Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Transcription

Sibling rivalry in the E2F family

Abstract

The E2F transcription factor family determines whether or not a cell will divide by controlling the expression of key cell-cycle regulators. The individual E2Fs can be divided into distinct subgroups that act in direct opposition to one another to promote either cellular proliferation or cell-cycle exit and terminal differentiation. What is the underlying molecular basis of this 'push-me–pull-you' regulation, and what are its biological consequences?

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: General mechanisms that control the repressive activity of E2F.
Figure 2: Structural comparison of the E2F subgroups.
Figure 3: Cell-cycle regulation of individual E2F complexes.
Figure 4: The threshold model of the activating E2Fs.

Similar content being viewed by others

References

  1. Sherr, C. J. & Roberts, J. M. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 13, 1501–1512 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Nevins, J. R. E2F: a link between the Rb tumor suppressor protein and viral oncoproteins. Science 258, 424–429 (1992).

    Article  CAS  PubMed  Google Scholar 

  3. Dyson, N. The regulation of E2F by pRB-family proteins. Genes Dev. 12, 2245–2262 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. La Thangue, N. B. & Rigby, P. W. An adenovirus E1A-like transcription factor is regulated during the differentiation of murine embryonal carcinoma stem cells. Cell 49, 507–513 (1987).

    Article  CAS  PubMed  Google Scholar 

  5. Bandara, L. R. & La Thangue, N. B. Adenovirus E1a prevents the retinoblastoma gene product from complexing with a cellular transcription factor. Nature 351, 494–497 (1991).

    Article  CAS  PubMed  Google Scholar 

  6. Girling, R. et al. A new component of the transcription factor DRTF1/E2F. Nature 362, 83–87 (1993).

    Article  CAS  PubMed  Google Scholar 

  7. Weinberg, R. A. The retinoblastoma gene and gene product. Cancer Surv. 12, 43–57 (1992).

    CAS  PubMed  Google Scholar 

  8. DeGregori, J., Leone, G., Ohtani, K., Miron, A. & Nevins, J. R. E2F-1 accumulation bypasses a G1 arrest resulting from the inhibition of G1 cyclin-dependent kinase activity. Genes Dev. 9, 2873–2887 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Schwarz, J. K. et al. Expression of the E2F1 transcription factor overcomes type-β transforming growth factor-mediated growth suppression. Proc. Natl Acad. Sci. USA 92, 483–487 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mann, D. J. & Jones, N. C. E2F-1 but not E2F-4 can overcome p16-induced G1 cell-cycle arrest. Curr. Biol. 6, 474–483 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Bartek, J., Bartkova, J. & Lukas, J. The retinoblastoma protein pathway and the restriction point. Curr. Opin. Cell Biol. 8, 805–814 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Sherr, C. J. Cancer cell cycles. Science 274, 1672–1677 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Mulligan, G. & Jacks, T. The retinoblastoma gene family: cousins with overlapping interests. Trends Genet. 14, 223–229 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Hu, N. et al. Heterozygous Rb-1 delta 20/+ mice are predisposed to tumors of the pituitary gland with a nearly complete penetrance. Oncogene 9, 1021–1027 (1994).

    CAS  PubMed  Google Scholar 

  15. Williams, B. O., Morgenbesser, S. D., DePinho, R. A. & Jacks, T. Tumorigenic and developmental effects of combined germ-line mutations in Rb and p53. Cold Spring Harb. Symp. Quant. Biol. 59, 449–457 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. Clarke, A. R. et al. Requirement for a functional Rb-1 gene in murine development. Nature 359, 328–330 (1992).

    Article  CAS  PubMed  Google Scholar 

  17. Jacks, T. et al. Effects of an Rb mutation in the mouse. Nature 359, 295–300 (1992).

    Article  CAS  PubMed  Google Scholar 

  18. Lee, E. Y. et al. Mice deficient for Rb are nonviable and show defects in neurogenesis and haematopoiesis. Nature 359, 288–294 (1992).

    Article  CAS  PubMed  Google Scholar 

  19. Helin, K. et al. A cDNA encoding a pRB-binding protein with properties of the transcription factor E2F. Cell 70, 337–350 (1992).

    Article  CAS  PubMed  Google Scholar 

  20. Flemington, E. K., Speck, S. H. & Kaelin, W. G. Jr. E2F-1-mediated transactivation is inhibited by complex formation with the retinoblastoma susceptibility gene product. Proc. Natl Acad. Sci. USA 90, 6914–6918 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Helin, K., Harlow, E. & Fattaey, A. Inhibition of E2F-1 transactivation by direct binding of the retinoblastoma protein. Mol. Cell. Biol. 13, 6501–6508 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang, H. S. & Dean, D. C. Rb-mediated chromatin structure regulation and transcriptional repression. Oncogene 20, 3134–3138 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Brehm, A. et al. Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature 391, 597–601 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Luo, R. X., Postigo, A. A. & Dean, D. C. Rb interacts with histone deacetylase to repress transcription. Cell 92, 463–473 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Chen, T. T. & Wang, J. Y. Establishment of irreversible growth arrest in myogenic differentiation requires the RB LXCXE-binding function. Mol. Cell. Biol. 20, 5571–5580 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dahiya, A., Gavin, M. R., Luo, R. X. & Dean, D. C. Role of the LXCXE binding site in Rb function. Mol. Cell. Biol. 20, 6799–6805 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Strobeck, M. W. et al. BRG-1 is required for RB-mediated cell cycle arrest. Proc. Natl Acad. Sci. USA 97, 7748–7753 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang, H. S. et al. Exit from G1 and S phase of the cell cycle is regulated by repressor complexes containing HDAC–Rb–hSWI/SNF and Rb–hSWI/SNF. Cell 101, 79–89 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Nielsen, S. J. et al. Rb targets histone H3 methylation and HP1 to promoters. Nature 412, 561–565 (2001).This study shows that pRB associates with both SUV39H1 and HP1 through its pocket domain. SUV39H1 cooperates with pRB in the transcriptional repression of the E2F-responsive cyclin E promoter. Moreover, in vivo ChIP assays show that HP1 is recruited to the cyclin E promoter in a pRB-dependent manner.

    Article  CAS  PubMed  Google Scholar 

  30. Vandel, L. et al. Transcriptional repression by the retinoblastoma protein through the recruitment of a histone methyltransferase. Mol. Cell. Biol. 21, 6484–6494 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Harbour, J. W. & Dean, D. C. The Rb/E2F pathway: expanding roles and emerging paradigms. Genes Dev. 14, 2393–2409 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Bannister, A. J. et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromodomain. Nature 410, 120–124 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Lachner, M., O'Carroll, D., Rea, S., Mechtler, K. & Jenuwein, T. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410, 116–120 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Helin, K. Regulation of cell proliferation by the E2F transcription factors. Curr. Opin. Genet. Dev. 8, 28–35 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Bandara, L. R., Buck, V. M., Zamanian, M., Johnston, L. H. & La Thangue, N. B. Functional synergy between DP-1 and E2F-1 in the cell cycle-regulating transcription factor DRTF1/E2F. EMBO J. 12, 4317–4324 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Helin, K. et al. Heterodimerization of the transcription factors E2F-1 and DP-1 leads to cooperative trans-activation. Genes Dev. 7, 1850–1861 (1993).

    Article  CAS  PubMed  Google Scholar 

  37. Krek, W., Livingston, D. M. & Shirodkar, S. Binding to DNA and the retinoblastoma gene product promoted by complex formation of different E2F family members. Science 262, 1557–1560 (1993).

    Article  CAS  PubMed  Google Scholar 

  38. Wu, C. L., Zukerberg, L. R., Ngwu, C., Harlow, E. & Lees, J. A. In vivo association of E2F and DP family proteins. Mol. Cell. Biol. 15, 2536–2546 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Trimarchi, J. M. et al. E2F-6, a member of the E2F family that can behave as a transcriptional repressor. Proc. Natl Acad. Sci. USA 95, 2850–2855 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Takahashi, Y., Rayman, J. B. & Dynlacht, B. D. Analysis of promoter binding by the E2F and pRB families in vivo: distinct E2F proteins mediate activation and repression. Genes Dev. 14, 804–816 (2000).This study uses in vivo ChIP assays to examine the cell-cycle-dependent association of individual E2F and pocket proteins with several E2F-responsive promoters. In G0/G1, these promoters are primarily occupied by E2F4, p107 and p130. As cells enter late G1, there is a significant reduction in the binding of these proteins and E2F1, E2F2 and E2F3 now associate. There was no detectable difference in the spectrum of E2Fs at individual responsive genes, which indicates that they could all be regulated similarly.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Wells, J., Boyd, K. E., Fry, C. J., Bartley, S. M. & Farnham, P. J. Target gene specificity of E2F and pocket protein family members in living cells. Mol. Cell. Biol. 20, 5797–5807 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kaelin, W. G. Jr et al. Expression cloning of a cDNA encoding a retinoblastoma-binding protein with E2F-like properties. Cell 70, 351–364 (1992).

    Article  CAS  PubMed  Google Scholar 

  43. Shan, B. et al. Molecular cloning of cellular genes encoding retinoblastoma-associated proteins: identification of a gene with properties of the transcription factor E2F. Mol. Cell. Biol. 12, 5620–5631 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ivey-Hoyle, M. et al. Cloning and characterization of E2F-2, a novel protein with the biochemical properties of transcription factor E2F. Mol. Cell. Biol. 13, 7802–7812 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lees, J. A. et al. The retinoblastoma protein binds to a family of E2F transcription factors. Mol. Cell. Biol. 13, 7813–7825 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Leone, G. et al. Identification of a novel E2F3 product suggests a mechanism for determining specificity of repression by Rb proteins. Mol. Cell. Biol. 20, 3626–3632 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Johnson, D. G., Schwarz, J. K., Cress, W. D. & Nevins, J. R. Expression of transcription factor E2F1 induces quiescent cells to enter S phase. Nature 365, 349–352 (1993).

    Article  CAS  PubMed  Google Scholar 

  48. Qin, X. Q., Livingston, D. M., Kaelin, W. G. Jr & Adams, P. D. Deregulated transcription factor E2F-1 expression leads to S-phase entry and p53-mediated apoptosis. Proc. Natl Acad. Sci. USA 91, 10918–10922 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lukas, J., Petersen, B. O., Holm, K., Bartek, J. & Helin, K. Deregulated expression of E2F family members induces S-phase entry and overcomes p16INK4A-mediated growth suppression. Mol. Cell. Biol. 16, 1047–1057 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Johnson, D. G., Cress, W. D., Jakoi, L. & Nevins, J. R. Oncogenic capacity of the E2F1 gene. Proc. Natl Acad. Sci. USA 91, 12823–12827 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Shan, B. & Lee, W. H. Deregulated expression of E2F-1 induces S-phase entry and leads to apoptosis. Mol. Cell. Biol. 14, 8166–8173 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Singh, P., Wong, S. H. & Hong, W. Overexpression of E2F-1 in rat embryo fibroblasts leads to neoplastic transformation. EMBO J. 13, 3329–3338 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Xu, G., Livingston, D. M. & Krek, W. Multiple members of the E2F transcription factor family are the products of oncogenes. Proc. Natl Acad. Sci. USA 92, 1357–1361 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Leone, G. et al. E2F3 activity is regulated during the cell cycle and is required for the induction of S phase. Genes Dev. 12, 2120–2130 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Humbert, P. O. et al. E2f3 is critical for normal cellular proliferation. Genes Dev. 14, 690–703 (2000).This study shows that E2F3 acts in a dose-dependent manner to mediate the mitogen-induced activation of almost all known E2F-responsive genes. As a result, E2F3 controls the rate of proliferation of both primary and transformed MEFs.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Wu, L. et al. The E2F1–3 transcription factors are essential for cellular proliferation. Nature 414, 457–462 (2001).Using the conditional mutant E2f alleles, the authors show that the combined loss of E2F1, E2F2 and E2F3 completely blocks the proliferation of MEFs. This is accompanied by an increase in the levels of the Cdk inhibitor p21.

    Article  CAS  PubMed  Google Scholar 

  57. Wu, X. & Levine, A. J. p53 and E2F-1 cooperate to mediate apoptosis. Proc. Natl Acad. Sci. USA 91, 3602–3606 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hiebert, S. W. et al. E2F-1:DP-1 induces p53 and overrides survival factors to trigger apoptosis. Mol. Cell. Biol. 15, 6864–6874 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hsieh, J. K., Fredersdorf, S., Kouzarides, T., Martin, K. & Lu, X. E2F1-induced apoptosis requires DNA binding but not transactivation and is inhibited by the retinoblastoma protein through direct interaction. Genes Dev. 11, 1840–1852 (1997).

    Article  CAS  PubMed  Google Scholar 

  60. Phillips, A. C., Bates, S., Ryan, K. M., Helin, K. & Vousden, K. H. Induction of DNA synthesis and apoptosis are separable functions of E2F-1. Genes Dev. 11, 1853–1863 (1997).

    Article  CAS  PubMed  Google Scholar 

  61. Phillips, A. C., Ernst, M. K., Bates, S., Rice, N. R. & Vousden, K. H. E2F-1 potentiates cell death by blocking antiapoptotic signaling pathways. Mol. Cell 4, 771–781 (1999).

    Article  CAS  PubMed  Google Scholar 

  62. DeGregori, J., Leone, G., Miron, A., Jakoi, L. & Nevins, J. R. Distinct roles for E2F proteins in cell growth control and apoptosis. Proc. Natl Acad. Sci. USA 94, 7245–7250 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bates, S. et al. p14ARF links the tumour suppressors RB and p53. Nature 395, 124–125 (1998).

    Article  CAS  PubMed  Google Scholar 

  64. Tolbert, D., Lu, X., Yin, C., Tantama, M. & Van Dyke, T. p19ARF is dispensable for oncogenic stress-induced p53-mediated apoptosis and tumor suppression in vivo. Mol. Cell. Biol. 22, 370–377 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Tsai, K. Y., MacPherson, D., Rubionson, D. A., Crowley, D., and Jacks, T. ARF is not required for apoptosis in Rb mutant mouse embryos. Curr. Biol. (in the press).

  66. Irwin, M. et al. Role for the p53 homologue p73 in E2F-1-induced apoptosis. Nature 407, 645–648 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Lissy, N. A., Davis, P. K., Irwin, M., Kaelin, W. G. & Dowdy, S. F. A common E2F-1 and p73 pathway mediates cell death induced by TCR activation. Nature 407, 642–645 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Stiewe, T. & Putzer, B. M. Role of the p53-homologue p73 in E2F1-induced apoptosis. Nature Genet. 26, 464–469 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. Ishida, S. et al. Role for E2F in control of both DNA replication and mitotic functions as revealed from DNA microarray analysis. Mol. Cell. Biol. 21, 4684–4699 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Muller, H. et al. E2Fs regulate the expression of genes involved in differentiation, development, proliferation, and apoptosis. Genes Dev. 15, 267–285 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kowalik, T. F., DeGregori, J., Leone, G., Jakoi, L. & Nevins, J. R. E2F1-specific induction of apoptosis and p53 accumulation, which is blocked by Mdm2. Cell Growth Differ. 9, 113–118. (1998).

    CAS  PubMed  Google Scholar 

  72. Leone, G. et al. Myc requires distinct E2F activities to induce S phase and apoptosis. Mol. Cell 8, 105–113 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Vigo, E. et al. CDC25A phosphatase is a target of E2F and is required for efficient E2F-induced S phase. Mol. Cell. Biol. 19, 6379–6395 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Tsai, K. Y. et al. Mutation of E2f-1 suppresses apoptosis and inappropriate S phase entry and extends survival of Rb-deficient mouse embryos. Mol. Cell 2, 293–304 (1998).By intercrossing the Rb and E2f1 mutant mouse strains, the authors show that E2F1 loss causes a significant reduction in the levels of ectopic S-phase entry, p53-dependent- and p53-independent-apoptosis that arises in pRB-deficient embryos. This ameliorates the defective erythropoiesis and thereby extends the lifespan of the embryo by several days.

    Article  CAS  PubMed  Google Scholar 

  75. Ziebold, U., Reza, T., Caron, A. & Lees, J. A. E2F3 contributes both to the inappropriate proliferation and to the apoptosis arising in Rb mutant embryos. Genes Dev. 15, 386–391 (2001).This study shows that E2F3 loss almost completely suppresses the inappropriate proliferation, p53-dependent- and p53-independent-apoptosis in pRB-deficient embryos. As the degree of suppression exceeds that which results from the loss of E2F1, this indicates E2F3 can induce apoptosis in vivo independently of E2F1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Pan, H. et al. Key roles for E2F1 in signaling p53-dependent apoptosis and in cell division within developing tumors. Mol. Cell 2, 283–292 (1998).

    Article  CAS  PubMed  Google Scholar 

  77. Yamasaki, L. et al. Loss of E2F-1 reduces tumorigenesis and extends the lifespan of Rb1(+/−) mice. Nature Genet. 18, 360–364 (1998).

    Article  CAS  PubMed  Google Scholar 

  78. Field, S. J. et al. E2F-1 functions in mice to promote apoptosis and suppress proliferation. Cell 85, 549–561 (1996).

    Article  CAS  PubMed  Google Scholar 

  79. Yamasaki, L. et al. Tumor induction and tissue atrophy in mice lacking E2F-1. Cell 85, 537–548 (1996).This study examines the phenotypic consequences of E2F1 deficiency. In addition to various developmental defects, the E2f1 mutant mice were unexpectedly found to have an increased susceptibility to tumours.

    Article  CAS  PubMed  Google Scholar 

  80. Zhu, J. W., DeRyckere, D., Li, F. X., Wan, Y. Y. & DeGregori, J. A role for E2F1 in the induction of ARF, p53, and apoptosis during thymic negative selection. Cell Growth Differ. 10, 829–838 (1999).

    CAS  PubMed  Google Scholar 

  81. Garcia, I., Murga, M., Vicario, A., Field, S. J. & Zubiaga, A. M. A role for E2F1 in the induction of apoptosis during thymic negative selection. Cell Growth Differ. 11, 91–98 (2000).

    CAS  PubMed  Google Scholar 

  82. Humbert, P. O. et al. E2F4 is essential for normal erythrocyte maturation and neonatal viability. Mol. Cell 6, 281–291 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Meng, R. D., Phillips, P. & El-Deiry, W. S. p53-independent increase in E2F-1 expression enhances the cytotoxic effects of etoposide and of adriamycin. Int. J. Oncol. 14, 5–14 (1999).

    CAS  PubMed  Google Scholar 

  84. Lin, W. C., Lin, F. T. & Nevins, J. R. Selective induction of E2F1 in response to DNA damage, mediated by ATM-dependent phosphorylation. Genes Dev. 15, 1833–1844 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Maser, R. S. et al. Mre11 complex and DNA replication: linkage to E2F and sites of DNA synthesis. Mol. Cell. Biol. 21, 6006–6016 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zhu, J. W. et al. E2F1 and E2F2 determine thresholds for antigen-induced T-cell proliferation and suppress tumorigenesis. Mol. Cell. Biol. 21, 8547–8564 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Dyson, N. et al. Analysis of p107-associated proteins: p107 associates with a form of E2F that differs from pRB-associated E2F-1. J. Virol. 67, 7641–7647 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Beijersbergen, R. L. et al. E2F-4, a new member of the E2F gene family, has oncogenic activity and associates with p107 in vivo. Genes Dev. 8, 2680–2690 (1994).

    Article  CAS  PubMed  Google Scholar 

  89. Hijmans, E. M., Voorhoeve, P. M., Beijersbergen, R. L., van't Veer, L. J. & Bernards, R. E2F-5, a new E2F family member that interacts with p130 in vivo. Mol. Cell. Biol. 15, 3082–3089 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Vairo, G., Livingston, D. M. & Ginsberg, D. Functional interaction between E2F-4 and p130: evidence for distinct mechanisms underlying growth suppression by different retinoblastoma protein family members. Genes Dev. 9, 869–881 (1995).

    Article  CAS  PubMed  Google Scholar 

  91. Ikeda, M. A., Jakoi, L. & Nevins, J. R. A unique role for the Rb protein in controlling E2F accumulation during cell growth and differentiation. Proc. Natl Acad. Sci. USA 93, 3215–3220 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Moberg, K., Starz, M. A. & Lees, J. A. E2F-4 switches from p130 to p107 and pRB in response to cell-cycle re-entry. Mol. Cell. Biol. 16, 1436–1449 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Muller, H. et al. Induction of S-phase entry by E2F transcription factors depends on their nuclear localization. Mol. Cell. Biol. 17, 5508–5520 (1997).The authors show that the ability of the activating E2Fs to induce quiescent cells to re-enter the cell cycle is dependent on their nuclear localization. This is determined by a canonical basic NLS within the amino-terminal domain. By contrast, E2F4 is unable to induce cell cycle re-entry as a result of its cytoplasmic localization.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Verona, R. et al. E2F activity is regulated by cell cycle-dependent changes in subcellular localization. Mol. Cell. Biol. 17, 7268–7282 (1997).This study shows that ectopically expressed activating E2Fs are nuclear, whereas E2F4 is predominantly cytoplasmic, and the differential localization of these proteins accounts for the pronounced differences in their ability to activate transcription. It confirms that the endogenous E2F4–DP complexes are also sequestered in the cytoplasm and shows that these species become predominantly nuclear when they are bound to pRB or p130 in G0/G1. This indicates that E2F4 is primarily involved in the repression rather than the activation of E2F-responsive genes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Magae, J., Wu, C. L., Illenye, S., Harlow, E. & Heintz, N. H. Nuclear localization of DP and E2F transcription factors by heterodimeric partners and retinoblastoma protein family members. J. Cell Sci. 109, 1717–1726 (1996).

    CAS  PubMed  Google Scholar 

  96. Gaubatz, S., Lees, J. A., Lindeman, G. J. & Livingston, D. M. E2F4 is exported from the nucleus in a CRM1-dependent manner. Mol. Cell. Biol. 21, 1384–1392 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Iavarone, A. & Massague, J. E2F and histone deacetylase mediate transforming growth factor-β repression of cdc25A during keratinocyte cell cycle arrest. Mol. Cell. Biol. 19, 916–922 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Dalton, S. Cell cycle regulation of the human CDC2 gene. EMBO J. 11, 1797–1804 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lam, E. W. & Watson, R. J. An E2F-binding site mediates cell-cycle regulated repression of mouse B-myb transcription. EMBO J. 12, 2705–2713 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Hsiao, K. M., McMahon, S. L. & Farnham, P. J. Multiple DNA elements are required for the growth regulation of the mouse E2F1 promoter. Genes Dev. 8, 1526–1537 (1994).

    Article  CAS  PubMed  Google Scholar 

  101. Tommasi, S. & Pfeifer, G. P. In vivo structure of the human cdc2 promoter: release of a p130–E2F-4 complex from sequences immediately upstream of the transcription initiation site coincides with induction of cdc2 expression. Mol. Cell. Biol. 15, 6901–6913 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Huet, X., Rech, J., Plet, A., Vie, A. & Blanchard, J. M. Cyclin A expression is under negative transcriptional control during the cell cycle. Mol. Cell. Biol. 16, 3789–3798 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Zwicker, J., Liu, N., Engeland, K., Lucibello, F. C. & Muller, R. Cell cycle regulation of E2F site occupation in vivo. Science 271, 1595–1597 (1996).

    Article  CAS  PubMed  Google Scholar 

  104. Bruce, J. L., Hurford, R. K. Jr, Classon, M., Koh, J. & Dyson, N. Requirements for cell cycle arrest by p16INK4a. Mol. Cell 6, 737–742 (2000).

    Article  CAS  PubMed  Google Scholar 

  105. Gaubatz, S. et al. E2F4 and E2F5 play an essential role in pocket protein-mediated G1 control. Mol. Cell 6, 729–735 (2000).This study shows that E2f4–E2f5 double mutant MEFs are unable to arrest in response to the over-expression of the Cdk inhibitor p16, providing direct genetic evidence for the role of the repressive E2Fs in mediating cell-cycle exit.

    Article  CAS  PubMed  Google Scholar 

  106. Hurford, R. K. Jr, Cobrinik, D., Lee, M. H. & Dyson, N. pRB and p107/p130 are required for the regulated expression of different sets of E2F responsive genes. Genes Dev. 11, 1447–1463 (1997).The combined loss of p107 and p130 is shown to cause a significant upregulation in the expression of known E2F-responsive genes in G0/G1 cells, and supports the role of these pocket proteins in the repression of these target genes.

    Article  CAS  PubMed  Google Scholar 

  107. Lindeman, G. J. et al. A specific, nonproliferative role for E2F-5 in choroid plexus function revealed by gene targeting. Genes Dev. 12, 1092–1098 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Rempel, R. E. et al. Loss of E2F4 activity leads to abnormal development of multiple cellular lineages. Mol. Cell 6, 293–306 (2000).

    Article  CAS  PubMed  Google Scholar 

  109. Persengiev, S. P., Kondova, I. I. & Kilpatrick, D. L. E2F4 actively promotes the initiation and maintenance of nerve growth factor-induced cell differentiation. Mol. Cell. Biol. 19, 6048–6056 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Cobrinik, D. et al. Shared role of the pRB-related p130 and p107 proteins in limb development. Genes Dev. 10, 1633–1644 (1996).

    Article  CAS  PubMed  Google Scholar 

  111. Dahiya, A., Wong, S., Gonzalo, S., Gavin, M. & Dean, D. C. Linking the Rb and polycomb pathways. Mol. Cell 8, 557–569 (2001).This paper is one of an important series from the Dean lab that examines the ability of pRB to associate with histone-modifying enzymes and repress E2F-responsive genes. Its primary focus is to show that an E2F–pRB–CtBP–HPC2 complex can repress the cyclin A gene. However, it also provides key information about in vivo timing of the pRB-mediated transcriptional repression. Using ChIP assays, the authors confirm the finding that pRB does not associate with E2F-responsive promoters in cells that retain the ability to divide. They further show that pRB becomes promoter bound in cells that have to be induced to exit the cell cycle permanently through the sustained expression of p16.

    Article  CAS  PubMed  Google Scholar 

  112. Altiok, S., Xu, M. & Spiegelman, B. M. PPAR-γ induces cell cycle withdrawal: inhibition of E2F/DP DNA-binding activity via down-regulation of PP2A. Genes Dev. 11, 1987–1998 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Slomiany, B. A., D'Arigo, K. L., Kelly, M. M. & Kurtz, D. T. C/EBPα inhibits cell growth via direct repression of E2F-DP-mediated transcription. Mol. Cell. Biol. 20, 5986–5997 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Porse, B. T. et al. E2F repression by C/EBPα is required for adipogenesis and granulopoiesis in vivo. Cell 107, 247–258 (2001).

    Article  CAS  PubMed  Google Scholar 

  115. Chen, P. L., Riley, D. J., Chen, Y. & Lee, W. H. Retinoblastoma protein positively regulates terminal adipocyte differentiation through direct interaction with C/EBPs. Genes Dev. 10, 2794–2804 (1996).

    Article  CAS  PubMed  Google Scholar 

  116. Chen, P. L., Riley, D. J., Chen-Kiang, S. & Lee, W. H. Retinoblastoma protein directly interacts with and activates the transcription factor NF-IL6. Proc. Natl Acad. Sci. USA 93, 465–469 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Thomas, D. M. et al. The retinoblastoma protein acts as a transcriptional coactivator required for osteogenic differentiation. Mol. Cell 8, 303–316 (2001).

    Article  CAS  PubMed  Google Scholar 

  118. Morkel, M., Wenkel, J., Bannister, A. J., Kouzarides, T. & Hagemeier, C. An E2F-like repressor of transcription. Nature 390, 567–568 (1997).

    Article  CAS  PubMed  Google Scholar 

  119. Cartwright, P., Muller, H., Wagener, C., Holm, K. & Helin, K. E2F-6: a novel member of the E2F family is an inhibitor of E2F-dependent transcription. Oncogene 17, 611–623 (1998).

    Article  CAS  PubMed  Google Scholar 

  120. Gaubatz, S., Wood, J. G. & Livingston, D. M. Unusual proliferation arrest and transcriptional control properties of a newly discovered E2F family member, E2F-6. Proc. Natl Acad. Sci. USA 95, 9190–9195 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Trimarchi, J. M., Fairchild, B., Wen, J. & Lees, J. A. The E2F6 transcription factor is a component of the mammalian Bmi1-containing polycomb complex. Proc. Natl Acad. Sci. USA 98, 1519–1524 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. van Lohuizen, M. Functional analysis of mouse Polycomb group genes. Cell Mol. Life Sci. 54, 71–79 (1998).

    Article  CAS  PubMed  Google Scholar 

  123. Jacobs, J. J. & van Lohuizen, M. Cellular memory of transcriptional states by Polycomb-group proteins. Semin. Cell Dev. Biol. 10, 227–235 (1999).

    Article  CAS  PubMed  Google Scholar 

  124. Francis, N. J. & Kingston, R. E. Mechanisms of transcriptional memory. Nature Rev. Mol. Cell Biol. 2, 409–421 (2001).

    Article  CAS  Google Scholar 

  125. Haupt, Y., Alexander, W. S., Barri, G., Klinken, S. P. & Adams, J. M. Novel zinc finger gene implicated as myc collaborator by retrovirally accelerated lymphomagenesis in μ-myc transgenic mice. Cell 65, 753–763 (1991).

    Article  CAS  PubMed  Google Scholar 

  126. van Lohuizen, M. et al. Identification of cooperating oncogenes in μ-myc transgenic mice by provirus tagging. Cell 65, 737–752 (1991).

    Article  CAS  PubMed  Google Scholar 

  127. Jacobs, J. J. et al. Bmi-1 collaborates with c-Myc in tumorigenesis by inhibiting c-Myc-induced apoptosis via INK4a/ARF. Genes Dev. 13, 2678–2690 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Dynlacht, B. D., Brook, A., Dembski, M., Yenush, L. & Dyson, N. DNA-binding and trans-activation properties of Drosophila E2F and DP proteins. Proc. Natl Acad. Sci. USA 91, 6359–6363 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Frolov, M. V. et al. Functional antagonism between E2F family members. Genes Dev. 15, 2146–2160 (2001).Drosophila has two E2Fs, dE2F1 and dE2F2. This paper shows that dE2F2 is a repressor of E2F-responsive genes and its mutation almost completely suppresses the phenotypic defects that result from dE2F1-loss. So, dE2F1 and dE2F2 antogonize each others function in vivo.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Dyson, N. & Harlow, E. Adenovirus E1A targets key regulators of cell proliferation. Cancer Surv. 12, 161–195 (1992).

    CAS  PubMed  Google Scholar 

  131. Lee, M. H. et al. Targeted disruption of p107: functional overlap between p107 and Rb. Genes Dev. 10, 1621–1632 (1996).

    Article  CAS  PubMed  Google Scholar 

  132. Aalfs, J. D. & Kingston, R. E. What does 'chromatin remodeling' mean? Trends Biochem Sci. 25, 548–555 (2000).

    Article  CAS  PubMed  Google Scholar 

  133. Jenuwein, T. & Allis, C. D. Translating the histone code. Science 293, 1074–1080 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacqueline A. Lees.

Related links

Related links

DATABASES

Encyclopedia of Life Sciences:

cell division cycle

nucleosome structures

 LocusLink:

ATR

B-myb

cdc2

CRM1

cyclin A2

cyclin E

dE2F2

DP1

E2f1

E2f2

E2f3

E2f4

E2f5

p16

p19ARF

p21

p27

p107

p130

pRB

RYBP

SUV39H2

thymidylate synthetase

 Swiss-Prot:

ATM

Bmi-1

CBFA1

Cdc2

Cdc6

Cdc25A

Cdk2

Cdk4

Cdk6

c-myc

cyclin A

cyclin D1

dE2F1

dihydrofolate reductase

E2F1

E2F2

E2F3

E2F4

E2F5

E2F6

HP1

Mre11

ORC1

p53

p73

PPAR-γ

SUV39H1

thymidine kinase

Glossary

CHECKPOINT PATHWAYS

The classic definition of a checkpoint pathway/protein is one that is not required for normal cell-cycle regulation but is essential for the ability of the cell to arrest in response to a stress condition. Frequently, this term is used less strictly to describe proteins that have a key role in cell-cycle-stress responses, regardless of their role in normal cell-cycle regulation.

p53

The p53 transcription factor is activated in response to various stress conditions, including DNA damage. It activates various target genes that trigger either apoptosis or cell-cycle arrest, depending on the cell type and the stress conditions. p53 is a tumour suppressor and it, or its upstream regulators, are disrupted in a large proportion of human tumours.

CHROMATIN-IMMUNOPRECIPITATION (ChIP) ASSAYS

ChIP assays can be used to monitor the association of DNA-binding proteins with specific promoters in vivo. Briefly, live cells are treated with crosslinking agents to tether the proteins to the DNA. The selected protein is then recovered by immunoprecipitation, the crosslinking is reversed and the co-precipitating DNA is screened for the enrichment of specific promoter fragments using the polymerase chain reaction (PCR).

TRANSFORMATION

Transformation is the process by which a primary cell becomes a tumour cell. It is generally characterized by a reduction in growth-factor dependence, a failure to arrest growth in response to contact inhibition, and the ability to grow in soft agar (that is, without attachment).

PRIMARY CELLS

Primary cells are cells that are derived from a living organism. They undergo a limited, predetermined number of cell divisions before arresting permanently in G0 — a process that is called cellular senescence.

p19ARF

The p19ARF gene (the human equivalent is called p14ARF) is expressed from the Ink4 locus and its coding sequence partially overlaps with that of p16INK4a. The p19ARF protein activates p53 by binding to Mdm2 (an E3 ubiquitin ligase) and prevents it from triggering p53 degradation.

THE NBS1/MRE11 COMPLEX

The Nbs1 gene was identified by virtue of its mutation in the inherited chromosome instability disorder Nijmegen breakage syndrome (NBS). Its protein product, Nibrin, forms a complex with the DNA-repair proteins Mre11 and Rad50. This complex seems to have an important role in recombinational DNA repair, replication and the activation of a DNA-damage induced S-phase checkpoint.

POLYCOMB COMPLEX

Polycomb (Pc) was identified as a dominant mutation in Drosophila that led to the presence of sex combs on the second and third legs of male flies instead of only the first leg. The Drosophila polycomb group (PcG) includes several genes that yield similar homeotic transformation phenotypes when mutated. Their protein products associate with one another to form at least two possible Polycomb complexes. These maintain the repression of hox gene expression, which is essential for embryonic patterning. The PcG also exists in mammals, but seems much more complex.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trimarchi, J., Lees, J. Sibling rivalry in the E2F family. Nat Rev Mol Cell Biol 3, 11–20 (2002). https://doi.org/10.1038/nrm714

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm714

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing