol. Gen. Genet. 177, 169–175 (1979).
Meiklejohn, A. L. & Gralla, J. D. Activation of the lac promoter and its variants. Synergistic effects of catabolite activator protein and supercoiling in vitro. J. Mol. Biol. 207, 661–673 (1989).
Borowiec, J. A. & Gralla, J. D. All three elements of the lac ps promoter mediate its response to DNA supercoiling. J. Mol. Biol. 195, 89–97 (1987).
Lamond, A. I. Supercoiling response of a bacterial tRNA gene. EMBO J. 4, 501–507 (1985). Direct demonstration of the exquisite sensitivity of a stable RNA promoter to negative supercoiling in vitro.
Ohlsen, K. L. & Gralla, J. D. Interrelated effects of DNA supercoiling, ppGpp, and low salt on melting within the Escherichia coli ribosomal RNA rrnB P1 promoter. Mol. Microbiol. 6, 2243–2251 (1992). In vitro data indicate a connection between the stringent response and negative supercoiling.
Free, A. & Dorman, C. J. Escherichia coli tyrT gene transcription is sensitive to DNA supercoiling in its native chromosomal context: effect of DNA topoisomerase IV overexpression on tyrT promoter function. Mol. Microbiol. 14, 151–161 (1994).
Nomura, M., Gourse, R. & Baughman, G. Regulation of the synthesis of ribosomes and ribosomal components. Annu. Rev. Biochem. 53, 75–117 (1984).
Travers, A. A. Promoter sequence for stringent control of bacterial ribonucleic acid synthesis. J. Bacteriol. 141, 973–976 (1980).
Gourse, R. L., de Boer, H. A. & Nomura, M. DNA determinants of rRNA synthesis in E. coli: growth-rate-dependent regulation, feedback inhibition, upstream activation, antitermination. Cell 44, 197–205 (1986).
Figueroa-Bossi, N., Guerin, M., Rahmouni, R., Leng, M. & Bossi, L. The supercoiling sensitivity of a bacterial tRNA promoter parallels its responsiveness to stringent control. EMBO J. 17, 2359–2367 (1998). Crucial in vivo evidence for a strong link between the stringent response and negative superhelicity.
Schneider, R., Travers, A. & Muskhelishvili, G. The expression of the Escherichia coli fis gene is strongly dependent on the superhelical density of DNA. Mol. Microbiol. 38, 167–176 (2000).
Auner, H. et al. Mechanism of transcriptional activation by FIS: role of core promoter structure and DNA topology. J. Mol. Biol. 331, 331–344 (2003).
Lamond, A. I. & Travers, A. A. Requirement for an upstream element for optimal transcription of a bacterial tRNA gene. Nature 305, 248–250 (1983).
Pemberton, I. K., Muskhelishvili, G., Travers, A. A. & Buckle, M. The GC-rich discriminator region of the tyrT promoter antagonises the formation of stable pre-initiation complexes. J. Mol. Biol. 299, 859–864 (2000).
McClellan, J. A., Boublikova, P., Palaçek, E. & Lilley, D. M. J. Superhelical torsion in cellular DNA responds directly to environmental and genetic factors. Proc. Natl Acad. Sci. USA 87, 105–113 (1990).
Zechiedrich, E. L. et al. Roles of topoisomerases in maintaining steady-state DNA supercoiling in Escherichia coli. J. Biol. Chem. 275, 8103–8113 (2000).
Peter, B. J. et al. Genomic transcriptional response to loss of chromosomal supercoiling in Escherichia coli. Genome Biol. 5, R87 (2004). A rigorous identification of genes that are primarily regulated by changes in negative superhelicity.
Baaklini, I., Hraiky, C., Rallu, F., Tse-Dinh, Y -C. & Drolet, M. RNase H1 overproduction is required for efficient full-length RNA synthesis in the absence of topisomerase I in Escherichia coli. Mol. Microbiol. 54, 198–211 (2004).
Lim, H. M., Lewis, D. E. A., Lee, H. J., Liu, M. & Adhya, S. Effect of varying the supercoiling of DNA on transcription and its regulation. Biochemistry 42, 10718–10725 (2003).
Borek, E., Ryan, A. & Rockenbach, J. Nucleic acid metabolism in relation to the lysogenic phenomenon. J. Bacteriol. 69, 460–467 (1955).
Stent, G. S. & Brenner, S. A genetic locus for the regulation of ribonucleic acid synthesis. Proc. Natl Acad. Sci. USA 47, 2005–2014 (1961).
Cashel, M. & Gallant, J. Two compounds implicated in the function of the RC gene of Escherichia coli. Nature 221, 838–841 (1969). A classic.
Cashel, M. Inhibition of RNA polymerase by ppGpp, a nucleotide accumulated during the stringent response to aminoacid starvation in E. coli. Cold Spring Harb. Symp. Quant. Biol. 35, 407–413 (1970).
van Ooyen, A. J., Gruber, M. & Jorgensen, P. The mechanism of action of ppGpp on rRNA synthesis in vitro. Cell 8, 1–6 (1976).
Travers, A. Modulation of RNA polymerase specificity by ppGpp. Mol. Gen. Genet. 147, 225–232 (1976).
Glass, R. E., Jones, S. T. & Ishihama, A. Genetic studies on the β-subunit of Escherichia coli RNA polymerase. VII. RNA polymerase is a target for ppGpp. Mol. Gen. Genet. 203, 265–268 (1986).
Artsimovitch, I. et al. Structural basis for transcription regulation by alarmone ppGpp. 117, 299–310 (2004). An important crystal structure showing ppGpp binding adjacent to the active site of RNA polymerase.
Lamond, A. I. & Travers, A. A. Genetically separable functional elements mediate the optimal expression and stringent regulation of a bacterial tRNA gene. Cell 40, 319–326 (1985).
Kjeldgaard, N. O., Maaløe, O. & Schaechter, M. The transition between different physiological states during balanced growth of Salmonella typhimurium. J. Gen. Microbiol. 19, 607–616 (1958).
Maaløe, O. & Kjeldgaard, N. O. Control of Macromolecular Synthesis, (W. A. Benjamin, New York, 1966).
Travers, A. A., Lamond, A. I. & Weeks, J. R. Alteration of the growth-rate-dependent regulation of Escherichia coli tyrT expression by promoter mutations. J. Mol. Biol. 189, 251–255 (1986).
Josaitis, C. A., Gaal, T. & Gourse, R. L. Stringent control and growth-rate-dependent control have nonidentical promoter sequence requirements. Proc. Natl Acad. Sci. USA 92, 1117–1121 (1995). The first indication that growth-rate control and stringent control may differ mechanistically.
Pokholok, D. K., Redlak, M., Turnbough, C. L. Jr, Dylla, S. & Holmes, W. M. Multiple mechanisms are used for growth rate and stringent control of leuV transcriptional initiation in Escherichia coli. J. Bacteriol. 181, 5771–5782 (1999).
Zacharias, M., Goringer, H. U. & Wagner, R. Influence of the GCGC discriminator motif introduced into the ribosomal RNA P2 and tac promoter on growth-rate control and stringent sensitivity. EMBO J. 8, 3357–3363 (1989).
Muskhelishvili, G., Travers, A. A., Heumann, H. & Kahmann, R. FIS and RNA polymerase holoenzyme form a specific nucleoprotein complex at a stable RNA promoter. EMBO J. 14, 1446–1452 (1995).
Aiyar, S. E. et al. Architecture of Fis-activated transcription complexes at the Escherichia coli rrnB P1 and rrnE P1 promoters. J. Mol. Biol. 316, 501–516 (2002).
Finkel, S. E. & Johnson, R. C. The FIS protein: it's not just for inversion anymore. Mol. Microbiol. 6, 3166–3175 (1992).
Lazarus, L. R. & Travers, A. A. The E. coli FIS protein is not required for the activation of tyrT transcription on simple nutritional upshift. EMBO J. 12, 2483–2494 (1993).
Muskhelishvili, G., Buckle, M., Heumann, H., Kahmann, R. & Travers, A. A. FIS activates sequential steps during transcription initiation at a stable RNA promoter. EMBO J. 16, 3655–3665 (1997).
Rochman, M., Aviv, M., Glaser, G. & Muskhelishvili, G. Promoter protection by a transcription factor acting as a local topological homeostat. EMBO Rep. 3, 335–360 (2002). A demonstration that a transcriptional activator can directly compensate for changes in negative superhelicity in vivo.
Rochman, M. et al. Buffering of stable RNA promoter activity against promoter relaxation requires a far upstream sequence. Mol. Microbiol. 53, 143–152 (2004).
Revyakin, A., Ebright, R. H. & Strick, T. R. Promoter unwinding and promoter clearance by RNA polymerase: detection by single-molecule DNA nanomanipulation. Proc. Natl Acad. Sci. USA 101, 4776–4780 (2004).
Hamming, J., Ab, G. & Gruber, M. E. coli RNA polymerase–rRNA promoter interaction and the effect of ppGpp. Nucleic Acids Res. 8, 3947–3963 (1979).
Heinemann, M. & Wagner, R. Guanosine 3′,5′-bis(diphosphate) (ppGpp)-dependent inhibition of transcription from stringently controlled Escherichia coli promoters can be explained by an altered initiation pathway that traps RNA polymerase. Eur. J. Biochem. 247, 990–999 (1997). Inference of alternative initiation pathways in the presence and absence of ppGpp.
Gourse, R. L. Visualisation and quantitative analysis of complex formation between E. coli RNA polymerase and an rRNA promoter in vitro. Nucleic Acids Res. 19, 4413–4419 (1988).
Barker, M. M., Gaal, T. & Gourse, R. L. Mechanism of regulation of transcription initiation by ppGpp. I. Effects of ppGpp on transcription initiation in vivo and in vitro. J. Mol. Biol. 305, 673–688 (2001).
Da Costa, X. J. & Artz, S. W. Mutations that render the promoter of the histidine operon of Salmonella typhimurium insensitive to nutrient-rich medium repression and amino acid downshift. J. Bacteriol. 179, 5211–5217 (1998).
Travers, A. & Muskhelishvili, G. DNA microloops and microdomains: a general mechanism for transcription activation by torsional transmission. J. Mol. Biol. 279, 1027–1043 (1998).
Opel, M. L. et al. Activation of transcription initiation from a stable RNA promoter by a Fis protein-mediated DNA structural transmission mechanism. Mol. Microbiol. 53, 665–674 (2004).
Hatfield, G. W. & Benham, C. J. DNA topology-mediated control of global gene expression in Escherichia coli. Annu. Rev. Genet. 36, 175–203 (2002).
Friesen, J. D., Fiil, N. P. & von Meyenburg, K. Synthesis and turnover of basal level guanosine tetraphosphate in Escherichia coli. J. Biol. Chem. 250, 304–309 (1975).
Petersen, C. & Moller, L. B. Invariance of the nucleoside triphosphate pools of Escherichia coli with growth rate. J. Biol. Chem. 275, 3931–3935 (2000).
Schneider, D. A. & Gourse, R. L. Relationship between growth rate and ATP concentration in Escherichia coli: a bioassay for available cellular ATP. J. Biol. Chem. 279, 8262–8268 (2004).
Gaal, T., Bartlett, M. S., Ross, W., Turnbough, C. L. Jr & Gourse, R. L. Transcription regulation by initiating NTP concentration: rRNA synthesis in bacteria. Science 278, 2092–2097 (1997).
Ryals, J., Little, R. & Bremer, H. Control of rRNA and tRNA syntheses in Escherichia coli by guanosine tetraphosphate. J. Bacteriol. 151, 1261–1268 (1982).
Lazzarini, R. A., Cashel, M. & Gallant, J. On the regulation of guanosine tetraphosphate levels in stringent and relaxed strains of Escherichia coli. J. Biol. Chem. 246, 4381–4385 (1971).
Gaal, T. & Gourse, R. L. Guanosine 3′-diphosphate 5′-diphosphate is not required for growth rate-dependent control of rRNA synthesis in Escherichia coli. Proc. Natl Acad. Sci. USA 87, 5533–5577 (1990).
Schneider, R., Travers, A., Kutateladze, T. & Muskhelishvili, G. A DNA architectural protein couples cellular physiology and DNA topology in Escherichia coli. Mol. Microbiol. 34, 953–964 (1999).
Schneider, D. A. & Gourse, R. L. Changes in Escherichia coli rRNA promoter activity correlate with changes in initiating nucleoside triphosphate and guanosine 5′-diphosphate 3′-diphosphate concentrations after induction of feedback control of ribosome synthesis. J. Bacteriol. 185, 6185–6191 (2003).
Zhou, Y. N. & Jin, D. J. The rpoB mutants destabilizing initiation complexes at stringently controlled promoters behave like 'stringent' RNA polymerases in Escherichia coli. Proc. Natl Acad. Sci. USA 95, 2908–2913 (1998).
Bartlett, M. S., Gaal, T., Ross, W. & Gourse, R. L. Regulation of rRNA transcription is remarkably robust: FIS compensates for altered nucleoside triphosphate sensing by mutant RNA polymerases at Escherichia coli rrn P1 promoters. J. Bacteriol. 182, 1969–1977 (2000).
Zhi, H., Wang, X., Cabrera, J. E., Johnson, R. C. & Jin, D. J. Fis stabilizes the interaction between RNA polymerase and the ribosomal promoter rrnB P1, leading to transcriptional activation. J. Biol. Chem. 278, 47340–47349 (2003).
Little, R., Ryals, J. & Bremer, H. rpoB mutation in Escherichia coli alters control of ribosome synthesis by guanosine tetraphosphate. J. Bacteriol. 154, 787–792 (1983).
Baralle, F. E. & Travers, A. Phage T4 infection restricts rRNA synthesis by E. coli RNA polymerase. Mol. Gen. Genet. 147, 291–297 (1976).
Sinden, R. R. & Pettijohn, D. E. Torsional tension in intracellular bacteriophage T4 DNA. Evidence that a linear DNA duplex can be supercoiled in vivo. J. Mol. Biol. 162, 659–677 (1982).
Allbright, L. M. & Geiduschek, E. P. Topoisomerization of plasmid DNA in Escherichia coli infected with bacteriophage T4. J. Mol. Biol. 190, 329–341 (1986).
Balke, V. L. & Gralla, J. D. Changes in the linking number of supercoiled DNA accompany growth transitions in Escherichia coli. J. Bacteriol. 169, 4499–4506 (1987).
Bordes, P. et al. DNA supercoiling contributes to disconnect σS accumulation from σS-dependent transcription in Escherichia coli. Mol. Microbiol. 48, 561–571 (2003). A direct demonstration that changes in negative superhelicity are an essential component of the exponential to stationary growth-phase transition.
Jensen, P. R., Loman, L., Petra, B., van der Weijden, C. & Westerhoff, H. V. Energy buffering of DNA structure fails when Escherichia coli runs out of substrate. J. Bacteriol. 177, 3420–3426 (1995).
Marshall, D. G., Bowe, F., Hale, C., Dougan, G. & Dorman, C. J. DNA topology and adaptation of Salmonella typhimurium to an intracellular environment. Phil. Trans. R. Soc. Lond. B 355, 565–574 (2000).
Jensen, P. R., Van Der Weijden, C. C., Jensen, L. B., Westerhoff, H. V. & Snoep, J. L. Extensive regulation compromises the extent to which DNA gyrase controls DNA supercoiling and growth rate of Escherichia coli. Eur. J. Biochem. 266, 865–877 (1999).
Rimsky, S., Zuber, F, Buckle, M. & Buc, H. A molecular mechanism for the repression of transcription by the H-NS protein. Mol. Microbiol. 42, 1311–1323 (2001).
Rimsky, S. Structure of the histone-like protein H-NS and its role in regulation and genome superstructure. Curr. Opin. Microbiol. 7, 109–114 (2004).
Dorman, C. J. H-NS: a universal regulator for a dynamic genome. Nature Rev. Microbiol. 2, 391–400 (2004).
Hulton, C. S. et al. A physiological role for DNA supercoiling in the osmotic regulation of gene expression in S. typhimurium and E. coli. Cell. 52, 569–584 (1988).
Swinger, K., Lemberg, K. M., Zhang, Y. & Rice, P. A. Flexible DNA bending in HU-DNA cocrystal structures. EMBO J. 22, 3749–3760 (2003).
Morales, P., Rouviére-Yaniv, J. & Dreyfus, M. The histone-like protein HU does not obstruct movement of T7 RNA polymerase in Escherichia coli cells but stimulates its activity. J. Bacteriol. 184, 1565–1570 (2002).
Betermier, M., Galas, D. J. & Chandler, M. Interaction of Fis protein with DNA: bending and specificity of binding. Biochimie 76, 958–967 (1994).
Schneider, R. et al. An architectural role of the Escherichia coli chromatin protein FIS in organising DNA. Nucleic Acids Res. 29, 5107–5114 (2002).
Claret, L. & Rouviére-Yaniv, J. Regulation of HUα and HUβ by CRP and FIS in Escherichia coli. J. Mol. Biol. 263, 126–139 (1996).
Dorman, C. J. & Deighan, P. Regulation of gene expression by histone-like proteins in bacteria. Curr. Opin. Genet. Dev. 13, 179–184 (2003).
Ninnemann, O., Koch, C. & Kahmann, R. The E. coli fis promoter is subject to stringent control and autoregulation. EMBO J. 11, 1075–1083 (1992).
Nilsson, L. et al. FIS-dependent trans-activation of stable RNA operons of Escherichia coli under various growth conditions. J. Bacteriol. 174, 921–929 (1992).
Gonzàlez-Gil, G., Kahmann, R. & Muskhelishvili, G. Regulation of crp transcription by oscillation between distinct nucleoprotein complexes. EMBO J. 17, 2877–2885 (1998).
Nasser, W., Schneider, R., Travers, A. & Muskhelishvili, G. CRP modulates fis transcription by alternate formation of activating and repressing nucleoprotein complexes. J. Biol. Chem. 276, 17878–17886 (2001).
Falconi, M., Brandi, A., La Teana, A., Gualerzi, C. O. & Pon, C. L. Antagonistic involvement of FIS and H-NS proteins in the transcriptional control of hns expression. Mol. Microbiol. 19, 965–975 (1996).
Bensaid, A., Almeida, A., Drlica, K. & Rouviere-Yaniv, J. Cross-talk between topoisomerase I and HU in Escherichia coli. J. Mol. Biol. 256, 292–300 (1996).
Gaston, K., Bell, A., Kolb, A., Buc, H. & Busby, S. Stringent spacing requirements for transcription activation by CRP. Cell 62, 733–743 (1990).
Weinstein-Fischer, D., Elgrably-Weiss, M. & Altuvia, S. Escherichia coli response to hydrogen peroxide: a role for DNA supercoiling, topoisomerase I and Fis. Mol. Microbiol. 35, 1413–1420 (2000).
Gomez-Gomez, J. M., Baquero, F. & Blazquez, J. Cyclic AMP receptor protein positively controls gyrA transcription and alters DNA topology after nutritional upshift in Escherichia coli. J. Bacteriol. 178, 3331–3334 (1996).
Johansson, J. et al. Nucleoid proteins stimulate stringently controlled bacterial promoters: a link between the cAMP-CRP and the (p)ppGpp regulons in Escherichia coli. Cell 102, 475–485 (2000).
Wang, Q. & Calvo, J. M. Lrp, a major regulatory protein in Escherichia coli, bends DNA and can organize the assembly of a higher-order nucleoprotein structure. EMBO J. 12, 2495–2501 (1993).
Beloin, C. et al. Contribution of DNA conformation and topology in right-handed DNA wrapping by the Bacillus subtilis LrpC protein. J. Biol. Chem. 278, 5333–5342 (2003).
Ishihama, A. Functional modulation of Escherichia coli RNA polymerase. Annu. Rev. Microbiol. 54, 499–518 (2000).
Ball, C. A., Osuna, R., Ferguson, K. C. & Johnson, R. C. Dramatic changes in FIS levels upon nutrient upshift in Escherichia coli. J. Bacteriol. 174, 8043–8046 (1992).
Claret, L. & Rouvière-Yaniv, J. Variation in HU composition during growth of Escherichia coli: the heterodimer is required for long-term survival. J. Mol. Biol. 273, 93–104 (1997).
Conter, A., Menchon, C. & Gutierrez, C. Role of DNA supercoiling and rpoS sigma factor in the osmotic and growth phase-dependent induction of the gene osmE of Escherichia coli K12. J. Mol. Biol. 273, 75–83 (1997).
Hengge-Aronis, R. Survival of hunger and stress: the role of rpoS in early stationary phase gene regulation in E. coli. Cell 72, 165–168 (1993).
Jishage, M. & Ishihama, A. Transcriptional organization and in vivo role of the Escherichia coli rsd gene, encoding the regulator of RNA polymerase sigma D. J. Bacteriol. 181, 1181–1184 (1999).
Kusano, S., Ding, Q., Fujita, N. & Ishihama, A. Promoter selectivity of Escherichia coli RNA polymerase E σ70 and E σ38 holoenzymes. Effect of DNA supercoiling. J. Biol. Chem. 271, 1998–2004 (1996). First evidence for sigma-factor-dependent RNA polymerase discrimination between supercoiled and relaxed DNA templates.
Igarashi, K., Fujita, N. & Ishihama, A. Promoter selectivity of Escherichia coli RNA polymerase: ω factor is responsible for the ppGpp sensitivity. Nucleic Acids Res. 17, 8755–8765 (1989).
Gentry, D., Xiao, H., Burgess, R. & Cashel, M. The ω subunit of Escherichia coli K-12 RNA polymerase is not required for stringent RNA control in vivo. J. Bacteriol. 173, 3901–3903 (1991).
Minakhin, L. et al. Bacterial RNA polymerase subunit ω and eukaryotic RNA polymerase subunit RPB6 are sequence, structural, and functional homologs and promote RNA polymerase assembly. Proc. Natl Acad. Sci. USA 98, 892–897 (2001).
Murray, H. D., Schneider, D. A. & Gourse, R. L. Control of rRNA expression by small molecules is dynamic and nonredundant. Mol. Cell 12, 125–134 (2003). Important but controversial paper presenting evidence for a correlation between rRNA transcription and relative levels of ppGpp and initiating nucleoside triphosphates.
Stupina, V. A. & Wang, J. C. DNA axial rotation and the merge of oppositely supercoiled DNA domains in Escherichia coli; effects of DNA bends. Proc. Natl Acad. Sci. USA 101, 8608–8613 (2004).
Deng, S., Stein, R. A. & Higgins, M. P. Transcription-induced barriers to supercoil diffusion in the Salmonella typhimurium genome. Proc. Natl Acad. Sci. USA 101, 3398–3403 (2004).
Liu, L. F. & Wang, J. C. Supercoiling of the DNA template during transcription. Proc. Natl Acad. Sci. USA 84, 7024–7027 (1987).
Bowater, R. P., Chen, D. & Lilley, D. M. J. Modulation of tyrT promoter activity by template supercoiling in vivo. EMBO J. 13, 5647–5655 (1994).
Apirakaramwong, A. et al. Involvement of ppGpp, ribosome modulation factor, and stationary phase-specific sigma factor σS in the decrease in cell viability caused by spermidine. Biochem. Biophys. Res. Commun. 264, 643–647 (1999).
Tkachenko, A. G. & Nesterova, L. Y. Polyamines as modulators of gene expression under oxidative stress in Escherichia coli. Biochemistry (Mosc.) 68, 850–856 (2003).
Lange, R., Fischer, D. & Hengge-Aronis, R. Identification of transcriptional start sites and the role of ppGpp in the expression of rpoS, the structural gene for the σS subunit of RNA polymerase in Escherichia coli. J. Bacteriol. 177, 4676–4680 (1995).
Gentry, D. R., Hernandez, V. J., Nguyen, L. H., Jensen, D. B. & Cashel, M. Synthesis of the stationary-phase sigma factor σs is positively regulated by ppGpp. J. Bacteriol. 175, 7982–7989 (1993).
Jishage, M., Kvint, K., Shingler, V. & Nystrom, T. Regulation of sigma factor competition by the alarmone ppGpp. Genes Dev. 16, 1260–1270 (2002).
Falconi, M., Colonna, B., Prosseda, G., Micheli, G. & Gualerzi, C. O. Thermoregulation of Shigella and Escherichia coli EIEC pathogenicity. A temperature-dependent structural transition of DNA modulates accessibility of virF promoter to transcriptional repressor H-NS. EMBO J. 17, 7033–7043 (1998).
Schultz, S. G., Solomon, A. K. Cation transport in Escherichia coli. I. Intracellular Na and K concentrations and net cation movement. J. Gen. Physiol. 45, 355–369 (1961).
Schultz, S. G., Epstein, W. & Solomon, A. K. Cation transport in Escherichia coli. IV. Kinetics of net K uptake. J. Gen. Physiol. 47, 329–346 (1963).
Schneider, D. A., Gaal, T. & Gourse, R. L. NTP-sensing by rRNA promoters in Escherichia coli is direct. Proc. Natl Acad. Sci. USA 99, 8602–8609 (2002).
Jöres, L. & Wagner, R. Essential steps in the ppGpp-dependent regulation of bacterial ribosomal RNA promoters can be explained by substrate competition. J. Biol. Chem. 279, 16834–16843 (2003).
Dayn, A., Malkhosyan, S. & Mirkin, S. M. Transcriptionally driven cruciform formation in vivo. Nucleic Acids Res. 20, 5991–5997 (1992).
Haniford, D. B. & Pulleyblank, D. E. Transition of a cloned d(AT)n-d(AT)n tract to a cruciform in vivo. Nucleic Acids Res. 13, 4344–4363 (1985).
Wu, C. -W. & Goldthwait, D. A. Studies of nucleotide binding to the ribonucleic acid polymerase by a fluorescence technique. Biochemistry 8, 4450–4458 (1969).
Chapman, A. G., Fall, L. & Atkinson, D. E. Adenylate energy charge in Escherichia coli during growth and starvation. J. Bacteriol. 108, 1072–1086 (1971).
Brown, L., Gentry, D., Elliott, T. & Cashel, M. DksA affects ppGpp induction of RpoS at a translational level. J. Bacteriol. 184, 4455–4465 (2002).
Hirsch, M. & Elliott, T. Role of ppGpp in rpoS stationary-phase regulation in Escherichia coli. J. Bacteriol. 184, 5077–5087 (2002).
Perederina, A. et al. Regulation through the secondary channel structural framework for ppGpp–DksA synergism during transcription. Cell 118, 297–309 (2004).
Paul, B. J. et al. DksA: a critical component of the transcription initiation machinery that potentiates the regulation of rRNA promoters by ppGpp and the initiating NTP. Cell 118, 311–322 (2004).
Postow, N., Hardy, C. D., Arsuaga, J. & Cozzarelli, N. R. Topological domain structure of the Escherichia coli chromosome. Genes Dev. 18, 1766–1779 (2004). A rigorous examination of higher-order structure of supercoiled domains in the E. coli chromosome.
Valens, M., Penaud, S., Rossignol, M., Cornet, F. & Boccard, F. Macrodomain organization of the Escherichia coli chromosome. EMBO J. 23, 4330–4341 (2004).
Jeong, K. S., Ahn, J. & Khodursky, A. B. Spatial partners of transcriptional activity in the chromosome. Genome Biol. 5, R86 (2004).
Kèpés, F. Periodic transcriptional organization of the E. coli genome. J. Mol. Biol. 340, 957–964 (2004).
Crozat, E., Phillippe, N., Lenski, R. E., Geiselmann, J. & Schneider, D. Long-term experimental evolution in Escherichia coli. XII. DNA topology as a key target of selection. Genetics 16 Oct 2004 (10.1534/genetics.104.035717). A direct confirmation of the importance of DNA topology in global transcription regulation in E. coli.
Eymann, C., Homuth, G., Scharf, C. & Hecker, M. Bacillus subtilis functional genomics: global characterisation of the stringent response by proteome and transcriptome analysis. J. Bacteriol. 184, 2500–2520 (2002).
Azam, A. T., Iwata, A., Nishimura, A., Ueda, S. & Ishihama, A. Growth-phase-dependent variation in protein composition of the E. coli nucleoid. J. Bacteriol. 181, 6361–6370 (1999).
Acknowledgements
We thank B. Peter, N. Cozzarelli and their colleagues for making available their results prior to publication and G. Mitchison for a very constructive reading of the manuscript.
Author information
Authors and Affiliations
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Related links
Related links
DATABASES
Entrez
SwissProt
FURTHER INFORMATION
Glossary
- RHEOSTATIC CONTROL
-
A regulatory process for which the output is continuously variable in contrast to an on–off switch — an analogue rather than a digital response.
- CLOSED COMPLEX
-
The complex that is formed between RNA polymerase and duplex promoter DNA, and precedes the initiation of DNA untwisting.
- NUCLEATION
-
The initiation of DNA untwisting in a promoter. In bacterial promoters nucleation occurs in the −10 region.
- OPEN COMPLEX
-
For transcription, the two strands of the DNA duplex must be unwound locally. An open complex is formed when RNA polymerase binds at a promoter and the duplex around the transcription start site is unwound.
- R-LOOPS
-
An R-loop is formed when an RNA molecule hybridizes with a DNA duplex and takes the form of a bubble in which one half is a DNA–RNA duplex and the other half a single-stranded DNA of the same sequence as the hybridized RNA.
- STRINGENT RESPONSE
-
The cessation of macromolecular synthesis on starvation of bacteria for a required amino acid. The stringent response is signalled by the production of ppGpp by the RelA protein when an uncharged tRNA binds to a ribosome.
- GROWTH-RATE CONTROL
-
The process that coordinates the expression of promoters with the growth rate of a bacterial culture. For stable RNA promoters growth rate and expression are strongly positively correlated.
- PLECTONEMIC
-
In the plectonemic or interwound form of supercoiled DNA, the DNA coils are wrapped around each other (see Box 1). In a circular supercoiled DNA molecule the interwindings are joined by a loop or 'apex' at each end of the structure.
- ANTI-SIGMA FACTORS
-
A negative transcriptional regulator that acts by binding to a sigma factor and preventing its activity.
Rights and permissions
About this article
Cite this article
Travers, A., Muskhelishvili, G. DNA supercoiling — a global transcriptional regulator for enterobacterial growth?. Nat Rev Microbiol 3, 157–169 (2005). https://doi.org/10.1038/nrmicro1088
Issue Date:
DOI: https://doi.org/10.1038/nrmicro1088