Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Recombinational repair and restart of damaged replication forks

Key Points

  • Replication forks encounter problems due to causes such as chemical damage to the DNA template, from both endogenous and exogenous agents, and problems with the protein–DNA complexes that are associated with normal metabolism, such as transcribing RNA polymerases.

  • The structure of the DNA at a damaged fork, and whether the replication proteins remain associated with the fork, might depend on whether the initial blockage affects only a single strand of the template or both strands.

  • Replication forks might simply pause at transient protein roadblocks that are not associated with damage in the template DNA, whereas chemical damage to the template might present a far greater problem.

  • Specialized DNA polymerases that can replicate past damaged nucleotides might bypass the lesion, but at the cost of enhanced mutation rates. However, recombination between the two newly replicated portions of the chromosome might provide an error-free way to facilitate repair or bypass of the lesion.

  • Recombination enzymes in bacteria might facilitate the repair of damaged forks through the unwinding of the DNA at the fork to create a four-stranded Holliday junction structure. Processing of the Holliday junction, either with or without cleavage of the junction DNA, might generate a suitable DNA structure onto which replication enzymes can be reloaded.

  • Eukaryotes might have analogous systems to deal with blocked replication forks. Potential roles in the maintenance of replication fork progression are supported by the enhanced genome instability of humans who carry mutations in those enzymes that might unwind forked DNA structures.

  • When the original source of a replication blockage is removed or bypassed, the replication machinery must be reassembled onto the forked DNA that has been generated by recombination. In bacteria, this is achieved by a protein that recognizes specific branched-DNA structures, and recruits essential components of the replication machinery to these structures. Eukaryotes might also have the means to reassemble replication enzymes onto recombination intermediates.

  • The complexity of replication and repair processes indicates that some coordination must occur. Specific sites of replication in the cell, and the association of recombination enzymes with these sites, supports this idea.

  • Recent evidence pointing to the importance of recombination for successful genome duplication indicates that recombination enzymes might be viewed as accessory factors for replication. The generation of genetic diversity — the textbook view of recombination — might, therefore, be a mere side-show that arose by hijacking of replication repair enzymes during evolution.

Abstract

Genome duplication necessarily involves the replication of imperfect DNA templates and, if left to their own devices, replication complexes regularly run into problems. The details of how cells overcome these replicative 'hiccups' are beginning to emerge, revealing a complex interplay between DNA replication, recombination and repair that ensures faithful passage of the genetic material from one generation to the next.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Potential types of replication-fork damage.
Figure 2: Restarting DNA replication by junction cleavage.
Figure 3: Restarting DNA replication without cleavage.
Figure 4: PriA-directed reloading of the replication machinery.
Figure 5: Potential mechanisms of replication restart.

Similar content being viewed by others

References

  1. Karow, J. K., Wu, L. & Hickson, I. D. RecQ family helicases: roles in cancer and aging. Curr. Opin. Genet. Dev. 10, 32–38 (2000).

    CAS  PubMed  Google Scholar 

  2. Venkitaraman, A. R. Cancer susceptibility and the functions of BRCA1 and BRCA2. Cell 108, 171–182 (2002).

    CAS  PubMed  Google Scholar 

  3. Maisnier-Patin, S., Nordstrom, K. & Dasgupta, S. Replication arrests during a single round of replication of the Escherichia coli chromosome in the absence of DnaC activity. Mol. Microbiol. 42, 1371–1382 (2001).The first direct measurement of the frequency with which replication forks stall in E. coli.

    CAS  PubMed  Google Scholar 

  4. Cox, M. M. et al. The importance of repairing stalled replication forks. Nature 404, 37–41 (2000).

    CAS  PubMed  Google Scholar 

  5. Kreuzer, K. N. Recombination-dependent DNA replication in phage T4. Trends Biochem. Sci. 25, 165–173 (2000).

    CAS  PubMed  Google Scholar 

  6. Kogoma, T. Stable DNA replication: interplay between DNA replication, homologous recombination, and transcription. Microbiol. Mol. Biol. Rev. 61, 212–238 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Paques, F. & Haber, J. E. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 63, 349–404 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Lindahl, T. & Wood, R. D. Quality control by DNA repair. Science 286, 1897–1905 (1999).

    CAS  PubMed  Google Scholar 

  9. Kuzminov, A. Collapse and repair of replication forks in Escherichia coli. Mol. Microbiol. 16, 373–384 (1995).

    CAS  PubMed  Google Scholar 

  10. McGlynn, P. & Lloyd, R. G. Modulation of RNA polymerase by (p)ppGpp reveals a RecG-dependent mechanism for replication fork progression. Cell 101, 35–45 (2000).Identification of RecG as a helicase that generates Holliday junctions from damaged replication forks to assist fork progression.

    CAS  PubMed  Google Scholar 

  11. Liu, B. & Alberts, B. M. Head-on collision between a DNA replication apparatus and RNA polymerase transcription complex. Science 267, 1131–1137 (1995).

    CAS  PubMed  Google Scholar 

  12. Vilette, D., Ehrlich, S. D. & Michel, B. Transcription-induced deletions in Escherichia coli plasmids. Mol. Microbiol. 17, 493–504 (1995).

    CAS  PubMed  Google Scholar 

  13. Krasilnikova, M. M., Samadashwily, G. M., Krasilnikov, A. S. & Mirkin, S. M. Transcription through a simple DNA repeat blocks replication elongation. EMBO J. 17, 5095–5102 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Chavez, S. et al. A protein complex containing Tho2, Hpr1, Mft1 and a novel protein, Thp2, connects transcription elongation with mitotic recombination in Saccharomyces cerevisiae. EMBO J. 19, 5824–5834 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Brewer, B. J. When polymerases collide: replication and the transcriptional organization of the E. coli chromosome. Cell 53, 679–686 (1988).

    CAS  PubMed  Google Scholar 

  16. Park, J. S., Marr, M. T. & Roberts, J. W. E. coli transcription repair coupling factor (mfd protein) rescues arrested complexes by promoting forward translocation. Cell 109, 757–767 (2002).

    CAS  PubMed  Google Scholar 

  17. Fan, Q., Xu, F. & Petes, T. D. Meiosis-specific double-strand DNA breaks at the HIS4 recombination hot spot in the yeast Saccharomyces cerevisiae: control in cis and trans. Mol. Cell. Biol. 15, 1679–1688 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Usdin, K. & Woodford, K. J. CGG repeats associated with DNA instability and chromosome fragility form structures that block DNA synthesis in vitro. Nucleic Acids Res. 23, 4202–4209 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Samadashwily, G. M., Raca, G. & Mirkin, S. M. Trinucleotide repeats affect DNA replication in vivo. Nature Genet. 17, 298–304 (1997).

    CAS  PubMed  Google Scholar 

  20. Meneghini, R. & Hanawalt, P. T4-endonuclease V-sensitive sites in DNA from ultraviolet-irradiated human cells. Biochim. Biophys. Acta 425, 428–437 (1976).

    CAS  PubMed  Google Scholar 

  21. Rupp, W. D., Wilde, C. E., Reno, D. L. & Howard-Flanders, P. Exchanges between DNA strands in ultraviolet-irradiated Escherichia coli. J. Mol. Biol. 61, 25–44 (1971).Identification of exchanges between sister duplexes after replication of DNA in cells exposed to UV light, which indicates that single-stranded gaps left in the replicated DNA at UV-induced pyrimidine dimers might be repaired by recombination with the intact sister duplex.

    CAS  PubMed  Google Scholar 

  22. West, S. C., Cassuto, E. & Howard-Flanders, P. Mechanism of E. coli RecA protein directed strand exchanges in post-replication repair of DNA. Nature 294, 659–662 (1981).

    CAS  PubMed  Google Scholar 

  23. Gottesman, M. M., Hicks, M. L. & Gellert, M. Genetics and function of DNA ligase in Escherichia coli. J. Mol. Biol. 77, 531–547 (1973).

    CAS  PubMed  Google Scholar 

  24. Johnston, L. H. & Nasmyth, K. A. Saccharomyces cerevisiae cell cycle mutant cdc9 is defective in DNA ligase. Nature 274, 891–893 (1978).

    CAS  PubMed  Google Scholar 

  25. Svoboda, D. L. & Vos, J. M. Differential replication of a single, UV-induced lesion in the leading or lagging strand by a human cell extract: fork uncoupling or gap formation. Proc. Natl Acad. Sci. USA 92, 11975–11979 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Cordeiro-Stone, M., Makhov, A. M., Zaritskaya, L. S. & Griffith, J. D. Analysis of DNA replication forks encountering a pyrimidine dimer in the template to the leading strand. J. Mol. Biol. 289, 1207–1218 (1999).

    CAS  PubMed  Google Scholar 

  27. Gruber, M., Wellinger, R. E. & Sogo, J. M. Architecture of the replication fork stalled at the 3′ end of yeast ribosomal genes. Mol. Cell. Biol. 20, 5777–5787 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Hill, T. M. & Marians, K. J. Escherichia coli Tus protein acts to arrest the progression of DNA replication forks in vitro. Proc. Natl Acad. Sci. USA 87, 2481–2485 (1990).References 25–28 provide the only descriptions of the structures of stalled replication forks.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Yancey-Wrona, J. E. & Matson, S. W. Bound Lac repressor protein differentially inhibits the unwinding reactions catalyzed by DNA helicases. Nucleic Acids Res. 20, 6713–6721 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Lane, H. E. & Denhardt, D. T. The rep mutation. IV. Slower movement of replication forks in Escherichia coli rep strains. J. Mol. Biol. 97, 99–112 (1975).

    CAS  PubMed  Google Scholar 

  31. Ivessa, A. S., Zhou, J. Q. & Zakian, V. A. The Saccharomyces Pif1p DNA helicase and the highly related Rrm3p have opposite effects on replication fork progression in ribosomal DNA. Cell 100, 479–489 (2000).

    CAS  PubMed  Google Scholar 

  32. Bozhenok, L., Wade, P. A. & Varga-Weisz, P. WSTF–ISWI chromatin remodeling complex targets heterochromatic replication foci. EMBO J. 21, 2231–2241 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Marians, K. J., Hiasa, H., Kim, D. R. & McHenry, C. S. Role of the core DNA polymerase III subunits at the replication fork. α is the only subunit required for processive replication. J. Biol. Chem. 273, 2452–2457 (1998).

    CAS  PubMed  Google Scholar 

  34. Tornaletti, S. & Hanawalt, P. C. Effect of DNA lesions on transcription elongation. Biochimie 81, 139–146 (1999).

    CAS  PubMed  Google Scholar 

  35. Selby, C. P., Drapkin, R., Reinberg, D. & Sancar, A. RNA polymerase II stalled at a thymine dimer: footprint and effect on excision repair. Nucleic Acids Res. 25, 787–793 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Pham, P., Bertram, J. G., O'Donnell, M., Woodgate, R. & Goodman, M. F. A model for SOS-lesion-targeted mutations in Escherichia coli. Nature 409, 366–370 (2001).

    CAS  PubMed  Google Scholar 

  37. Goodman, M. F. & Tippin, B. The expanding polymerase universe. Nature Rev. Mol. Cell Biol. 1, 101–109 (2000).

    CAS  Google Scholar 

  38. Tissier, A., McDonald, J. P., Frank, E. G. & Woodgate, R. polι, a remarkably error-prone human DNA polymerase. Genes Dev. 14, 1642–1650 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Baynton, I. & Fuchs, R. P. Lesions in DNA: hurdles for polymerases. Trends Biochem. Sci. 25, 74–79 (2000).

    CAS  PubMed  Google Scholar 

  40. Higgins, N. P., Kato, K. & Strauss, B. A model for replication repair in mammalian cells. J. Mol. Biol. 101, 417–425 (1976).The proposal of template switching as a mechanism of replication restart.

    CAS  PubMed  Google Scholar 

  41. Viguera, E., Hernandez, P., Krimer, D. B., Lurz, R. & Schvartzman, J. B. Visualisation of plasmid replication intermediates containing reversed forks. Nucleic Acids Res. 28, 498–503 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Sogo, J. M., Lopez, M. & Foiani, M. Fork reversal and ssDNA accumulation at stalled replication forks owing to checkpoint defects. Science 297, 599–602 (2002).The direct observation of Holliday junctions and regions of ssDNA at replication forks in checkpoint-deficient yeast mutants.

    CAS  PubMed  Google Scholar 

  43. Bidnenko, V., Ehrlich, S. D. & Michel, B. Replication fork collapse at replication terminator sequences. EMBO J. 21, 3898–3907 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Seigneur, M., Bidnenko, V., Ehrlich, S. D. & Michel, B. RuvAB acts at arrested replication forks. Cell 95, 419–430 (1998).A key study, which shows that damaged replication forks form Holliday junctions in vivo.

    CAS  PubMed  Google Scholar 

  45. Flores, M. J., Bierne, H., Ehrlich, S. D. & Michel, B. Impairment of lagging strand synthesis triggers the formation of a RuvABC substrate at replication forks. EMBO J. 20, 619–629 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Zerbib, D., Mézard, C., George, H. & West, S. C. Coordinated actions of RuvABC in Holliday junction processing. J. Mol. Biol. 281, 621–630 (1998).

    CAS  PubMed  Google Scholar 

  47. McGlynn, P. & Lloyd, R. G. Rescue of stalled replication forks by RecG: simultaneous translocation on the leading and lagging strand templates supports an active DNA unwinding model of fork reversal and Holliday junction formation. Proc. Natl Acad. Sci. USA 98, 8227–8234 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Gregg, A. V., McGlynn, P., Jaktaji, R. P. & Lloyd, R. G. Direct rescue of stalled DNA replication forks via the combined action of PriA and RecG helicase activities. Mol. Cell 9, 241–251 (2002).

    CAS  PubMed  Google Scholar 

  49. Liu, J., Xu, L., Sandler, S. J. & Marians, K. J. Replication fork assembly at recombination intermediates is required for bacterial growth. Proc. Natl Acad. Sci. USA 96, 3552–3555 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Cromie, G. A. & Leach, D. R. Control of crossing over. Mol. Cell 6, 815–826 (2000).The realization that the orientation of the cleavage of Holliday junctions by RuvABC is not random and that the actions of RuvABC at damaged replication forks (and other forms of DNA repair) might be biased against crossover formation, therefore avoiding chromosome segregation problems.

    CAS  PubMed  Google Scholar 

  51. Michel, B., Recchia, G. D., Penel-Colin, M., Ehrlich, S. D. & Sherratt, D. J. Resolution of Holliday junctions by RuvABC prevents dimer formation in rep mutants and UV-irradiated cells. Mol. Microbiol. 37, 180–191 (2000).

    CAS  PubMed  Google Scholar 

  52. Zou, H. & Rothstein, R. Holliday junctions accumulate in replication mutants via a RecA homolog-independent mechanism. Cell 90, 87–96 (1997).

    CAS  PubMed  Google Scholar 

  53. Defossez, P. A. et al. Elimination of replication block protein Fob1 extends the life span of yeast mother cells. Mol. Cell 3, 447–455 (1999).

    CAS  PubMed  Google Scholar 

  54. Sinclair, D. A. & Guarente, L. Extrachromosomal rDNA circles — a cause of aging in yeast. Cell 91, 1033–1042 (1997).

    CAS  PubMed  Google Scholar 

  55. Cha, R. S. & Kleckner, N. ATR homolog Mec1 promotes fork progression, thus averting breaks in replication slow zones. Science 297, 602–606 (2002).The correlation of chromosome breakage with stalling of the replication forks in slowly replicating zones of checkpoint-deficient yeast mutants indicates that checkpoint proteins might aid in the maintenance of normal replication fork progression.

    CAS  PubMed  Google Scholar 

  56. Constantinou, A., Davies, A. A. & West, S. C. Branch migration and Holliday junction resolution catalyzed by activities from mammalian cells. Cell 104, 259–268 (2001).

    CAS  PubMed  Google Scholar 

  57. Holmes, A. M. & Haber, J. E. Double-strand break repair in yeast requires both leading and lagging strand DNA polymerases. Cell 96, 415–424 (1999).

    CAS  PubMed  Google Scholar 

  58. Malkova, A. et al. RAD51-independent break-induced replication to repair a broken chromosome depends on a distant enhancer site. Genes Dev. 15, 1055–1060 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Boddy, M. N. et al. Mus81–Eme1 are essential components of a Holliday junction resolvase. Cell 107, 537–548 (2001).

    CAS  PubMed  Google Scholar 

  60. Chen, X. B. et al. Human Mus81-associated endonuclease cleaves Holliday junctions in vitro. Mol. Cell 8, 1117–1127 (2001).

    CAS  PubMed  Google Scholar 

  61. Kaliraman, V., Mullen, J. R., Fricke, W. M., Bastin-Shanower, S. A. & Brill, S. J. Functional overlap between Sgs1–Top3 and the Mms4–Mus81 endonuclease. Genes Dev. 15, 2730–2740 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Doe, C. L., Ahn, J. S., Dixon, J. & Whitby, M. C. Mus81–Eme1 and Rqh1 involvement in processing stalled and collapsed replication forks. J. Biol. Chem. 277, 32753–32759 (2002).References 59–62 identified the Mus81 complex as a branched-DNA-specific endonuclease with a role in the repair of replication forks.

    CAS  PubMed  Google Scholar 

  63. Boddy, M. N. et al. Damage tolerance protein Mus81 associates with the FHA1 domain of checkpoint kinase Cds1. Mol. Cell. Biol. 20, 8758–8766 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Johnson, M. E. et al. Positive selection of a gene family during the emergence of humans and African apes. Nature 413, 514–519 (2001).

    CAS  PubMed  Google Scholar 

  65. Meneghini, R., Cordeiro-Stone, M. & Schumacher, R. I. Size and frequency of gaps in newly synthesized DNA of xeroderma pigmentosum human cells irradiated with ultraviolet light. Biophys. J. 33, 81–92 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. McGlynn, P., Lloyd, R. G. & Marians, K. J. Formation of Holliday junctions by regression of nascent DNA in intermediates containing stalled replication forks: RecG stimulates regression even when the DNA is negatively supercoiled. Proc. Natl Acad. Sci. USA 98, 8235–8240 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Singleton, M. R., Scaife, S. & Wigley, D. B. Structural analysis of DNA replication fork reversal by RecG. Cell 107, 79–89 (2001).The structure of RecG revealed how a single polypeptide could unwind both the leading and the lagging strands, and promote reannealing of the parental strands, to allow Holliday junction formation at stalled replication forks.

    CAS  PubMed  Google Scholar 

  68. Postow, L. et al. Positive torsional strain causes the formation of a four-way junction at replication forks. J. Biol. Chem. 276, 2790–2796 (2001).

    CAS  PubMed  Google Scholar 

  69. Rangarajan, S., Woodgate, R. & Goodman, M. F. Replication restart in UV-irradiated Escherichia coli involving pols II, III, V, PriA, RecA and RecFOR proteins. Mol. Microbiol. 43, 617–628 (2002).

    CAS  PubMed  Google Scholar 

  70. Parsons, C. A., Tsaneva, I., Lloyd, R. G. & West, S. C. Interaction of Escherichia coli RuvA and RuvB proteins with synthetic Holliday junctions. Proc. Natl Acad. Sci. USA 89, 5452–5456 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Lloyd, R. G. & Sharples, G. J. Dissociation of synthetic Holliday junctions by E. coli RecG protein. EMBO J. 12, 17–22 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Bolt, E. L. & Lloyd, R. G. Substrate-specificity of RusA resolvase reveals the DNA structures targeted by RuvAB and RecG in vivo. Mol. Cell 10, 187–198 (2002).

    CAS  PubMed  Google Scholar 

  73. Liu, L. F. & Wang, J. C. Supercoiling of the DNA template during transcription. Proc. Natl Acad. Sci. USA 84, 7024–7027 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Seigneur, M., Ehrlich, S. D. & Michel, B. RuvABC-dependent double-strand breaks in dnaBts mutants require recA. Mol. Microbiol. 38, 565–574 (2000).

    CAS  PubMed  Google Scholar 

  75. Robu, M. E., Inman, R. B. & Cox, M. M. RecA protein promotes the regression of stalled replication forks in vitro. Proc. Natl Acad. Sci. USA 98, 8211–8218 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. McGlynn, P. & Lloyd, R. G. Action of RuvAB at replication fork structures. J. Biol. Chem. 276, 41938–41944 (2001).

    CAS  PubMed  Google Scholar 

  77. Hanada, K. et al. RecQ DNA helicase is a suppressor of illegitimate recombination in Escherichia coli. Proc. Natl Acad. Sci. USA 94, 3860–3865 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Harmon, F. G. & Kowalczykowski, S. C. RecQ helicase, in concert with RecA and SSB proteins, initiates and disrupts DNA recombination. Genes Dev. 12, 1134–1144 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Courcelle, J. & Hanawalt, P. C. RecQ and RecJ process blocked replication forks prior to the resumption of replication in UV-irradiated Escherichia coli. Mol. Gen. Genet. 262, 543–551 (1999).

    CAS  PubMed  Google Scholar 

  80. Courcelle, J., Crowley, D. J. & Hanawalt, P. C. Recovery of DNA replication in UV-irradiated Escherichia coli requires both excision repair and recF protein function. J. Bacteriol. 181, 916–922 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Sharples, G. J., Ingleston, S. M. & Lloyd, R. G. Holliday junction processing in bacteria: insights from the evolutionary conservation of RuvABC, RecG, and RusA. J. Bacteriol. 181, 5543–5550 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Aboussekhra, A., Chanet, R., Adjiri, A. & Fabre, F. Semidominant suppressors of Srs2 helicase mutations of Saccharomyces cerevisiae map in the RAD51 gene, whose sequence predicts a protein with similarities to procaryotic RecA proteins. Mol. Cell. Biol. 12, 3224–3234 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Karow, J. K., Constantinou, A., Li, J. L., West, S. C. & Hickson, I. D. The Bloom's syndrome gene product promotes branch migration of Holliday junctions. Proc. Natl Acad. Sci. USA 97, 6504–6508 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Constantinou, A. et al. Werner's syndrome protein (WRN) migrates Holliday junctions and co-localizes with RPA upon replication arrest. EMBO Rep. 1, 80–84 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Mohaghegh, P., Karow, J. K., Brosh, R. M. Jr, Bohr, V. A. & Hickson, I. D. The Bloom's and Werner's syndrome proteins are DNA structure-specific helicases. Nucleic Acids Res. 29, 2843–2849 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Yan, H., Chen, C. Y., Kobayashi, R. & Newport, J. Replication focus-forming activity 1 and the Werner syndrome gene product. Nature Genet. 19, 375–378 (1998).

    CAS  PubMed  Google Scholar 

  87. Brosh, R. M. Jr et al. Replication protein A physically interacts with the Bloom's syndrome protein and stimulates its helicase activity. J. Biol. Chem. 275, 23500–23508 (2000).

    CAS  PubMed  Google Scholar 

  88. Murray, J. M., Lindsay, H. D., Munday, C. A. & Carr, A. M. Role of Schizosaccharomyces pombe RecQ homolog, recombination, and checkpoint genes in UV damage tolerance. Mol. Cell. Biol. 17, 6868–6875 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Doe, C. L., Dixon, J., Osman, F. & Whitby, M. C. Partial suppression of the fission yeast rqh1(−) phenotype by expression of a bacterial Holliday junction resolvase. EMBO J. 19, 2751–2762 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Bennett, R. J., Keck, J. L. & Wang, J. C. Binding specificity determines polarity of DNA unwinding by the Sgs1 protein of S. cerevisiae. J. Mol. Biol. 289, 235–248 (1999).

    CAS  PubMed  Google Scholar 

  91. Gangloff, S., McDonald, J. P., Bendixen, C., Arthur, L. & Rothstein, R. The yeast type I topoisomerase Top3 interacts with Sgs1, a DNA helicase homolog: a potential eukaryotic reverse gyrase. Mol. Cell. Biol. 14, 8391–8398 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Harmon, F. G., DiGate, R. J. & Kowalczykowski, S. C. RecQ helicase and topoisomerase III comprise a novel DNA strand passage function: a conserved mechanism for control of DNA recombination. Mol. Cell 3, 611–620 (1999).

    CAS  PubMed  Google Scholar 

  93. Wu, L. et al. The Bloom's syndrome gene product interacts with topoisomerase III. J. Biol. Chem. 275, 9636–9644 (2000).

    CAS  PubMed  Google Scholar 

  94. Kato, J. & Katayama, T. Hda, a novel DnaA-related protein, regulates the replication cycle in Escherichia coli EMBO J. 20, 4253–4262 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Nguyen, V. Q., Co, C. & Li, J. J. Cyclin-dependent kinases prevent DNA re-replication through multiple mechanisms. Nature 411, 1068–1073 (2001).

    CAS  PubMed  Google Scholar 

  96. Nurse, P., Zavitz, K. H. & Marians, K. J. Inactivation of the Escherichia coli priA DNA replication protein induces the SOS response. J. Bacteriol. 173, 6686–6693 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Kogoma, T., Cadwell, G. W., Barnard, K. G. & Asai, T. The DNA replication priming protein, PriA, is required for homologous recombination and double-strand break repair. J. Bacteriol. 178, 1258–1264 (1996).References 96 and 97 showed the crucial links between replication and recombination, and the central role of PriA.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Jones, J. M. & Nakai, H. Duplex opening by primosome protein PriA for replisome assembly on a recombination intermediate. J. Mol. Biol. 289, 503–516 (1999).

    CAS  PubMed  Google Scholar 

  99. Nurse, P., Liu, J. & Marians, K. J. Two modes of PriA binding to DNA. J. Biol. Chem. 274, 25026–25032 (1999).

    CAS  PubMed  Google Scholar 

  100. Jones, J. M. & Nakai, H. Escherichia coli PriA helicase: fork binding orients the helicase to unwind the lagging strand side of arrested replication forks. J. Mol. Biol. 312, 935–947 (2001).

    CAS  PubMed  Google Scholar 

  101. Zavitz, K. H. & Marians, K. J. ATPase-deficient mutants of the Escherichia coli DNA replication protein PriA are capable of catalyzing the assembly of active primosomes. J. Biol. Chem. 267, 6933–6940 (1992).

    CAS  PubMed  Google Scholar 

  102. Sandler, S. J., Samra, H. S. & Clark, A. J. Differential suppression of priA2::kan phenotypes in Escherichia coli K-12 by mutations in priA, lexA, and dnaC. Genetics 143, 5–13 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Sandler, S. J. Multiple genetic pathways for restarting DNA replication forks in Escherichia coli K-12. Genetics 155, 487–497 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Baur, J. A., Zou, Y., Shay, J. W. & Wright, W. E. Telomere position effect in human cells. Science 292, 2075–2077 (2001).

    CAS  PubMed  Google Scholar 

  105. Lemon, K. P. & Grossman, A. D. Movement of replicating DNA through a stationary replisome. Mol. Cell 6, 1321–1330 (2000).

    CAS  PubMed  Google Scholar 

  106. Cook, P. R. The organization of replication and transcription. Science 284, 1790–1795 (1999).

    CAS  PubMed  Google Scholar 

  107. Lisby, M., Rothstein, R. & Mortensen, U. H. Rad52 forms DNA repair and recombination centers during S phase. Proc. Natl Acad. Sci. USA 98, 8276–8282 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Essers, J. et al. Nuclear dynamics of RAD52 group homologous recombination proteins in response to DNA damage. EMBO J. 21, 2030–2037 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Phair, R. D. & Misteli, T. High mobility of proteins in the mammalian cell nucleus. Nature 404, 604–609 (2000).

    CAS  PubMed  Google Scholar 

  110. Courcelle, J., Khodursky, A., Peter, B., Brown, P. O. & Hanawalt, P. C. Comparative gene expression profiles following UV exposure in wild-type and SOS-deficient Escherichia coli. Genetics 158, 41–64 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Wagner, J. et al. The dinB gene encodes a novel E. coli DNA polymerase, DNA pol IV, involved in mutagenesis. Mol. Cell 4, 281–286 (1999).

    CAS  PubMed  Google Scholar 

  112. Zhou, B. B. & Elledge, S. J. The DNA damage response: putting checkpoints in perspective. Nature 408, 433–439 (2000).

    CAS  PubMed  Google Scholar 

  113. Caspari, T. & Carr, A. M. Checkpoints: how to flag up double-strand breaks. Curr. Biol. 12, R105–R107 (2002).

    CAS  PubMed  Google Scholar 

  114. Tercero, J. A. & Diffley, J. F. Regulation of DNA replication fork progression through damaged DNA by the Mec1/Rad53 checkpoint. Nature 412, 553–557 (2001).

    CAS  PubMed  Google Scholar 

  115. Lopes, M. et al. The DNA replication checkpoint response stabilizes stalled replication forks. Nature 412, 557–561 (2001).References 114 and 115 showed that the checkpoint response can stabilize stalled replication forks to prevent their collapse, facilitating the eventual completion of replication.

    CAS  PubMed  Google Scholar 

  116. Brush, G. S., Morrow, D. M., Hieter, P. & Kelly, T. J. The ATM homologue MEC1 is required for phosphorylation of replication protein A in yeast. Proc. Natl Acad. Sci. USA 93, 15075–15080 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Pellicioli, A. et al. Activation of Rad53 kinase in response to DNA damage and its effect in modulating phosphorylation of the lagging strand DNA polymerase. EMBO J. 18, 6561–6572 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Zhao, X. & Rothstein, R. The Dun1 checkpoint kinase phosphorylates and regulates the ribonucleotide reductase inhibitor Sml1. Proc. Natl Acad. Sci. USA 99, 3746–3751 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Bashkirov, V. I., King, J. S., Bashkirova, E. V., Schmuckli-Maurer, J. & Heyer, W. D. DNA repair protein Rad55 is a terminal substrate of the DNA damage checkpoints. Mol. Cell. Biol. 20, 4393–4404 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Carr, A. M. Checking that replication breakdown is not terminal. Science 297, 557–558 (2002).

    CAS  PubMed  Google Scholar 

  121. Aguilera, A. Double-strand break repair: are Rad51/RecA-DNA joints barriers to DNA replication? Trends Genet. 17, 318–321 (2001).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work in the authors' laboratories is supported by the MRC (P.M. and R.G.L.) and the Wellcome Trust (R.G.L.). P.M. is a Lister Institute–Jenner Research Fellow.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peter McGlynn or Robert G. Lloyd.

Related links

Related links

DATABASES

Entrez

DnaB

DnaC

DnaG

PriA

RecA

RecF

RecG

RecJ

RecQ

RecR

resolvase

Rqh1

Rrm3

RuvC

Sgs1

OMIM

Bloom's syndrome

Werner's syndrome

Swiss-Prot

ISWI

Mus81

Rad51

WSTF

Glossary

REPLISOME

A complex of DNA-replication enzymes that contains two DNA polymerases for leading- and lagging-strand synthesis, sliding clamps to maintain processivity, a sliding-clamp loader, a helicase to unwind the parental double-stranded DNA ahead of the advancing fork and a primase to synthesize RNA primers for discontinuous lagging-strand synthesis.

OKAZAKI FRAGMENTS

Individual lagging strand that ranges from 40–300 base pairs (bp) in eukaryotes, and 1,000–2,000 bp in bacteria.

PYRIMIDINE DIMER

Adjacent pyrimidine bases that are covalently linked in a DNA strand as a result of irradiation with UV light. Such lesions block normal replicative DNA polymerases.

RIBOSOMAL DNA CLUSTER

(rDNA). Tandem repeats of genes that encode ribosomal RNA.

TUS–TER

A complex formed by binding of the Tus protein to specific ter sequences in bacterial genomes. It blocks advancing replication forks, which allows the opposing replication fork to converge with the blocked fork to complete duplication of the circular bacterial chromosome.

REPLICATIVE HELICASE

The helicase activity required to unwind the parental double-stranded DNA ahead of the advancing replication fork, which allows the unwound strands to be used as templates for leading- and lagging-strand synthesis.

SLIDING CLAMPS

Also known as processivity factors. Protein dimers or trimers that encircle and slide along double-stranded DNA. They tether the replicative polymerase and prevent its rapid dissociation from the template DNA.

HELICASE

A protein that uses the energy of ATP hydrolysis to disrupt hydrogen bonding between two nucleic-acid strands, therefore separating the strands.

HETEROCHROMATIN

Chromatin — DNA packaged around nucleosomes — that is highly compacted as compared with most chromatin in a eukaryotic cell.

RUVABC

A Holliday-junction-specific multisubunit helicase (RuvAB) and endonuclease (RuvC) that act in concert to move and then cleave the branch point of Holliday junctions.

RECA

A recombination enzyme that catalyses strand exchange between a single strand of DNA and a homologous double-stranded DNA.

D-LOOP

A recombination intermediate that is formed by the base pairing of a single-stranded DNA with a homologous double-stranded DNA; a structure in which one strand of the dsDNA is displaced to make way for the invading strand is formed.

PRIA

Recognizes and loads the replication machinery at branched DNA structures in Escherichia coli.

CHECKPOINT

An enzyme system that ensures events, such as DNA replication, are completed before progression to the next stage of the cell cycle in eukaryotes.

RECG

A helicase that can unwind forked DNA to generate Holliday junctions, and that can also move the branch point of a Holliday junction along the DNA.

EXCISION REPAIR

The removal of damaged nucleotide residues in DNA and their replacement with the correct residue.

NEGATIVE SUPERCOILING

Almost all DNA molecules are negatively supercoiled. The DNA is twisted about itself in the direction opposite to that of the two strands of the double helix.

POSITIVE SUPERCOILING

Positively supercoiled DNA, like negatively supercoiled DNA, has a higher energy than relaxed DNA and this energy can alter local DNA structure. However, the DNA is twisted on itself in the same direction as the two strands of the double helix.

DNAB

The replicative helicase of Escherichia coli that unwinds the parental double-stranded DNA ahead of the replication fork by translocating along the lagging-strand template.

ILLEGITIMATE RECOMBINATION

Recombination between DNA sequences that share little or no homology.

TOPOISOMERASE III

An enzyme that alters the degree of supercoiling in double-stranded DNA by the transient introduction of nicks in a single strand of the DNA.

DNAG

A specialized Escherichia coli RNA polymerase, or primase, that transiently interacts with DnaB and synthesizes short stretches of RNA on the lagging-strand template. These RNAs prime lagging-strand DNA synthesis.

SOS RESPONSE

The induction of expression of a series of genes, many of which encode proteins that are involved in DNA-damage tolerance mechanisms, in response to elevated levels of DNA damage.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McGlynn, P., Lloyd, R. Recombinational repair and restart of damaged replication forks. Nat Rev Mol Cell Biol 3, 859–870 (2002). https://doi.org/10.1038/nrm951

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm951

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing