Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Receptor downregulation and multivesicular-body sorting

Key Points

  • The multivesicular-body (MVB) sorting pathway delivers transmembrane proteins and lipids into small vesicles that invaginate into the lumen of the endosome. MVBs fuse with the vacuole/lysosome and the vesicles and their contents are degraded by the hydrolases that are contained in the lumen of the vacuole/lysosome.

  • A crucial function of the MVB protein sorting pathway is the downregulation of activated cell-surface receptors.

  • Ubiquitin functions as an important signal for the selection of MVB cargoes and also seems to modulate the activity of trans-acting factors in the MVB pathway.

  • A large number of trans-acting factors that are required for MVB sorting have recently been identified, including the class E vacuolar protein sorting (Vps) proteins in yeast, phosphoinositide kinases and ubiquitin ligases.

  • The MVB sorting machinery is required for a growing list of cellular functions that include receptor downregulation, developmental signalling, regulation of the immune response and even the budding of certain viruses like human immunodeficiency virus (HIV).

Abstract

The sorting of proteins into the inner vesicles of multivesicular bodies is required for many key cellular processes, which range from the downregulation of activated signalling receptors to the proper stimulation of the immune response. Recent advances in our understanding of the multivesicular-body sorting pathway have resulted from the identification of ubiquitin as a signal for the efficient sorting of proteins into this transport route, and from the discovery of components of the sorting and regulatory machinery that directs this complex process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Receptor downregulation in mammalian and yeast cells.
Figure 2: Regulation of cargo entry into the multivesicular-body sorting pathway.
Figure 3: Ubiquitin-recognition by trans-acting components of the multivesicular-body sorting pathway.
Figure 4: Multivesicular bodies in cellular physiology and disease.

Similar content being viewed by others

References

  1. Gruenberg, J. The endocytic pathway: a mosaic of domains. Nature Rev. Mol. Cell Biol. 2, 721–730 (2001).

    CAS  Google Scholar 

  2. Mellman, I. Endocytosis and molecular sorting. Annu. Rev. Cell Dev. Biol. 12, 575–625 (1996).

    CAS  PubMed  Google Scholar 

  3. Palade, G. E. A small particulate component of the cytoplasm. J. Biophys. Biochem. Cytol. 1, 59–67 (1955).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Sotelo, J. R. & Porter, K. R. An electron microscope study of the rat ovum. J. Biophys. Biochem. Cytol. 5, 327–342 (1959).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Hirsch, J. G., Fedorko, M. E. & Cohn, Z. A. Vesicle fusion and formation at the surface of pinocytic vacuoles in macrophages. J. Cell Biol. 38, 629–632 (1968).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Gorden, P., Carpentier, J. L., Cohen, S. & Orci, L. Epidermal growth factor: morphological demonstration of binding, internalization, and lysosomal association in human fibroblasts. Proc. Natl Acad. Sci. USA 75, 5025–5029 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Haigler, H. T., McKanna, J. A. & Cohen, S. Direct visualization of the binding and internalization of a ferritin conjugate of epidermal growth factor in human carcinoma cells A-431. J. Cell Biol. 81, 382–395 (1979).References 6 and 7 followed the delivery of internalized material from the plasma membrane through the MVB pathway to the lysosome, and thereby ascribed a function to the MVBs.

    CAS  PubMed  Google Scholar 

  8. Miller, K., Beardmore, J., Kanety, H., Schlessinger, J. & Hopkins, C. R. Localization of the epidermal growth factor (EGF) receptor within the endosome of EGF-stimulated epidermoid carcinoma (A431) cells. J. Cell Biol. 102, 500–509 (1986).

    CAS  PubMed  Google Scholar 

  9. Futter, C. E., Pearse, A., Hewlett, L. J. & Hopkins, C. R. Multivesicular endosomes containing internalized EGF–EGF receptor complexes mature and then fuse directly with lysosomes. J. Cell Biol. 132, 1011–1023 (1996). This paper showed that EGFRs are delivered to the lysosome through the MVB pathway.

    CAS  PubMed  Google Scholar 

  10. Baass, P. C., Di Guglielmo, G. M., Authier, F., Posner, B. I. & Bergeron, J. J. M. Compartmentalized signal transduction by receptor tyrosine kinases. Trends Cell Biol. 5, 465–470 (1995).

    CAS  PubMed  Google Scholar 

  11. Di Guglielmo, G. M., Baass, P. C., Ou, W. J., Posner, B. I. & Bergeron, J. J. Compartmentalization of SHC, GRB2 and mSOS, and hyperphosphorylation of Raf-1 by EGF but not insulin in liver parenchyma. EMBO J. 13, 4269–4277 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Grimes, M. L. et al. Endocytosis of activated TrkA: evidence that nerve growth factor induces formation of signaling endosomes. J. Neurosci. 16, 7950–7964 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Sorkin, A., Eriksson, A., Heldin, C. H., Westermark, B. & Claesson-Welsh, L. Pool of ligand-bound platelet-derived growth factor β-receptors remain activated and tyrosine phosphorylated after internalization. J. Cell Physiol. 156, 373–382 (1993).

    CAS  PubMed  Google Scholar 

  14. Wang, Z., Tung, P. S. & Moran, M. F. Association of p120 ras GAP with endocytic components and colocalization with epidermal growth factor (EGF) receptor in response to EGF stimulation. Cell. Growth Differ. 7, 123–133 (1996).

    CAS  PubMed  Google Scholar 

  15. Zhang, Y., Moheban, D. B., Conway, B. R., Bhattacharyya, A. & Segal, R. A. Cell surface Trk receptors mediate NGF-induced survival while internalized receptors regulate NGF-induced differentiation. J. Neurosci. 20, 5671–5678 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Ceresa, B. P. & Schmid, S. L. Regulation of signal transduction by endocytosis. Curr. Opin. Cell Biol. 12, 204–210 (2000).

    CAS  PubMed  Google Scholar 

  17. Di Fiore, P. P. & Gill, G. N. Endocytosis and mitogenic signaling. Curr. Opin. Cell Biol. 11, 483–488 (1999).

    CAS  PubMed  Google Scholar 

  18. Lloyd, T. E. et al. Hrs regulates endosome membrane invagination and tyrosine kinase receptor signaling in Drosophila. Cell 108, 261–269 (2002).

    CAS  PubMed  Google Scholar 

  19. Aroian, R. V., Koga, M., Mendel, J. E., Ohshima, Y. & Sternberg, P. W. The let-23 gene necessary for Caenorhabditis elegans vulval induction encodes a tyrosine kinase of the EGF receptor subfamily. Nature 348, 693–699 (1990).

    CAS  PubMed  Google Scholar 

  20. Kil, S. J. & Carlin, C. EGF receptor residues leu(679), leu(680) mediate selective sorting of ligand-receptor complexes in early endosomal compartments. J. Cell Physiol. 185, 47–60 (2000).

    CAS  PubMed  Google Scholar 

  21. Felder, S. et al. Kinase activity controls the sorting of the epidermal growth factor receptor within the multivesicular body. Cell 61, 623–634 (1990).

    CAS  PubMed  Google Scholar 

  22. Sprague, G. F. & Thorner, J. W. in The Molecular and Cellular Biology of the Yeast Saccharomyces Vol. 2 (eds Jones, E. W., Pringle, J. R. & Broach, J. R.) 657–744 (Cold Spring Harbor Laboratory Press, Plainview, New York, 1992).

    Google Scholar 

  23. Odorizzi, G., Babst, M. & Emr, S. D. Fab1p PtdIns(3)P 5-kinase function essential for protein sorting in the multivesicular body. Cell 95, 847–858 (1998).

    CAS  PubMed  Google Scholar 

  24. Terrell, J., Shih, S., Dunn, R. & Hicke, L. A function for monoubiquitination in the internalization of a G protein- coupled receptor. Mol. Cell 1, 193–202 (1998).

    CAS  PubMed  Google Scholar 

  25. Shih, S. C., Sloper-Mould, K. E. & Hicke, L. Monoubiquitin carries a novel internalization signal that is appended to activated receptors. EMBO J. 19, 187–198 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Dupre, S. & Haguenauer-Tsapis, R. Deubiquitination step in the endocytic pathway of yeast plasma membrane proteins: crucial role of Doa4p ubiquitin isopeptidase. Mol. Cell. Biol. 21, 4482–4494 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Losko, S., Kopp, F., Kranz, A. & Kolling, R. Uptake of the ATP-binding cassette (ABC) transporter Ste6 into the yeast vacuole is blocked in the doa4 mutant. Mol. Biol. Cell 12, 1047–1059 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Springael, J. Y. & Andre, B. Nitrogen-regulated ubiquitination of the Gap1 permease of Saccharomyces cerevisiae. Mol. Biol. Cell 9, 1253–1263 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Helliwell, S. B., Losko, S. & Kaiser, C. A. Components of a ubiquitin ligase complex specify polyubiquitination and intracellular trafficking of the general amino acid permease. J. Cell Biol. 153, 649–662 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Marchese, A. & Benovic, J. L. Agonist-promoted ubiquitination of the G protein-coupled receptor CXCR4 mediates lysosomal sorting. J. Biol. Chem. 276, 45509–45512 (2001).

    CAS  PubMed  Google Scholar 

  31. Joazeiro, C. A. et al. The tyrosine kinase negative regulator c-Cbl as a RING-type, E2-dependent ubiquitin-protein ligase. Science 286, 309–312 (1999). This reference, together with references 32, 33 and 34, showed the ubiquitin ligase activity of Cbl, and indicated that failure to ubiquitylate EGFR contributes to the tumorigenicity seen in the presence of oncogenic forms of Cbl.

    CAS  PubMed  Google Scholar 

  32. Levkowitz, G. et al. Ubiquitin ligase activity and tyrosine phosphorylation underlie suppression of growth factor signaling by c-Cbl/Sli-1. Mol. Cell 4, 1029–1040 (1999).

    CAS  PubMed  Google Scholar 

  33. Waterman, H., Levkowitz, G., Alroy, I. & Yarden, Y. The RING finger of c-Cbl mediates desensitization of the epidermal growth factor receptor. J. Biol. Chem. 274, 22151–22154 (1999).

    CAS  PubMed  Google Scholar 

  34. Yokouchi, M. et al. Ligand-induced ubiquitination of the epidermal growth factor receptor involves the interaction of the c-Cbl RING finger and UbcH7. J. Biol. Chem. 274, 31707–31712 (1999).

    CAS  PubMed  Google Scholar 

  35. Levkowitz, G. et al. c-Cbl/Sli-1 regulates endocytic sorting and ubiquitination of the epidermal growth factor receptor. Genes Dev. 12, 3663–3674 (1998). This paper showed a role for Cbl in the post-internalization sorting of EGFR.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Thien, C. B., Walker, F. & Langdon, W. Y. RING finger mutations that abolish c-Cbl-directed polyubiquitination and downregulation of the EGF receptor are insufficient for cell transformation. Mol. Cell 7, 355–365 (2001).

    CAS  PubMed  Google Scholar 

  37. Blake, T. J., Shapiro, M., Morse, H. C. & Langdon, W. Y. The sequences of the human and mouse c-cbl proto-oncogenes show v-cbl was generated by a large truncation encompassing a proline-rich domain and a leucine zipper-like motif. Oncogene 6, 653–657 (1991).

    CAS  PubMed  Google Scholar 

  38. Chen, L. & Davis, N. G. Ubiquitin-independent entry into the yeast recycling pathway. Traffic 3, 110–123 (2002).

    CAS  PubMed  Google Scholar 

  39. Govers, R., ten Broeke, T., van Kerkhof, P., Schwartz, A. L. & Strous, G. J. Identification of a novel ubiquitin conjugation motif, required for ligand-induced internalization of the growth hormone receptor. EMBO J. 18, 28–36 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. van Delft, S., Govers, R., Strous, G. J., Verkleij, A. J. & van Bergen en Henegouwen, P. M. Epidermal growth factor induces ubiquitination of Eps15. J. Biol. Chem. 272, 14013–14016 (1997).

    CAS  PubMed  Google Scholar 

  41. Polo, S. et al. A single motif responsible for ubiquitin recognition and monoubiquitination in endocytic proteins. Nature 416, 451–455 (2002). This paper reported that the UIM not only binds ubiquitin, but also recruits ubiquitin ligase, which results in the mono-ubiquitination of UIM-containing proteins.

    CAS  PubMed  Google Scholar 

  42. Raiborg, C. et al. Hrs sorts ubiquitinated proteins into clathrin-coated microdomains of early endosomes. Nature Cell Biol. 4, 394–398 (2002).

    CAS  PubMed  Google Scholar 

  43. Shenoy, S. K., McDonald, P. H., Kohout, T. A. & Lefkowitz, R. J. Regulation of receptor fate by ubiquitination of activated β2-adrenergic receptor and β-arrestin. Science 294, 1307–1313 (2001).

    CAS  PubMed  Google Scholar 

  44. Dunn, R. & Hicke, L. Multiple roles for Rsp5p-dependent ubiquitination at the internalization step of endocytosis. J. Biol. Chem. 276, 25974–25981 (2001).

    CAS  PubMed  Google Scholar 

  45. Katzmann, D. J., Babst, M. & Emr, S. D. Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I. Cell 106, 145–155 (2001). This paper, together with references 46 and 47, showed that ubiquitin is an endosomal sorting signal, and also identified ESCRT-I as the machinery that interacts with ubiquitylated MVB cargo.

    CAS  PubMed  Google Scholar 

  46. Urbanowski, J. L. & Piper, R. C. Ubiquitin sorts proteins into the intralumenal degradative compartment of the late-endosome/vacuole. Traffic 2, 622–630 (2001).

    CAS  PubMed  Google Scholar 

  47. Reggiori, F. & Pelham, H. R. Sorting of proteins into multivesicular bodies: ubiquitin-dependent and -independent targeting. EMBO J. 20, 5176–5186 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Reggiori, F. & Pelham, H. R. A transmembrane ubiquitin ligase required to sort membrane proteins into multivesicular bodies. Nature Cell Biol. 4, 117–123 (2002).

    CAS  PubMed  Google Scholar 

  49. Swaminathan, S., Amerik, A. Y. & Hochstrasser, M. The Doa4 deubiquitinating enzyme is required for ubiquitin homeostasis in yeast. Mol. Biol. Cell 10, 2583–2594 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Amerik, A. Y., Nowak, J., Swaminathan, S. & Hochstrasser, M. The Doa4 deubiquitinating enzyme is functionally linked to the vacuolar protein-sorting and endocytic pathways. Mol. Biol. Cell 11, 3365–3380 (2000). This study identified a role for Doa4 in the de-ubiquitylation of MVB cargoes.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Biederer, T., Volkwein, C. & Sommer, T. Role of Cue1p in ubiquitination and degradation at the ER surface. Science 278, 1806–1809 (1997).

    CAS  PubMed  Google Scholar 

  52. Hofmann, K. & Bucher, P. The UBA domain: a sequence motif present in multiple enzyme classes of the ubiquitination pathway. Trends Biochem. Sci. 21, 172–173 (1996).

    CAS  PubMed  Google Scholar 

  53. Hofmann, R. M. & Pickart, C. M. Noncanonical MMS2-encoded ubiquitin-conjugating enzyme functions in assembly of novel polyubiquitin chains for DNA repair. Cell 96, 645–653 (1999).

    CAS  PubMed  Google Scholar 

  54. Hofmann, K. & Falquet, L. A ubiquitin-interacting motif conserved in components of the proteasomal and lysosomal protein degradation systems. Trends Biochem. Sci. 26, 347–350 (2001).

    CAS  PubMed  Google Scholar 

  55. Koonin, E. V. & Abagyan, R. A. TSG101 may be the prototype of a class of dominant negative ubiquitin regulators. Nature Genet. 16, 330–331 (1997).

    CAS  PubMed  Google Scholar 

  56. Ponting, C. P., Cai, Y. D. & Bork, P. The breast cancer gene product TSG101: a regulator of ubiquitination? J. Mol. Med. 75, 467–469 (1997).

    CAS  PubMed  Google Scholar 

  57. Conibear, E. & Stevens, T. H. Multiple sorting pathways between the late Golgi and the vacuole in yeast. Biochim. Biophys. Acta 1404, 211–230 (1998).

    CAS  PubMed  Google Scholar 

  58. Rieder, S. E., Banta, L. M., Köhrer, K., McCaffery, J. M. & Emr, S. D. Multilamellar endosome-like compartment accumulates in the yeast vps28 vacuolar protein sorting mutant. Mol. Biol. Cell 7, 985–999 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Babst, M., Odorizzi, G., Estepa, E. J. & Emr, S. D. Mammalian tumor susceptibility gene 101 (TSG101) and the yeast homologue, Vps23p, both function in late endosomal trafficking. Traffic 1, 248–258 (2000).

    CAS  PubMed  Google Scholar 

  60. Garrus, J. E. et al. Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding. Cell 107, 55–65 (2001). This paper showed that the class E Vps proteins have a role in HIV–1 budding.

    CAS  PubMed  Google Scholar 

  61. Pornillos, O. et al. Structure and functional interactions of the Tsg101 UEV domain. EMBO J. 21, 2397–2406 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Li, Y., Kane, T., Tipper, C., Spatrick, P. & Jenness, D. D. Yeast mutants affecting possible quality control of plasma membrane proteins. Mol. Cell. Biol. 19, 3588–3599 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Bishop, N. & Woodman, P. ATPase-defective mammalian VPS4 localizes to aberrant endosomes and impairs cholesterol trafficking. Mol. Biol. Cell 11, 227–239 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Li, L. & Cohen, S. N. Tsg101: a novel tumor susceptibility gene isolated by controlled homozygous functional knockout of allelic loci in mammalian cells. Cell 85, 319–329 (1996).

    CAS  PubMed  Google Scholar 

  65. Shih, S. C. et al. Epsins and Vps27/Hrs contain ubiquitin-binding domains that function in receptor endocytosis and downregulation. Nature Cell Biol. 4, 389–393 (2002).

    CAS  PubMed  Google Scholar 

  66. Bilodeau, P. S., Urbanowski, J. L., Winistorfer, S. C. & Piper, R. C. The Vps27p Hse1p complex binds ubiquitin and mediates endosomal protein sorting. Nature Cell Biol. 4, 534–539 (2002).

    CAS  PubMed  Google Scholar 

  67. Raiborg, C., Bache, K. G., Mehlum, A., Stang, E. & Stenmark, H. Hrs recruits clathrin to early endosomes. EMBO J. 20, 5008–5021 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Sachse, M., Urbe, S., Oorschot, V., Strous, G. J. & Klumperman, J. Bilayered clathrin coats on endosomal vacuoles are involved in protein sorting toward lysosomes. Mol. Biol. Cell 13, 1313–1328 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Nielsen, M. S. et al. The sortilin cytoplasmic tail conveys Golgi-endosome transport and binds the VHS domain of the GGA2 sorting protein. EMBO J. 20, 2180–2190 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Puertollano, R., Aguilar, R. C., Gorshkova, I., Crouch, R. J. & Bonifacino, J. S. Sorting of mannose 6-phosphate receptors mediated by the GGAs. Science 292, 1712–1716 (2001).

    CAS  PubMed  Google Scholar 

  71. Misra, S., Puertollano, R., Kato, Y., Bonifacino, J. S. & Hurley, J. H. Structural basis for acidic-cluster-dileucine sorting-signal recognition by VHS domains. Nature 415, 933–937 (2002).

    CAS  PubMed  Google Scholar 

  72. Shiba, T. et al. Structural basis for recognition of acidic-cluster dileucine sequence by GGA1. Nature 415, 937–941 (2002).

    CAS  PubMed  Google Scholar 

  73. Babst, M., Katzman, D. J., Snyder, W. B., Wendland, B. & Emr, S. D. Endosome-associated complex, ESCRT-II, directs recruitment of machinery required for protein sorting into multivesicular bodies. Dev. Cell 3, 283–289 (2002).

    CAS  PubMed  Google Scholar 

  74. Davis, N. G., Horecka, J. L. & Sprague, G. F. Jr Cis- and trans-acting functions required for endocytosis of the yeast pheromone receptors. J. Cell Biol. 122, 53–65 (1993).

    CAS  PubMed  Google Scholar 

  75. Nothwehr, S. F., Bryant, N. J. & Stevens, T. H. The newly identified yeast GRD genes are required for retention of late-Golgi membrane proteins. Mol. Cell. Biol. 16, 2700–2707 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Babst, M., Katzman, D. J., Estepa, E. J., Meerloo, T. & Emr, S. D. ESCRT-III: an endosome associated hetero-oligomeric protein complex required for MVB sorting. Dev. Cell 3, 271–282 (2002). References 73 and 76 further characterize the ESCRT complexes.

    CAS  PubMed  Google Scholar 

  77. Ashrafi, K., Farazi, T. A. & Gordon, J. I. A role for Saccharomyces cerevisiae fatty acid activation protein 4 in regulating protein N-myristoylation during entry into stationary phase. J. Biol. Chem. 273, 25864–25874 (1998).

    CAS  PubMed  Google Scholar 

  78. Babst, M., Wendland, B., Estepa, E. J. & Emr, S. D. The Vps4p AAA ATPase regulates membrane association of a Vps protein complex required for normal endosome function. EMBO J. 17, 2982–2993 (1998). This work showed that Vps4 encodes an AAA-ATPase that is required for the release of MVB sorting components.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Babst, M., Sato, T. K., Banta, L. M. & Emr, S. D. Endosomal transport function in yeast requires a novel AAA-type ATPase, Vps4p. EMBO J. 16, 1820–1831 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Kobayashi, T. et al. A lipid associated with the antiphospholipid syndrome regulates endosome structure and function. Nature 392, 193–197 (1998).

    CAS  PubMed  Google Scholar 

  81. Kobayashi, T. et al. Late endosomal membranes rich in lysobisphosphatidic acid regulate cholesterol transport. Nature Cell Biol. 1, 113–118 (1999).

    CAS  PubMed  Google Scholar 

  82. Odorizzi, G., Babst, M. & Emr, S. D. Phosphoinositide signaling and the regulation of membrane trafficking in yeast. Trends Biochem. Sci. 25, 229–235 (2000).

    CAS  PubMed  Google Scholar 

  83. Sato, T. K., Overduin, M. & Emr, S. D. Location, location, location: membrane targeting directed by PX domains. Science 294, 1881–1885 (2001).

    CAS  PubMed  Google Scholar 

  84. Tsukazaki, T., Chiang, T. A., Davison, A. F., Attisano, L. & Wrana, J. L. SARA, a FYVE domain protein that recruits Smad2 to the TGFβ receptor. Cell 95, 779–791 (1998).

    CAS  PubMed  Google Scholar 

  85. Gillooly, D. J. et al. Localization of phosphatidylinositol 3-phosphate in yeast and mammalian cells. EMBO J. 19, 4577–4588 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Wurmser, A. E. & Emr, S. D. Phosphoinositide signaling and turnover: PtdIns(3)P, a regulator of membrane traffic, is transported to the vacuole and degraded by a process that requires lumenal vacuolar hydrolase activities. EMBO J. 17, 4930–4942 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Schu, P. V. et al. Phosphatidylinositol 3-kinase encoded by yeast VPS34 gene essential for protein sorting. Science 260, 88–91 (1993). References 85, 86 and 87 showed a role for PtdIns(3)P in MVB formation and that PtdIns(3)P is present on lumenal vesicles.

    CAS  PubMed  Google Scholar 

  88. Fernandez-Borja, M. et al. Multivesicular body morphogenesis requires phosphatidyl-inositol 3-kinase activity. Curr. Biol. 9, 55–58 (1999).

    CAS  PubMed  Google Scholar 

  89. Futter, C. E., Collinson, L. M., Backer, J. M. & Hopkins, C. R. Human VPS34 is required for internal vesicle formation within multivesicular endosomes. J. Cell Biol. 155, 1251–1264 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Gary, J. D., Wurmser, A. E., Bonangelino, C. J., Weisman, L. S. & Emr, S. D. Fab1p is essential for PtdIns(3)P 5-kinase activity and the maintenance of vacuolar size and membrane homeostasis. J. Cell Biol. 143, 65–79 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Artavanis-Tsakonas, S., Rand, M. D. & Lake, R. J. Notch signaling: cell fate control and signal integration in development. Science 284, 770–776 (1999).

    CAS  PubMed  Google Scholar 

  92. Berset, T., Hoier, E. F., Battu, G., Canevascini, S. & Hajnal, A. Notch inhibition of RAS signaling through MAP kinase phosphatase LIP-1 during C. elegans vulval development. Science 291, 1055–1058 (2001).

    CAS  PubMed  Google Scholar 

  93. Schroeter, E. H., Kisslinger, J. A. & Kopan, R. Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature 393, 382–386 (1998).

    CAS  PubMed  Google Scholar 

  94. Struhl, G. & Adachi, A. Nuclear access and action of notch in vivo. Cell 93, 649–660 (1998).

    CAS  PubMed  Google Scholar 

  95. Deblandre, G. A., Lai, E. C. & Kintner, C. Xenopus neuralized is a ubiquitin ligase that interacts with XDelta1 and regulates Notch signaling. Dev. Cell 1, 795–806 (2001).

    CAS  PubMed  Google Scholar 

  96. Lai, E. C., Deblandre, G. A., Kintner, C. & Rubin, G. M. Drosophila neuralized is a ubiquitin ligase that promotes the internalization and degradation of delta. Dev. Cell 1, 783–794 (2001).

    CAS  PubMed  Google Scholar 

  97. Pavlopoulos, E. et al. neuralized encodes a peripheral membrane protein involved in delta signaling and endocytosis. Dev. Cell 1, 807–816 (2001). References 95, 96 and 97 showed a role for ubiquitin ligase in developmental signalling.

    CAS  PubMed  Google Scholar 

  98. Kleijmeer, M. et al. Reorganization of multivesicular bodies regulates MHC class II antigen presentation by dendritic cells. J. Cell Biol. 155, 53–64 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Zitvogel, L. et al. Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nature Med. 4, 594–600 (1998).

    CAS  PubMed  Google Scholar 

  100. Ott, D. E., Coren, L. V., Chertova, E. N., Gagliardi, T. D. & Schubert, U. Ubiquitination of HIV-1 and MuLV Gag. Virology 278, 111–121 (2000).

    CAS  PubMed  Google Scholar 

  101. Schubert, U. et al. Proteasome inhibition interferes with gag polyprotein processing, release, and maturation of HIV-1 and HIV-2. Proc. Natl Acad. Sci. USA 97, 13057–13062 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Strack, B., Calistri, A., Accola, M. A., Palu, G. & Gottlinger, H. G. A role for ubiquitin ligase recruitment in retrovirus release. Proc. Natl Acad. Sci. USA 97, 13063–13068 (2000). Papers 100, 101 and 102 highlighted a role for ubiquitin in retroviral budding.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Martin-Serrano, J., Zang, T. & Bieniasz, P. D. HIV-1 and Ebola virus encode small peptide motifs that recruit Tsg101 to sites of particle assembly to facilitate egress. Nature Med. 7, 1313–1319 (2001).

    CAS  PubMed  Google Scholar 

  104. Bays, N. W., Gardner, R. G., Seelig, L. P., Joazeiro, C. A. & Hampton, R. Y. Hrd1p/Der3p is a membrane-anchored ubiquitin ligase required for ER-associated degradation. Nature Cell Biol. 3, 24–29 (2001).

    CAS  PubMed  Google Scholar 

  105. Bonifacino, J. S. & Weissman, A. M. Ubiquitin and the control of protein fate in the secretory and endocytic pathways. Annu. Rev. Cell Dev. Biol. 14, 19–57 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Tsai, B., Ye, Y. & Rapoport, T. A. Retro-translocation of proteins from the endoplasmic reticulum into the cytosol. Nature Rev. Mol. Cell Biol. 3, 246–255 (2002).

    CAS  Google Scholar 

  107. Chau, V. et al. A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. Science 243, 1576–1583 (1989).

    CAS  PubMed  Google Scholar 

  108. Thrower, J. S., Hoffman, L., Rechsteiner, M. & Pickart, C. M. Recognition of the polyubiquitin proteolytic signal. EMBO J. 19, 94–102 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Cowles, C. R., Snyder, W. B., Burd, C. G. & Emr, S. D. An alternative Golgi to vacuole delivery pathway in yeast: identification of a sorting determinant and required transport component. EMBO J. 16, 2769–2782 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Galan, J. M., Moreau, V., Andre, B., Volland, C. & Haguenauer-Tsapis, R. Ubiquitination mediated by the Npi1p/Rsp5p ubiquitin-protein ligase is required for endocytosis of the yeast uracil permease. J. Biol. Chem. 271, 10946–10952 (1996).

    CAS  PubMed  Google Scholar 

  111. Egner, R. & Kuchler, K. The yeast multidrug transporter Pdr5 of the plasma membrane is ubiquitinated prior to endocytosis and degradation in the vacuole. FEBS Lett. 378, 177–181 (1996).

    CAS  PubMed  Google Scholar 

  112. Kolling, R. & Hollenberg, C. The ABC-transporter Ste6 accumulates in the plasma membrane in a ubiquitinated form in endocytosis mutants. EMBO J. 13, 3261–3271 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Beck, T., Schmidt, A. & Hall, M. N. Starvation induces vacuolar targeting and degradation of the tryptophan permease in yeast. J. Cell Biol. 146, 1227–1238 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Strous, G. J., van Kerkhof, P., Govers, R., Ciechanover, A. & Schwartz, A. L. The ubiquitin conjugation system is required for ligand-induced endocytosis and degradation of the growth hormone receptor. EMBO J. 15, 3806–3812 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Rocca, A., Lamaze, C., Subtil, A. & Dautry-Varsat, A. Involvement of the ubiquitin/proteasome system in sorting of the interleukin 2 receptor β chain to late endocytic compartments. Mol. Biol. Cell 12, 1293–1301 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Fujita, Y. et al. Hakai, a c-Cbl-like protein, ubiquitinates and induces endocytosis of the E-cadherin complex. Nature Cell Biol. 4, 222–231 (2002).

    CAS  PubMed  Google Scholar 

  117. Staub, O. et al. Regulation of stability and function of the epithelial Na+ channel (ENaC) by ubiquitination. EMBO J. 16, 6325–6336 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Gottschalk, S., Waheed, A., Schmidt, B., Laidler, P. & von Figura, K. Sequential processing of lysosomal acid phosphatase by a cytoplasmic thiol proteinase and a lysosomal aspartyl proteinase. EMBO J. 8, 3215–3219 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We wish to thank L. Hicke, B. Horazdovsky, C. Joaziero, R. Piper and W. Sundquist for communicating their data before publication. We also thank R. Hampton, I. Mellman, M. Farquhar and R. Piper for many helpful discussions.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

OMIM

Niemann–Pick type C

Swiss-Prot

Cbl

CPS

CXCR4

EGF

EGFR

Eps15

Hrs

Rsp5

SKD1

Snf7

Ste2

Tsg101

ubiquitin

Vps4

Vps28

FURTHER INFORMATION

Scott Emr's laboratory

Glossary

EMBRYONIC PATTERNING

The differentiation of cell lines that lead to developed tissues.

VULVAL DEVELOPMENT

A readily accessible genetic system in Caenorhabditis elegans that can be used to study the induction and regulation of epidermal-growth-factor-receptor signalling pathways in vivo.

HAPLOID

Yeast cells can exist as either a diploid (2N chromosome) or haploid (1N chromosome). Deletion or mutation of genes in haploid yeast cells allows the rapid analysis of phenotype.

ATPase

An enzyme that hydrolyses ATP.

26S PROTEASOME

The large protein complex that is responsible for degrading polyubiquitylated proteins.

ɛ-AMINO-ACID GROUP

The amino group on a lysine residue to which ubiquitin is conjugated by an isopeptide bond.

POLYTOPIC

A multi-pass membrane protein.

RETROTRANSLOCATED

The reverse translocation of proteins from the endoplasmic reticulum (ER) lumen that have been recognized as substrates for degradation by the ER-associated degradation (ERAD) pathway.

RING DOMAIN

A cysteine-rich 'RING'-finger domain of 40–60 amino acids (also known as the C3HC4 zinc-finger) that binds two atoms of Zn2+ and might mediate protein–protein interactions. Many RING-domain-containing proteins have been shown to act as E3 ubiquitin ligases.

NUDE MICE

In the context of this review, these are immunodeficient mice that are used to assay tumorigenicity.

AAA-TYPE ATPase

An ATPase family that seems to be predominantly involved in the disassembly of protein complexes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katzmann, D., Odorizzi, G. & Emr, S. Receptor downregulation and multivesicular-body sorting. Nat Rev Mol Cell Biol 3, 893–905 (2002). https://doi.org/10.1038/nrm973

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm973

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing