Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Rewiring cellular networks by members of the Flaviviridae family

Key Points

  • Flaviviruses and hepaciviruses share similarities in their fundamental replication mechanisms and strategies to manipulate the host cell, yet important differences exist, likely reflecting the use of distinct host cell pathways.

  • RNA replication of Flaviviridae family members occurs in tight association with endoplasmic reticulum-derived membranes, which are reorganized into viral replication organelles. Whereas the morphology and the architecture of these replication organelles are well defined, relatively little is known about the viral and cellular factors orchestrating their biogenesis.

  • Protein folding, modification and degradation are essential, tightly regulated cellular processes, and a number of common host factors and pathways that are involved in these processes appear to be exploited by both flaviviruses and hepaciviruses at different steps of their replication cycle. These include heat shock protein 70 (HSP70) network components, the unfolded protein response, the ubiquitin-dependent proteasome system and autophagy.

  • Accumulating evidence indicates that lipids and lipid metabolism fulfil essential roles in the life cycle of Flaviviridae viruses. They alter the lipid composition of cellular membranes, serving as scaffold for the assembly of the viral replicase by changing their biophysical properties, such as curvature, permeability and fluidity.

  • The identification of host cell pathways and factors commonly used by members of the Flaviviridae family might help in the development of broad-spectrum antiviral drugs that target multiple members of this family and/or other virus families.

  • As exemplified by members of the Flaviviridae family, the use of host cell pathways does not follow conventional phylogeny but, rather, reveals unexpected commonalities with distantly related viruses, raising the question of evolutionary relationships between these viruses.

Abstract

Members of the Flaviviridae virus family comprise a large group of enveloped viruses with a single-strand RNA genome of positive polarity. Several genera belong to this family, including the Hepacivirus genus, of which hepatitis C virus (HCV) is the prototype member, and the Flavivirus genus, which contains both dengue virus and Zika virus. Viruses of these genera differ in many respects, such as the mode of transmission or the course of infection, which is either predominantly persistent in the case of HCV or acutely self-limiting in the case of flaviviruses. Although the fundamental replication strategy of Flaviviridae members is similar, during the past few years, important differences have been discovered, including the way in which these viruses exploit cellular resources to facilitate viral propagation. These differences might be responsible, at least in part, for the various biological properties of these viruses, thus offering the possibility to learn from comparisons. In this Review, we discuss the current understanding of how Flaviviridae viruses manipulate and usurp cellular pathways in infected cells. Specifically, we focus on comparing strategies employed by flaviviruses with those employed by hepaciviruses, and we discuss the importance of these interactions in the context of viral replication and antiviral therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Flavivirus and Hepacivirus genome organization and membrane topology of mature viral proteins.
Figure 2: Three-dimensional structure and organization of Flavivirus and Hepacivirus replication organelles.
Figure 3: Cellular pathways co-opted by Flavivirus and Hepacivirus.
Figure 4: Cellular organelles co-opted by Flavivirus and Hepacivirus.

Similar content being viewed by others

References

  1. [No authors listed.] Taxonomy. International Committee on Taxonomy of Viruses (ICTV) https://talk.ictvonline.org/taxonomy/ (2017).

  2. [No authors listed.] Hepatitis C fact sheet. World Health Organization http://www.who.int/mediacentre/factsheets/fs164/en/ (2017).

  3. Manns, M. P. et al. Hepatitis C virus infection. Nat. Rev. Dis. Primers. 3, 17006 (2017).

    Article  PubMed  Google Scholar 

  4. Stanaway, J. D. et al. The global burden of dengue: an analysis from the Global Burden of Disease Study 2013. Lancet Infect. Dis. 16, 712–723 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hadinegoro, S. R. et al. Efficacy and long-term safety of a dengue vaccine in regions of endemic disease. N. Engl. J. Med. 373, 1195–1206 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. Wikan, N. & Smith, D. R. Zika virus: history of a newly emerging arbovirus. Lancet Infect. Dis. 16, e119–e126 (2016).

    Article  PubMed  Google Scholar 

  7. Miner, J. J. & Diamond, M. S. Zika virus pathogenesis and tissue tropism. Cell Host Microbe 21, 134–142 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Paul, D. & Bartenschlager, R. Flaviviridae replication organelles: oh, what a tangled web we weave. Annu. Rev. Virol. 2, 289–310 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Welsch, S. et al. Composition and three-dimensional architecture of the dengue virus replication and assembly sites. Cell Host Microbe 5, 365–375 (2009). This study reveals the three-dimensional architecture of DENV ROs using electron tomography. This study also identifies assembling virus particles in close apposition of viral replication sites and provides a model on the spatio-temporal coupling of the different steps of the DENV life cycle.

    Article  CAS  PubMed  Google Scholar 

  10. Cortese, M. et al. Ultrastructural characterization of Zika virus replication factories. Cell Rep. 18, 2113–2123 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gillespie, L. K., Hoenen, A., Morgan, G. & Mackenzie, J. M. The endoplasmic reticulum provides the membrane platform for biogenesis of the flavivirus replication complex. J. Virol. 84, 10438–10447 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Westaway, E. G., Mackenzie, J. M., Kenney, M. T., Jones, M. K. & Khromykh, A. A. Ultrastructure of Kunjin virus-infected cells: colocalization of NS1 and NS3 with double-stranded RNA, and of NS2B with NS3, in virus-induced membrane structures. J. Virol. 71, 6650–6661 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Horner, S. M., Liu, H. M., Park, H. S., Briley, J. & Gale, M. Jr. Mitochondrial-associated endoplasmic reticulum membranes (MAM) form innate immune synapses and are targeted by hepatitis C virus. Proc. Natl Acad. Sci. USA 108, 14590–14595 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Chatel-Chaix, L. et al. Dengue virus perturbs mitochondrial morphodynamics to dampen innate immune responses. Cell Host Microbe 20, 342–356 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Junjhon, J. et al. Ultrastructural characterization and three-dimensional architecture of replication sites in dengue virus-infected mosquito cells. J. Virol. 88, 4687–4697 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Romero-Brey, I. et al. Three-dimensional architecture and biogenesis of membrane structures associated with hepatitis C virus replication. PLOS Pathog. 8, e1003056 (2012). This study uses electron tomography to reveal that HCV ROs are primarily composed of double-membrane vesicles and provides evidence that these structures might be the site of viral RNA replication.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Esser-Nobis, K. et al. Analysis of hepatitis C virus resistance to silibinin in vitro and in vivo points to a novel mechanism involving nonstructural protein 4B. Hepatology 57, 953–963 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Paul, D., Hoppe, S., Saher, G., Krijnse-Locker, J. & Bartenschlager, R. Morphological and biochemical characterization of the membranous hepatitis C virus replication compartment. J. Virol. 87, 10612–10627 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Quinkert, D., Bartenschlager, R. & Lohmann, V. Quantitative analysis of the hepatitis C virus replication complex. J. Virol. 79, 13594–13605 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Miyanari, Y. et al. Hepatitis C virus non-structural proteins in the probable membranous compartment function in viral genome replication. J. Biol. Chem. 278, 50301–50308 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Neufeldt, C. J. et al. The hepatitis C virus-induced membranous web and associated nuclear transport machinery limit access of pattern recognition receptors to viral replication sites. PLOS Pathog. 12, e1005428 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Neufeldt, C. J. et al. Hepatitis C virus-induced cytoplasmic organelles use the nuclear transport machinery to establish an environment conducive to virus replication. PLOS Pathog. 9, e1003744 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zou, J. et al. Dimerization of flavivirus NS4B protein. J. Virol. 88, 3379–3391 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Spuul, P. et al. Assembly of alphavirus replication complexes from RNA and protein components in a novel trans-replication system in mammalian cells. J. Virol. 85, 4739–4751 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kallio, K., Hellstrom, K., Jokitalo, E. & Ahola, T. RNA replication and membrane modification require the same functions of alphavirus nonstructural proteins. J. Virol. 90, 1687–1692 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Ertel, K. J. et al. Cryo-electron tomography reveals novel features of a viral RNA replication compartment. eLife 6, e25940 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Akey, D. L. et al. Flavivirus NS1 structures reveal surfaces for associations with membranes and the immune system. Science 343, 881–885 (2014). This study is the first report of the three-dimensional structure of full-length, glycosylated NS1 from WNV and DENV, revealing distinct domains for membrane association of the dimer and interactions with the immune system.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Brown, W. C. et al. Extended surface for membrane association in Zika virus NS1 structure. Nat. Struct. Mol. Biol. 23, 865–867 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Apte-Sengupta, S., Sirohi, D. & Kuhn, R. J. Coupling of replication and assembly in flaviviruses. Curr. Opin. Virol. 9, 134–142 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Tabata, K. et al. Unique requirement for ESCRT factors in flavivirus particle formation on the endoplasmic reticulum. Cell Rep. 16, 2339–2347 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. Romero-Brey, I. et al. NS5A domain 1 and polyprotein cleavage kinetics are critical for induction of double-membrane vesicles associated with hepatitis C virus replication. mBio 6, e00759 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Egger, D. et al. Expression of hepatitis C virus proteins induces distinct membrane alterations including a candidate viral replication complex. J. Virol. 76, 5974–5984 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Paul, D. et al. NS4B self-interaction through conserved C-terminal elements is required for the establishment of functional hepatitis C virus replication complexes. J. Virol. 85, 6963–6976 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Madan, V., Paul, D., Lohmann, V. & Bartenschlager, R. Inhibition of HCV replication by cyclophilin antagonists is linked to replication fitness and occurs by inhibition of membranous web formation. Gastroenterology 146, 1361–1372.e9 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Reiss, S. et al. Recruitment and activation of a lipid kinase by hepatitis C virus NS5A is essential for integrity of the membranous replication compartment. Cell Host Microbe 9, 32–45 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Moradpour, D. & Penin, F. Hepatitis C virus proteins: from structure to function. Curr. Top. Microbiol. Immunol. 369, 113–142 (2013).

    CAS  PubMed  Google Scholar 

  37. Berger, C. et al. Daclatasvir-like inhibitors of NS5A block early biogenesis of hepatitis C virus-induced membranous replication factories, independent of RNA replication. Gastroenterology 147, 1094–1105.e25 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. Acosta, E. G., Kumar, A. & Bartenschlager, R. Revisiting dengue virus-host cell interaction: new insights into molecular and cellular virology. Adv. Virus Res. 88, 1–109 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Bartenschlager, R., Lohmann, V. & Penin, F. The molecular and structural basis of advanced antiviral therapy for hepatitis C virus infection. Nat. Rev. Microbiol. 11, 482–496 (2013).

    Article  CAS  PubMed  Google Scholar 

  40. Stocks, C. E. & Lobigs, M. Signal peptidase cleavage at the flavivirus C-prM junction: dependence on the viral NS2B-3 protease for efficient processing requires determinants in C, the signal peptide, and prM. J. Virol. 72, 2141–2149 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Amberg, S. M. & Rice, C. M. Mutagenesis of the NS2B-NS3-mediated cleavage site in the flavivirus capsid protein demonstrates a requirement for coordinated processing. J. Virol. 73, 8083–8094 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Lee, E., Stocks, C. E., Amberg, S. M., Rice, C. M. & Lobigs, M. Mutagenesis of the signal sequence of yellow fever virus prM protein: enhancement of signalase cleavage in vitro is lethal for virus production. J. Virol. 74, 24–32 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lobigs, M. & Lee, E. Inefficient signalase cleavage promotes efficient nucleocapsid incorporation into budding flavivirus membranes. J. Virol. 78, 178–186 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang, R. et al. A CRISPR screen defines a signal peptide processing pathway required by flaviviruses. Nature 535, 164–168 (2016). This genome-wide CRISPR–Cas9-based screen to identify host dependency factors for the Flaviviridae life cycle reveals a strong dependence on the signal peptide processing pathway for the replication of this virus family.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Estoppey, D. et al. The natural product cavinafungin selectively interferes with Zika and dengue virus replication by inhibition of the host signal peptidase. Cell Rep. 19, 451–460 (2017).

    Article  CAS  PubMed  Google Scholar 

  46. Idris, F., Muharram, S. H. & Diah, S. Glycosylation of dengue virus glycoproteins and their interactions with carbohydrate receptors: possible targets for antiviral therapy. Arch. Virol. 161, 1751–1760 (2016).

    Article  CAS  PubMed  Google Scholar 

  47. Hundt, J., Li, Z. & Liu, Q. Post-translational modifications of hepatitis C viral proteins and their biological significance. World J. Gastroenterol. 19, 8929–8939 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Marceau, C. D. et al. Genetic dissection of Flaviviridae host factors through genome-scale CRISPR screens. Nature 535, 159–163 (2016). This is a genome-wide CRISPR–Cas9-based screen that is used to identify host dependency factors for Flaviviridae virus infection and reveals a non-canonical role for the OST complex in DENV RNA replication.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lin, D. L. et al. Dengue virus hijacks a noncanonical oxidoreductase function of a cellular oligosaccharyltransferase complex. mBio 8, e00939-17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Taguwa, S. et al. Defining Hsp70 subnetworks in dengue virus replication reveals key vulnerability in Flavivirus infection. Cell 163, 1108–1123 (2015). This is a comprehensive study examining the role of HSP70 and its specific co-chaperones for Flavivirus replication. Specifically, this study demonstrates a conserved role of the HSP70 network for all stages of the Flavivirus replication cycle.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Taguwa, S. & Frydman, J. The significance of Hsp70 subnetwork for dengue virus lifecycle. Uirusu 65, 179–186 (2015).

    Article  CAS  PubMed  Google Scholar 

  52. Yi, Z. et al. Identification and characterization of the host protein DNAJC14 as a broadly active flavivirus replication modulator. PLOS Pathog. 7, e1001255 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bozzacco, L. et al. Chaperone-assisted protein folding is critical for yellow fever virus NS3/4A cleavage and replication. J. Virol. 90, 3212–3228 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gonzalez, O. et al. The heat shock protein inhibitor Quercetin attenuates hepatitis C virus production. Hepatology 50, 1756–1764 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Peng, Z. G. et al. Small molecular compounds that inhibit hepatitis C virus replication through destabilizing heat shock cognate 70 messenger RNA. Hepatology 52, 845–853 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Khachatoorian, R. et al. Allosteric heat shock protein 70 inhibitors block hepatitis C virus assembly. Int. J. Antimicrob. Agents 47, 289–296 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Khachatoorian, R. et al. The NS5A-binding heat shock proteins HSC70 and HSP70 play distinct roles in the hepatitis C viral life cycle. Virology 454–455, 118–127 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Braga, A. C., Carneiro, B. M., Batista, M. N., Akinaga, M. M. & Rahal, P. Inhibition of hepatitis C virus using siRNA targeted to the virus and Hsp90. Cell Stress Chaperones 22, 113–122 (2017).

    Article  CAS  PubMed  Google Scholar 

  59. Baugh, J. M., Garcia-Rivera, J. A. & Gallay, P. A. Host-targeting agents in the treatment of hepatitis C: a beginning and an end? Antiviral Res. 100, 555–561 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jheng, J. R., Ho, J. Y. & Horng, J. T. ER stress, autophagy, and RNA viruses. Front. Microbiol. 5, 388 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Diwaker, D., Mishra, K. P. & Ganju, L. Effect of modulation of unfolded protein response pathway on dengue virus infection. Acta Biochim. Biophys. Sin. 47, 960–968 (2015).

    CAS  PubMed  Google Scholar 

  62. Smith, J. A. A new paradigm: innate immune sensing of viruses via the unfolded protein response. Front. Microbiol. 5, 222 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Salazar, M. et al. Cannabinoid action induces autophagy-mediated cell death through stimulation of ER stress in human glioma cells. J. Clin. Invest. 119, 1359–1372 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bernales, S., McDonald, K. L. & Walter, P. Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response. PLOS Biol. 4, e423 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ogata, M. et al. Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol. Cell. Biol. 26, 9220–9231 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yorimitsu, T., Nair, U., Yang, Z. & Klionsky, D. J. Endoplasmic reticulum stress triggers autophagy. J. Biol. Chem. 281, 30299–30304 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kedersha, N. L., Gupta, M., Li, W., Miller, I. & Anderson, P. RNA-binding proteins TIA-1 and TIAR link the phosphorylation of eIF-2 alpha to the assembly of mammalian stress granules. J. Cell Biol. 147, 1431–1442 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sessions, O. M. et al. Discovery of insect and human dengue virus host factors. Nature 458, 1047–1050 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Chan, S. W. Unfolded protein response in hepatitis C virus infection. Front. Microbiol. 5, 233 (2014).

    PubMed  PubMed Central  Google Scholar 

  70. Perera, N., Miller, J. L. & Zitzmann, N. The role of the unfolded protein response in dengue virus pathogenesis. Cell. Microbiol. 19, e12734 (2017).

    Article  CAS  Google Scholar 

  71. Pena, J. & Harris, E. Dengue virus modulates the unfolded protein response in a time-dependent manner. J. Biol. Chem. 286, 14226–14236 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Roth, H. et al. Flavivirus infection uncouples translation suppression from cellular stress responses. mBio 8, e02150-16 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Ruggieri, A. et al. Dynamic oscillation of translation and stress granule formation mark the cellular response to virus infection. Cell Host Microbe 12, 71–85 (2012). This is an elegant study that reveals the dynamics of stress granule assembly and disassembly and the role of this dynamic in counteracting RNA translation repression and prolonging cell survival.

    Article  CAS  PubMed  Google Scholar 

  74. Edgil, D., Polacek, C. & Harris, E. Dengue virus utilizes a novel strategy for translation initiation when cap-dependent translation is inhibited. J. Virol. 80, 2976–2986 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Khawaja, A., Vopalensky, V. & Pospisek, M. Understanding the potential of hepatitis C virus internal ribosome entry site domains to modulate translation initiation via their structure and function. Wiley Interdiscip. Rev. RNA 6, 211–224 (2015).

    Article  CAS  PubMed  Google Scholar 

  76. Walsh, D. & Mohr, I. Viral subversion of the host protein synthesis machinery. Nat. Rev. Microbiol. 9, 860–875 (2011).

    Article  CAS  PubMed  Google Scholar 

  77. Brewer, J. W. & Jackowski, S. UPR-mediated membrane biogenesis in B cells. Biochem. Res. Int. 2012, 738471 (2012).

    Article  CAS  PubMed  Google Scholar 

  78. Yoshida, H. et al. A time-dependent phase shift in the mammalian unfolded protein response. Dev. Cell 4, 265–271 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Ke, P. Y. & Chen, S. S. Activation of the unfolded protein response and autophagy after hepatitis C virus infection suppresses innate antiviral immunity in vitro. J. Clin. Invest. 121, 37–56 (2011).

    Article  CAS  PubMed  Google Scholar 

  80. Wang, J. et al. Hepatitis C virus core protein activates autophagy through EIF2AK3 and ATF6 UPR pathway-mediated MAP1LC3B and ATG12 expression. Autophagy 10, 766–784 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Yoshida, H., Matsui, T., Yamamoto, A., Okada, T. & Mori, K. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107, 881–891 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Viktorovskaya, O. V., Greco, T. M., Cristea, I. M. & Thompson, S. R. Identification of RNA binding proteins associated with dengue virus RNA in infected cells reveals temporally distinct host factor requirements. PLOS Negl. Trop. Dis. 10, e0004921 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Fink, J. et al. Host gene expression profiling of dengue virus infection in cell lines and patients. PLOS Negl. Trop. Dis. 1, e86 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Choy, M. M., Sessions, O. M., Gubler, D. J. & Ooi, E. E. Production of infectious dengue virus in Aedes aegypti is dependent on the ubiquitin proteasome pathway. PLOS Negl. Trop. Dis. 9, e0004227 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Xin, Q. L. et al. Quantitative proteomic analysis of mosquito C6/36 cells reveals host proteins involved in Zika virus infection. J. Virol. 91, e00554-17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Choy, M. M. et al. Proteasome inhibition suppresses dengue virus egress in antibody dependent infection. PLOS Negl. Trop. Dis. 9, e0004058 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Fernandez-Garcia, M. D. et al. Appraising the roles of CBLL1 and the ubiquitin/proteasome system for flavivirus entry and replication. J. Virol. 85, 2980–2989 (2011).

    Article  CAS  PubMed  Google Scholar 

  88. Byk, L. A. et al. Dengue virus genome uncoating requires ubiquitination. mBio 7, e00804-16 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Poenisch, M. et al. Identification of HNRNPK as regulator of hepatitis C virus particle production. PLOS Pathog. 11, e1004573 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Li, Q. et al. A genome-wide genetic screen for host factors required for hepatitis C virus propagation. Proc. Natl Acad. Sci. USA 106, 16410–16415 (2009).

    Article  PubMed  Google Scholar 

  91. Gao, L. et al. Interaction with a ubiquitin-like protein enhances the ubiquitination and degradation of hepatitis C virus RNA-dependent RNA polymerase. J. Virol. 77, 4149–4159 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lin, W. et al. Hepatitis C virus expression suppresses interferon signaling by degrading STAT1. Gastroenterology 128, 1034–1041 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Lin, W. et al. Hepatitis C virus core protein blocks interferon signaling by interaction with the STAT1 SH2 domain. J. Virol. 80, 9226–9235 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Shao, R. X. et al. Suppressor of cytokine signaling 3 suppresses hepatitis C virus replication in an mTOR-dependent manner. J. Virol. 84, 6060–6069 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zhang, X. et al. GP73 represses host innate immune response to promote virus replication by facilitating MAVS and TRAF6 degradation. PLOS Pathog. 13, e1006321 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Stevenson, N. J. et al. Hepatitis C virus targets the interferon-alpha JAK/STAT pathway by promoting proteasomal degradation in immune cells and hepatocytes. FEBS Lett. 587, 1571–1578 (2013).

    Article  CAS  PubMed  Google Scholar 

  97. Grant, A. et al. Zika virus targets human STAT2 to inhibit type I interferon signaling. Cell Host Microbe 19, 882–890 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kumar, A. et al. Zika virus inhibits type-I interferon production and downstream signaling. EMBO Rep. 17, 1766–1775 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ashour, J., Laurent-Rolle, M., Shi, P. Y. & Garcia-Sastre, A. NS5 of dengue virus mediates STAT2 binding and degradation. J. Virol. 83, 5408–5418 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Metz, P. et al. Dengue virus inhibition of autophagic flux and dependency of viral replication on proteasomal degradation of the autophagy receptor p62. J. Virol. 89, 8026–8041 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wang, L., Tian, Y. & Ou, J. H. HCV induces the expression of Rubicon and UVRAG to temporally regulate the maturation of autophagosomes and viral replication. PLOS Pathog. 11, e1004764 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. McLean, J. E., Wudzinska, A., Datan, E., Quaglino, D. & Zakeri, Z. Flavivirus NS4A-induced autophagy protects cells against death and enhances virus replication. J. Biol. Chem. 286, 22147–22159 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Datan, E. et al. Dengue-induced autophagy, virus replication and protection from cell death require ER stress (PERK) pathway activation. Cell Death Dis. 7, e2127 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Liang, Q. et al. Zika virus NS4A and NS4B proteins deregulate Akt-mTOR signaling in human fetal neural stem cells to inhibit neurogenesis and induce autophagy. Cell Stem Cell 19, 663–671 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Wu, Y. W. et al. Autophagy-associated dengue vesicles promote viral transmission avoiding antibody neutralization. Sci. Rep. 6, 32243 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Panyasrivanit, M., Khakpoor, A., Wikan, N. & Smith, D. R. Co-localization of constituents of the dengue virus translation and replication machinery with amphisomes. J. Gen. Virol. 90, 448–456 (2009).

    Article  CAS  PubMed  Google Scholar 

  107. Sir, D. et al. Replication of hepatitis C virus RNA on autophagosomal membranes. J. Biol. Chem. 287, 18036–18043 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Fahmy, A. M. & Labonte, P. The autophagy elongation complex (ATG5-12/16L1) positively regulates HCV replication and is required for wild-type membranous web formation. Sci. Rep. 7, 40351 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Guevin, C. et al. Autophagy protein ATG5 interacts transiently with the hepatitis C virus RNA polymerase (NS5B) early during infection. Virology 405, 1–7 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Dreux, M., Gastaminza, P., Wieland, S. F. & Chisari, F. V. The autophagy machinery is required to initiate hepatitis C virus replication. Proc. Natl Acad. Sci. USA 106, 14046–14051 (2009).

    Article  PubMed  Google Scholar 

  111. Dreux, M. & Chisari, F. V. Autophagy proteins promote hepatitis C virus replication. Autophagy 5, 1224–1225 (2009).

    Article  PubMed  Google Scholar 

  112. Shrivastava, S. et al. Knockdown of autophagy inhibits infectious hepatitis C virus release by the exosomal pathway. J. Virol. 90, 1387–1396 (2015).

    Article  CAS  PubMed  Google Scholar 

  113. Tanida, I. et al. Knockdown of autophagy-related gene decreases the production of infectious hepatitis C virus particles. Autophagy 5, 937–945 (2009).

    Article  CAS  PubMed  Google Scholar 

  114. Lennemann, N. J. & Coyne, C. B. Dengue and Zika viruses subvert reticulophagy by NS2B3-mediated cleavage of FAM134B. Autophagy 13, 322–332 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Heaton, N. S. & Randall, G. Dengue virus-induced autophagy regulates lipid metabolism. Cell Host Microbe 8, 422–432 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Routhu, N. K. & Byrareddy, S. N. Host-virus interaction of ZIKA virus in modulating disease pathogenesis. J. Neuroimmune Pharmacol. 12, 219–232 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Jordan, T. X. & Randall, G. Dengue virus activates the AMP kinase-mTOR axis to stimulate a proviral lipophagy. J. Virol. 91, e02020-16 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Kim, S. J. et al. Hepatitis C virus triggers mitochondrial fission and attenuates apoptosis to promote viral persistence. Proc. Natl Acad. Sci. USA 111, 6413–6418 (2014).

    Article  CAS  PubMed  Google Scholar 

  119. Paul, D., Madan, V. & Bartenschlager, R. Hepatitis C virus RNA replication and assembly: living on the fat of the land. Cell Host. Microbe 16, 569–579 (2014).

    Article  CAS  PubMed  Google Scholar 

  120. Martin-Acebes, M. A., Vazquez-Calvo, A. & Saiz, J. C. Lipids and flaviviruses, present and future perspectives for the control of dengue, Zika, and West Nile viruses. Prog. Lipid Res. 64, 123–137 (2016).

    Article  CAS  PubMed  Google Scholar 

  121. Merino-Ramos, T. et al. Modification of the host cell lipid metabolism induced by hypolipidemic drugs targeting the acetyl coenzyme A carboxylase impairs West Nile virus replication. Antimicrob. Agents Chemother. 60, 307–315 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Soto-Acosta, R., Bautista-Carbajal, P., Cervantes-Salazar, M., Angel-Ambrocio, A. H. & Del Angel, R. M. DENV up-regulates the HMG-CoA reductase activity through the impairment of AMPK phosphorylation: a potential antiviral target. PLOS Pathog. 13, e1006257 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Li, Q., Pene, V., Krishnamurthy, S., Cha, H. & Liang, T. J. Hepatitis C virus infection activates an innate pathway involving IKK-alpha in lipogenesis and viral assembly. Nat. Med. 19, 722–729 (2013). This study reveals a novel function of the innate immunity regulator IKK α in the regulation of lipogenic genes. This mechanism is exploited by HCV to promote lipid droplet formation and the assembly of infectious virus particles.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Perera, R. et al. Dengue virus infection perturbs lipid homeostasis in infected mosquito cells. PLOS Pathog. 8, e1002584 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Martin-Acebes, M. A. et al. The composition of West Nile virus lipid envelope unveils a role of sphingolipid metabolism in flavivirus biogenesis. J. Virol. 88, 12041–12054 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Diamond, D. L. et al. Temporal proteome and lipidome profiles reveal hepatitis C virus-associated reprogramming of hepatocellular metabolism and bioenergetics. PLOS Pathog. 6, e1000719 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Zhang, J. et al. Positive-strand RNA viruses stimulate host phosphatidylcholine synthesis at viral replication sites. Proc. Natl Acad. Sci. USA 113, E1064–E1073 (2016).

    Article  CAS  PubMed  Google Scholar 

  128. Wang, H. et al. Oxysterol-binding protein is a phosphatidylinositol 4-kinase effector required for HCV replication membrane integrity and cholesterol trafficking. Gastroenterology 146, 1373–1385.e11 (2014). This study demonstrates that oxysterol-binding protein is recruited to the HCV membranous web in a phosphatidylinositol 4-kinase (PI4K)-dependent manner that is required to regulate cholesterol trafficking to HCV ROs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Stoeck, I. K. et al. Hepatitis C virus replication depends on endosomal cholesterol homeostasis. J. Virol. 92, e01196–17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Harak, C. et al. Mapping of functional domains of the lipid kinase phosphatidylinositol 4-kinase type III alpha involved in enzymatic activity and hepatitis C virus replication. J. Virol. 88, 9909–9926 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Khan, I. et al. Modulation of hepatitis C virus genome replication by glycosphingolipids and four-phosphate adaptor protein 2. J. Virol. 88, 12276–12295 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Zhang, J. et al. Small G Rac1 is involved in replication cycle of dengue serotype 2 virus in EAhy926 cells via the regulation of actin cytoskeleton. Sci. China Life Sci. 59, 487–494 (2016).

    Article  CAS  PubMed  Google Scholar 

  133. Zamudio-Meza, H., Castillo-Alvarez, A., Gonzalez-Bonilla, C. & Meza, I. Cross-talk between Rac1 and Cdc42 GTPases regulates formation of filopodia required for dengue virus type-2 entry into HMEC-1 cells. J. Gen. Virol. 90, 2902–2911 (2009).

    Article  CAS  PubMed  Google Scholar 

  134. Teo, C. S. & Chu, J. J. Cellular vimentin regulates construction of dengue virus replication complexes through interaction with NS4A protein. J. Virol. 88, 1897–1913 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Chen, W. et al. Vimentin is required for dengue virus serotype 2 infection but microtubules are not necessary for this process. Arch. Virol. 153, 1777–1781 (2008).

    Article  CAS  PubMed  Google Scholar 

  136. Roohvand, F. et al. Initiation of hepatitis C virus infection requires the dynamic microtubule network: role of the viral nucleocapsid protein. J. Biol. Chem. 284, 13778–13791 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Bost, A. G., Venable, D., Liu, L. & Heinz, B. A. Cytoskeletal requirements for hepatitis C virus (HCV) RNA synthesis in the HCV replicon cell culture system. J. Virol. 77, 4401–4408 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Akil, A. et al. Septin 9 induces lipid droplets growth by a phosphatidylinositol-5-phosphate and microtubule-dependent mechanism hijacked by HCV. Nat. Commun. 7, 12203 (2016). This study reports that septin 9 can modulate the growth of lipid droplets through microtubule-dependent and PtdIns5P-dependent mechanisms. Such an ability is exploited by HCV to create an environment favourable for its replication.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Mettenleiter, T. C. Breaching the barrier-the nuclear envelope in virus infection. J. Mol. Biol. 428, 1949–1961 (2016).

    Article  CAS  PubMed  Google Scholar 

  140. Byk, L. A. & Gamarnik, A. V. Properties and functions of the dengue virus capsid protein. Annu. Rev. Virol. 3, 263–281 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Kumar, A. et al. Nuclear localization of dengue virus nonstructural protein 5 does not strictly correlate with efficient viral RNA replication and inhibition of type I interferon signaling. J. Virol. 87, 4545–4557 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Hannemann, H. et al. Serotype-specific differences in dengue virus non-structural protein 5 nuclear localization. J. Biol. Chem. 288, 22621–22635 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Bonamassa, B. et al. Hepatitis C virus and host cell nuclear transport machinery: a clandestine affair. Front. Microbiol. 6, 619 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Levin, A. et al. Functional characterization of nuclear localization and export signals in hepatitis C virus proteins and their role in the membranous web. PLOS ONE 9, e114629 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Overby, A. K. & Weber, F. Hiding from intracellular pattern recognition receptors, a passive strategy of flavivirus immune evasion. Virulence 2, 238–240 (2011).

    Article  PubMed  Google Scholar 

  146. Lussignol, M. et al. Proteomics of HCV virions reveals an essential role for the nucleoporin Nup98 in virus morphogenesis. Proc. Natl Acad. Sci. USA 113, 2484–2489 (2016). This study determines the protein composition of HCV virions and identifies multiple cellular proteins, with nuclear pore complex protein NUP98 playing an important role in virus propagation.

    Article  CAS  PubMed  Google Scholar 

  147. Ye, J. et al. Japanese encephalitis virus NS5 inhibits type I interferon (IFN) production by blocking the nuclear translocation of IFN regulatory factor 3 and NF-kappaB. J. Virol. 91, e00039-17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Gagne, B., Tremblay, N., Park, A. Y., Baril, M. & Lamarre, D. Importin beta1 targeting by hepatitis C virus NS3/4A protein restricts IRF3 and NF-kappaB signaling of IFNB1 antiviral response. Traffic 18, 362–377 (2017).

    Article  CAS  PubMed  Google Scholar 

  149. Miyanari, Y. et al. The lipid droplet is an important organelle for hepatitis C virus production. Nat. Cell Biol. 9, 1089–1097 (2007).

    Article  CAS  PubMed  Google Scholar 

  150. Vance, J. E. MAM (mitochondria-associated membranes) in mammalian cells: lipids and beyond. Biochim. Biophys. Acta 1841, 595–609 (2014).

    Article  CAS  PubMed  Google Scholar 

  151. Barbier, V., Lang, D., Valois, S., Rothman, A. L. & Medin, C. L. Dengue virus induces mitochondrial elongation through impairment of Drp1-triggered mitochondrial fission. Virology 500, 149–160 (2017).

    Article  CAS  PubMed  Google Scholar 

  152. Yu, C. Y. et al. Dengue virus impairs mitochondrial fusion by cleaving mitofusins. PLOS Pathog. 11, e1005350 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Aguirre, S. et al. Dengue virus NS2B protein targets cGAS for degradation and prevents mitochondrial DNA sensing during infection. Nat. Microbiol. 2, 17037 (2017). This is a study demonstrating a block of type I interferon activation through NS2B-mediated lysosomal degradation of the cytosolic DNA sensor cyclic GMP–AMP synthase (cGAS), preventing its activation by DENV-induced mitochondrial DNA release.

    Article  CAS  PubMed  Google Scholar 

  154. Siu, G. K. et al. Hepatitis C virus NS5A protein cooperates with phosphatidylinositol 4-kinase IIIalpha to induce mitochondrial fragmentation. Sci. Rep. 6, 23464 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Ruggieri, V. et al. Hepatitis C virus, mitochondria and auto/mitophagy: exploiting a host defense mechanism. World J. Gastroenterol. 20, 2624–2633 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Paul, D. & Bartenschlager, R. Architecture and biogenesis of plus-strand RNA virus replication factories. World J. Virol. 2, 32–48 (2013). This review describes the different architectures of positive-strand RNA virus replication factories and discusses the mechanisms of their biogenesis and maintenance.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Le Sommer, C., Barrows, N. J., Bradrick, S. S., Pearson, J. L. & Garcia-Blanco, M. A. G protein-coupled receptor kinase 2 promotes flaviviridae entry and replication. PLOS Negl. Trop. Dis. 6, e1820 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Krishnan, M. N. et al. RNA interference screen for human genes associated with West Nile virus infection. Nature 455, 242–245 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Modis, Y., Ogata, S., Clements, D. & Harrison, S. C. Structure of the dengue virus envelope protein after membrane fusion. Nature 427, 313–319 (2004). This is an elegant study describing the three-dimensional structure of the soluble ectodomain of the dengue virus envelope protein in its trimeric, that is, post-fusion state. The structure was used to propose a model for membrane fusion by class II viral fusion proteins.

    Article  CAS  PubMed  Google Scholar 

  160. Zhang, X. et al. Structure of acidic pH dengue virus showing the fusogenic glycoprotein trimers. J. Virol. 89, 743–750 (2015).

    Article  CAS  PubMed  Google Scholar 

  161. Scaturro, P., Cortese, M., Chatel-Chaix, L., Fischl, W. & Bartenschlager, R. Dengue virus non-structural protein 1 modulates infectious particle production via interaction with the structural proteins. PLOS Pathog. 11, e1005277 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Yu, I. M. et al. Structure of the immature dengue virus at low pH primes proteolytic maturation. Science 319, 1834–1837 (2008). This is an elegant study showing that immature DENV particles undergo a reversible conformational change at acidic pH, rendering them accessible for furin cleavage. Upon cleavage in the trans -Golgi network, the pr cleavage product is retained on the virion to prevent premature membrane fusion.

    Article  CAS  PubMed  Google Scholar 

  163. Zayas, M., Long, G., Madan, V. & Bartenschlager, R. Coordination of hepatitis C virus assembly by distinct regulatory regions in nonstructural protein 5A. PLOS Pathog. 12, e1005376 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Lee, J. Y. et al. Apolipoprotein E likely contributes to a maturation step of infectious hepatitis C virus particles and interacts with viral envelope glycoproteins. J. Virol. 88, 12422–12437 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Fukuhara, T. et al. Host-derived apolipoproteins play comparable roles with viral secretory proteins Erns and NS1 in the infectious particle formation of Flaviviridae. PLOS Pathog. 13, e1006475 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Piver, E. et al. Ultrastructural organisation of HCV from the bloodstream of infected patients revealed by electron microscopy after specific immunocapture. Gut 66, 1487–1495 (2016).

    Article  CAS  PubMed  Google Scholar 

  167. Yang, Z. et al. Neglected but important role of apolipoprotein E exchange in hepatitis C virus infection. J. Virol. 90, 9632–9643 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Bankwitz, D. et al. Maturation of secreted HCV particles by incorporation of secreted ApoE protects from antibodies by enhancing infectivity. J. Hepatol. 67, 480–489 (2017).

    Article  CAS  PubMed  Google Scholar 

  169. Acosta, E. G. & Bartenschlager, R. The quest for host targets to combat dengue virus infections. Curr. Opin. Virol. 20, 47–54 (2016).

    Article  PubMed  Google Scholar 

  170. Zeisel, M. B., Crouchet, E., Baumert, T. F. & Schuster, C. Host-targeting agents to prevent and cure hepatitis C virus infection. Viruses 7, 5659–5685 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Pawlotsky, J. M. et al. Alisporivir plus ribavirin, interferon free or in combination with pegylated interferon, for hepatitis C virus genotype 2 or 3 infection. Hepatology 62, 1013–1023 (2015).

    Article  CAS  PubMed  Google Scholar 

  172. Zeuzem, S. et al. Randomised clinical trial: alisporivir combined with peginterferon and ribavirin in treatment-naive patients with chronic HCV genotype 1 infection (ESSENTIAL II). Aliment. Pharmacol. Ther. 42, 829–844 (2015).

    Article  CAS  PubMed  Google Scholar 

  173. Low, J. G. et al. Efficacy and safety of celgosivir in patients with dengue fever (CELADEN): a phase 1b, randomised, double-blind, placebo-controlled, proof-of- concept trial. Lancet Infect. Dis. 14, 706–715 (2014).

    Article  CAS  PubMed  Google Scholar 

  174. Sung, C. et al. Extended evaluation of virological, immunological and pharmacokinetic endpoints of CELADEN: a randomized, placebo-controlled trial of celgosivir in dengue fever patients. PLOS Negl. Trop. Dis. 10, e0004851 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Watanabe, S. et al. Optimizing celgosivir therapy in mouse models of dengue virus infection of serotypes 1 and 2: the search for a window for potential therapeutic efficacy. Antiviral Res. 127, 10–19 (2016).

    Article  CAS  PubMed  Google Scholar 

  176. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT02569827 (2017).

Download references

Acknowledgements

The authors apologize to all colleagues whose work they could not cite due to space limitations. Research in the authors' laboratory is supported by the Deutsche Forschungsgemeinschaft (SFB 1129, TP 11; SFB/TRR 83, TP 13; SFB/TRR179, TP 9), the Federal Ministry for Education and Research (BMBF) 'ERA-Net for Applied Systems Biology' (ERASysAPP) (SysVirDrug, grant no. 031A602B) and the EU H2020 project 'ANTIVIRALS' (grant no. 642434), all to R.B. C.J.N. is supported by the European Molecular Biology Organization (EMBO) (ALTF 466–2016).

Author information

Authors and Affiliations

Authors

Contributions

C.J.N., M.C. and E.G.A. researched data for the article. C.J.N., M.C., E.G.A. and R.B. substantially contributed to discussion of content, wrote the article and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Ralf Bartenschlager.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Guillain–Barré syndrome

An acute neurological disease (usually reversible) resulting from autoimmune destruction of the peripheral nervous system that is frequently triggered by infection.

Microcephaly

A neurological condition of abnormal brain development that causes substantially smaller infant head circumferences relative to age-matched controls.

Tropism

Tissue specificity of a virus. Tropism is determined primarily by the presence of membrane receptors that can be exploited by the virus to gain access to host cells.

Internal ribosome entry site

(IRES). A folded RNA element capable of recruiting the small ribosomal subunit that also mediates cap-independent initiation of RNA translation. IRES elements require only a subset of the canonical translation initiation factors, which are determined by the specific type of IRES.

Polyprotein

A polypeptide composed of individual domains that are released both co-translationally and post-translationally by proteolytic cleavage to produce functionally distinct proteins.

Very-low-density lipoprotein

(VLDL). A liver-produced plasma lipoprotein particle 30–70 nm in diameter involved in cholesterol and triglyceride transport. Low-density lipoprotein and VLDL contain distinct sets of apolipoproteins.

Cyclophilin

Peptidyl-prolyl isomerases (PPIases) that catalyse the cis–trans isomerization of peptide bonds at proline residues and facilitate protein folding.

Oligosaccharyltransferase

(OST). A heteromeric transmembrane protein complex located in the endoplasmic reticulum lumen that catalyses the transfer of a pre-assembled oligosaccharide to selected asparagine residues within the consensus sequence Asn-X-Ser/Thr of nascent polypeptides.

Ubiquitin-dependent proteasome system

(UPS). A multicomponent system for regulated protein degradation. Proteins are marked for degradation by conjugation with the ubiquitin polypeptide through the concerted action of modular conjugation machinery. Ubiquitylated substrates are recognized, unfolded and degraded by a large multisubunit protease complex called the proteasome.

CRISPR–Cas9

A site-specific gene-editing system derived from a bacterial adaptive defence system that retains foreign DNA in the CRISPR gene locus. The system is composed of a guide RNA homologous to the target gene and the CRISPR–Cas9 nuclease. Sequence complementarity guides Cas9 to the specific region targeted for cleavage.

Bortezomib

A dipeptide boronic acid derivate that reversibly inhibits the chymotryptic activity of the proteasome. It was the first therapeutic proteasome inhibitor approved by the FDA for clinical use as an anticancer drug.

Restriction factors

Cellular factors that inhibit pathogen replication.

AKT1–mTOR

An intracellular signalling pathway that regulates several cellular processes, including cell proliferation and survival.

Exosomes

Small extracellular vesicles released directly from cells or upon fusion of multivesicular bodies with the plasma membrane.

Lipophagy

An autophagic pathway that selectively targets lipid droplets and mobilizes lipids to be used for energy production.

ER-phagy

An autophagic pathway that selectively sequesters and degrades portions of the endoplasmic reticulum.

Parkin

An E3 ubiquitin ligase that is involved in autophagic elimination of damaged mitochondria (mitophagy). Mutations in the parkin gene are linked to autosomal recessive juvenile Parkinson disease.

Sterol regulatory element-binding protein

(SREBP). A membrane-bound transcription factor that regulates the transcription of genes involved in fatty acids and cholesterol metabolism.

Microfilament

Also known as actin filaments; a component of the cytoskeleton. Microfilaments range from 7–9 nm in diameter and are composed of actin polymers. Microfilaments are involved in several cellular processes, including cytokinesis, cell movement, endocytosis and muscle contraction.

Septins

GTPases that assemble into repeated hetero-oligomers and polymerize into higher-order structures, such as rings or filaments. Septins are the fourth cytoskeletal component and take part in several cellular processes, such as cell division, migration and pathogen interactions.

Interferon regulatory factor 3

(IRF3). A transcription factor that mediates the expression of type 1 interferons and interferon-stimulated genes.

Dynamin 1-like protein

(DRP1). A GTPase of the dynamin superfamily that mediate mitochondrial outer membrane fission events.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neufeldt, C., Cortese, M., Acosta, E. et al. Rewiring cellular networks by members of the Flaviviridae family. Nat Rev Microbiol 16, 125–142 (2018). https://doi.org/10.1038/nrmicro.2017.170

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro.2017.170

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology