Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Integrated morphodynamic signalling of the mammary gland

Key Points

  • The mammary gland is a unique organ that executes most of its development postnatally. At the onset of puberty, the tips of the rudimentary gland present at birth are transformed into terminal end buds, which are induced by endocrine, paracrine and autocrine signals to repeatedly elongate and bifurcate to generate a full epithelial ductal tree.

  • A subset of regulatory molecules, including fibroblast growth factor receptors and matrix metalloproteinases, exhibit location-dependent activity and expression patterns within the gland, thereby providing local morphogenetic control.

  • The fundamental mechanisms that govern the localized expression and activity of key regulators are unclear. Tissue microfabrication approaches have suggested that the geometry of the gland may itself template morphogenesis by forming spatial gradients in chemical and mechanical signals.

  • Real-time imaging of developing mammary organoids has revealed large-scale coordinated epithelial cell movements during morphogenesis. These rapid rearrangements might serve to establish the regional differences in molecular regulators that drive morphogenesis. The cellular plasticity of the developing mammary epithelium might be enabled by expression of genes classically associated with epithelial–mesenchymal transition.

  • Epithelial–stromal crosstalk is a key aspect of mammary morphogenesis. The various cell types that comprise the mammary fat pad communicate signals with the developing epithelium and with each other to control morphogenesis.

  • Mammary morphogenesis is thus a complex process that requires the integration of diverse chemical and physical signals from several different cell types and over several length scales. To fully understand how these cues cooperate to give rise to the final architecture of the gland, more detailed expression and function studies are needed. Quantitative computational and culture models are likely to be helpful in answering questions that are not readily addressable in vivo.

Abstract

The mammary gland undergoes a spectacular series of changes as it develops, and maintains a remarkable capacity to remodel and regenerate for several decades. Mammary morphogenesis has been investigated for over 100 years, motivated by the dairy industry and cancer biologists. Over the past decade, the gland has emerged as a major model system in its own right for understanding the cell biology of tissue morphogenesis. Multiple signalling pathways from several cell types are orchestrated together with mechanical cues and cell rearrangements to establish the pattern of the mammary gland. The integrated mechanical and molecular pathways that control mammary morphogenesis have implications for the developmental regulation of other epithelial organs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The mammary gland undergoes distinct stages of remodelling during development.
Figure 2: Multiple integrated signalling networks regulate mammary morphogenesis during puberty.
Figure 3: Potential modes of mechanotransduction in the developing mammary gland.
Figure 4: Interactions between diverse cell types of the stroma coordinate mammary morphogenesis.

Similar content being viewed by others

References

  1. Peaker, M. The mammary gland in mammalian evolution: a brief commentary on some of the concepts. J. Mammary Gland Biol. Neoplasia 7, 347–353 (2002).

    Article  PubMed  Google Scholar 

  2. Forsyth, I. A. & Neville, M. C. Introduction: the myoepithelial cell and milk letdown; entrance to the multifunctional role of oxytocin. J. Mammary Gland Biol. Neoplasia 14, 221–222 (2009).

    Article  PubMed  Google Scholar 

  3. Williams, J. M. & Daniel, C. W. Mammary ductal elongation: differentiation of myoepithelium and basal lamina during branching morphogenesis. Dev. Biol. 97, 274–290 (1983).

    Article  CAS  PubMed  Google Scholar 

  4. Polyak, K. & Kalluri, R. The role of the microenvironment in mammary gland development and cancer. Cold Spring Harb. Perspect. Biol. 2, a003244 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Robinson, G. W. Cooperation of signalling pathways in embryonic mammary gland development. Nature Rev. Genet. 8, 963–972 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Watson, C. J. & Khaled, W. T. Mammary development in the embryo and adult: a journey of morphogenesis and commitment. Development 135, 995–1003 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Hens, J. R. & Wysolmerski, J. J. Key stages of mammary gland development: molecular mechanisms involved in the formation of the embryonic mammary gland. Breast Cancer Res. 7, 220–224 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hinck, L. & Silberstein, G. B. Key stages in mammary gland development: the mammary end bud as a motile organ. Breast Cancer Res. 7, 245–251 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sternlicht, M. D., Kouros-Mehr, H., Lu, P. & Werb, Z. Hormonal and local control of mammary branching morphogenesis. Differentiation 74, 365–381 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Brisken, C. et al. Prolactin controls mammary gland development via direct and indirect mechanisms. Dev. Biol. 210, 96–106 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Oakes, S. R., Rogers, R. L., Naylor, M. J. & Ormandy, C. J. Prolactin regulation of mammary gland development. J. Mammary Gland Biol. Neoplasia 13, 13–28 (2008).

    Article  PubMed  Google Scholar 

  12. Walker, N. I., Bennett, R. E. & Kerr, J. F. Cell death by apoptosis during involution of the lactating breast in mice and rats. Am. J. Anat. 185, 19–32 (1989).

    Article  CAS  PubMed  Google Scholar 

  13. Lund, L. R. et al. Two distinct phases of apoptosis in mammary gland involution: proteinase-independent and -dependent pathways. Development 122, 181–193 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Alexander, C. M., Selvarajan, S., Mudgett, J. & Werb, Z. Stromelysin-1 regulates adipogenesis during mammary gland involution. J. Cell Biol. 152, 693–703 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Watson, C. J. Involution: apoptosis and tissue remodelling that convert the mammary gland from milk factory to a quiescent organ. Breast Cancer Res. 8, 203 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. McNally, S. & Martin, F. Molecular regulators of pubertal mammary gland development. Ann. Med. 43, 212–234 (2011).

    Article  PubMed  Google Scholar 

  17. Cowin, P. & Wysolmerski, J. Molecular mechanisms guiding embryonic mammary gland development. Cold Spring Harb. Perspect. Biol. 2, a003251 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Lu, P. & Werb, Z. Patterning mechanisms of branched organs. Science 322, 1506–1509 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Davies, J. A. Do different branching epithelia use a conserved developmental mechanism? Bioessays 24, 937–948 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Affolter, M., Zeller, R. & Caussinus, E. Tissue remodelling through branching morphogenesis. Nature Rev. Mol. Cell Biol. 10, 831–842 (2009).

    Article  CAS  Google Scholar 

  21. Ghabrial, A. S. & Krasnow, M. A. Social interactions among epithelial cells during tracheal branching morphogenesis. Nature 441, 746–749 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Sutherland, D., Samakovlis, C. & Krasnow, M. A. branchless encodes a Drosophila FGF homolog that controls tracheal cell migration and the pattern of branching. Cell 87, 1091–1101 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Weaver, M., Dunn, N. R. & Hogan, B. L. Bmp4 and Fgf10 play opposing roles during lung bud morphogenesis. Development 127, 2695–2704 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Shakya, R., Watanabe, T. & Costantini, F. The role of GDNF/Ret signaling in ureteric bud cell fate and branching morphogenesis. Dev. Cell 8, 65–74 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Affolter, M. et al. Tube or not tube: remodeling epithelial tissues by branching morphogenesis. Dev. Cell 4, 11–18 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Silberstein, G. B. & Daniel, C. W. Investigation of mouse mammary ductal growth regulation using slow-release plastic implants. J. Dairy Sci. 70, 1981–1990 (1987).

    Article  CAS  PubMed  Google Scholar 

  27. Metzger, R. J., Klein, O. D., Martin, G. R. & Krasnow, M. A. The branching programme of mouse lung development. Nature 453, 745–750 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schedin, P. & Keely, P. J. Mammary gland ECM remodeling, stiffness, and mechanosignaling in normal development and tumor progression. Cold Spring Harb. Perspect. Biol. 3, a003228 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Khokha, R. & Werb, Z. Mammary gland reprogramming: metalloproteinases couple form with function. Cold Spring Harb. Perspect. Biol. 3, a004333 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Brisken, C. & O'Malley, B. Hormone action in the mammary gland. Cold Spring Harb. Perspect. Biol. 2, a003178 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bocchinfuso, W. P. & Korach, K. S. Mammary gland development and tumorigenesis in estrogen receptor knockout mice. J. Mammary Gland Biol. Neoplasia 2, 323–334 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Feng, Y., Manka, D., Wagner, K. U. & Khan, S. A. Estrogen receptor-α expression in the mammary epithelium is required for ductal and alveolar morphogenesis in mice. Proc. Natl Acad. Sci. USA 104, 14718–14723 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Daniel, C. W., Silberstein, G. B. & Strickland, P. Direct action of 17 β-estradiol on mouse mammary ducts analyzed by sustained release implants and steroid autoradiography. Cancer Res. 47, 6052–6057 (1987).

    CAS  PubMed  Google Scholar 

  34. Cunha, G. R. et al. Elucidation of a role for stromal steroid hormone receptors in mammary gland growth and development using tissue recombinants. J. Mammary Gland Biol. Neoplasia 2, 393–402 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Zhang, H. Z., Bennett, J. M., Smith, K. T., Sunil, N. & Haslam, S. Z. Estrogen mediates mammary epithelial cell proliferation in serum-free culture indirectly via mammary stroma-derived hepatocyte growth factor. Endocrinology 143, 3427–3434 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Coleman, S., Silberstein, G. B. & Daniel, C. W. Ductal morphogenesis in the mouse mammary gland: evidence supporting a role for epidermal growth factor. Dev. Biol. 127, 304–315 (1988).

    Article  CAS  PubMed  Google Scholar 

  37. Luetteke, N. C. et al. Targeted inactivation of the EGF and amphiregulin genes reveals distinct roles for EGF receptor ligands in mouse mammary gland development. Development 126, 2739–2750 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Sebastian, J. et al. Activation and function of the epidermal growth factor receptor and erbB-2 during mammary gland morphogenesis. Cell Growth Differ. 9, 777–785 (1998).

    CAS  PubMed  Google Scholar 

  39. Sternlicht, M. D. et al. Mammary ductal morphogenesis requires paracrine activation of stromal EGFR via ADAM17-dependent shedding of epithelial amphiregulin. Development 132, 3923–3933 (2005). Demonstrated that ADAM17 has a crucial role during mammary branching morphogenesis through cleavage of AREG from the epithelial cell surface to activate EGFR signalling within stromal cells.

    Article  CAS  PubMed  Google Scholar 

  40. Ciarloni, L., Mallepell, S. & Brisken, C. Amphiregulin is an essential mediator of estrogen receptor α function in mammary gland development. Proc. Natl Acad. Sci. USA 104, 5455–5460 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wiesen, J. F., Young, P., Werb, Z. & Cunha, G. R. Signaling through the stromal epidermal growth factor receptor is necessary for mammary ductal development. Development 126, 335–344 (1999). Used knockout mice and mammary gland transplantation experiments to demonstrate that EGFR signalling is required in the stromal compartment.

    Article  CAS  PubMed  Google Scholar 

  42. Kleinberg, D. L., Feldman, M. & Ruan, W. IGF-I: an essential factor in terminal end bud formation and ductal morphogenesis. J. Mammary Gland Biol. Neoplasia 5, 7–17 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Gallego, M. I. et al. Prolactin, growth hormone, and epidermal growth factor activate Stat5 in different compartments of mammary tissue and exert different and overlapping developmental effects. Dev. Biol. 229, 163–175 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Meyer, S. E., Zinser, G. M., Stuart, W. D., Pathrose, P. & Waltz, S. E. The Ron receptor tyrosine kinase negatively regulates mammary gland branching morphogenesis. Dev. Biol. 333, 173–185 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Vaught, D., Chen, J. & Brantley-Sieders, D. M. Regulation of mammary gland branching morphogenesis by EphA2 receptor tyrosine kinase. Mol. Biol. Cell 20, 2572–2581 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Andrechek, E. R., White, D. & Muller, W. J. Targeted disruption of ErbB2/Neu in the mammary epithelium results in impaired ductal outgrowth. Oncogene 24, 932–937 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Jackson-Fisher, A. J. et al. ErbB2 is required for ductal morphogenesis of the mammary gland. Proc. Natl Acad. Sci. USA 101, 17138–17143 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tidcombe, H. et al. Neural and mammary gland defects in ErbB4 knockout mice genetically rescued from embryonic lethality. Proc. Natl Acad. Sci. USA 100, 8281–8286 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fata, J. E. et al. The MAPKERK-1,2 pathway integrates distinct and antagonistic signals from TGFα and FGF7 in morphogenesis of mouse mammary epithelium. Dev. Biol. 306, 193–207 (2007). Showed that although both TGFα and FGF7 signal through MAPKs, they elicit antagonistic phenotypic outcomes in primary mammary organoids owing to differences in the duration of MAPK activation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Xu, X. et al. Fibroblast growth factor receptor 2 (FGFR2)-mediated reciprocal regulation loop between FGF8 and FGF10 is essential for limb induction. Development 125, 753–765 (1998).

    Article  CAS  PubMed  Google Scholar 

  51. Lu, P., Ewald, A. J., Martin, G. R. & Werb, Z. Genetic mosaic analysis reveals FGF receptor 2 function in terminal end buds during mammary gland branching morphogenesis. Dev. Biol. 321, 77–87 (2008). Demonstrated a local role for FGFR signalling in regulating cell proliferation and survival in the TEBs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Parsa, S. et al. Terminal end bud maintenance in mammary gland is dependent upon FGFR2b signaling. Dev. Biol. 317, 121–131 (2008). Reported that FGFR signalling was required for TEB maintenance. Loss of FGFR2 impairs proliferation of luminal epithelial cells and results in poorly developed glands that lack TEBs.

    Article  CAS  PubMed  Google Scholar 

  53. Liu, X. et al. Stat5a is mandatory for adult mammary gland development and lactogenesis. Genes Dev. 11, 179–186 (1997).

    Article  CAS  PubMed  Google Scholar 

  54. Santos, S. J., Haslam, S. Z. & Conrad, S. E. Signal transducer and activator of transcription 5a mediates mammary ductal branching and proliferation in the nulliparous mouse. Endocrinology 151, 2876–2885 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tsukamoto, A. S., Grosschedl, R., Guzman, R. C., Parslow, T. & Varmus, H. E. Expression of the int-1 gene in transgenic mice is associated with mammary gland hyperplasia and adenocarcinomas in male and female mice. Cell 55, 619–625 (1988).

    Article  CAS  PubMed  Google Scholar 

  56. Imbert, A., Eelkema, R., Jordan, S., Feiner, H. & Cowin, P. Δn89β-catenin induces precocious development, differentiation, and neoplasia in mammary gland. J. Cell Biol. 153, 555–568 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gallagher, R. C. et al. Inactivation of Apc perturbs mammary development, but only directly results in acanthoma in the context of Tcf-1 deficiency. Oncogene 21, 6446–6457 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Hatsell, S. J. & Cowin, P. Gli3-mediated repression of Hedgehog targets is required for normal mammary development. Development 133, 3661–3670 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Corbit, K. C. et al. Vertebrate Smoothened functions at the primary cilium. Nature 437, 1018–1021 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Rohatgi, R., Milenkovic, L. & Scott, M. P. Patched1 regulates hedgehog signaling at the primary cilium. Science 317, 372–376 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Milenkovic, L., Scott, M. P. & Rohatgi, R. Lateral transport of Smoothened from the plasma membrane to the membrane of the cilium. J. Cell Biol. 187, 365–374 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. McDermott, K. M., Liu, B. Y., Tlsty, T. D. & Pazour, G. J. Primary cilia regulate branching morphogenesis during mammary gland development. Curr. Biol. 20, 731–737 (2010). Demonstrated that primary cilia are present on luminal, myoepithelial and stromal cells during mammary branching morphogenesis. The authors also found that ciliary dysfunction impairs ductal elongation, secondary and tertiary branching, and they proposed a role for WNT and Hedgehog signalling in these effects.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Neugebauer, J. M., Amack, J. D., Peterson, A. G., Bisgrove, B. W. & Yost, H. J. FGF signalling during embryo development regulates cilia length in diverse epithelia. Nature 458, 651–654 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Szabova, L., Yamada, S. S., Birkedal-Hansen, H. & Holmbeck, K. Expression pattern of four membrane-type matrix metalloproteinases in the normal and diseased mouse mammary gland. J. Cell Physiol. 205, 123–132 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Wiseman, B. S. et al. Site-specific inductive and inhibitory activities of MMP-2 and MMP-3 orchestrate mammary gland branching morphogenesis. J. Cell Biol. 162, 1123–1133 (2003). Showed that MMP2, MMP3 and MMP14 are non-uniformly expressed throughout the developing mammary gland and that they have distinct roles during branching morphogenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ucar, A. et al. miR-212 and miR-132 are required for epithelial stromal interactions necessary for mouse mammary gland development. Nature Genet. 42, 1101–1108 (2010). Discovered that the microRNA-212/132 family is indispensable during mammary development and functions in the stroma.

    Article  CAS  PubMed  Google Scholar 

  67. Andersen, K. et al. The metastasis-promoting protein S100A4 regulates mammary branching morphogenesis. Dev. Biol. 352, 181–190 (2011).

    Article  CAS  PubMed  Google Scholar 

  68. Cheng, N. et al. Loss of TGF-β type II receptor in fibroblasts promotes mammary carcinoma growth and invasion through upregulation of TGF-α-, MSP- and HGF-mediated signaling networks. Oncogene 24, 5053–5068 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nelson, C. M., Vanduijn, M. M., Inman, J. L., Fletcher, D. A. & Bissell, M. J. Tissue geometry determines sites of mammary branching morphogenesis in organotypic cultures. Science 314, 298–300 (2006). Showed that tissue geometry specifies the local concentration of TGFβ and thereby determines sites of branching morphogenesis in engineered mammary tissues.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lee, W. C. & Davies, J. A. Epithelial branching: the power of self-loathing. Bioessays 29, 205–207 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Pierce, D. F. Jr et al. Inhibition of mammary duct development but not alveolar outgrowth during pregnancy in transgenic mice expressing active TGF-β 1. Genes Dev. 7, 2308–2317 (1993).

    Article  CAS  PubMed  Google Scholar 

  72. Crowley, M. R., Bowtell, D. & Serra, R. TGF-β, c-Cbl, and PDGFR-α the in mammary stroma. Dev. Biol. 279, 58–72 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Joseph, H., Gorska, A. E., Sohn, P., Moses, H. L. & Serra, R. Overexpression of a kinase-deficient transforming growth factor-β type II receptor in mouse mammary stroma results in increased epithelial branching. Mol. Biol. Cell 10, 1221–1234 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ewan, K. B. et al. Latent transforming growth factor-β activation in mammary gland: regulation by ovarian hormones affects ductal and alveolar proliferation. Am. J. Pathol. 160, 2081–2093 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Jahchan, N. S., You, Y. H., Muller, W. J. & Luo, K. Transforming growth factor-β regulator SnoN modulates mammary gland branching morphogenesis, postlactational involution, and mammary tumorigenesis. Cancer Res. 70, 4204–4213 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Roarty, K. & Serra, R. Wnt5a is required for proper mammary gland development and TGF-β-mediated inhibition of ductal growth. Development 134, 3929–3939 (2007). Showed that WNT5A is required for TGFβ-mediated inhibition of mammary branching morphogenesis and that loss of TGFβ signalling reduces phosphorylation of the collagen receptor DDR1.

    Article  CAS  PubMed  Google Scholar 

  77. Pavlovich, A. L., Boghaert, E. & Nelson, C. M. Mammary branch initiation and extension are inhibited by separate pathways downstream of TGFβ in culture. Exp. Cell Res. 317, 1872–1884 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Vogel, W. F., Aszodi, A., Alves, F. & Pawson, T. Discoidin domain receptor 1 tyrosine kinase has an essential role in mammary gland development. Mol. Cell. Biol. 21, 2906–2917 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Macias, H. et al. SLIT/ROBO1 signaling suppresses mammary branching morphogenesis by limiting basal cell number. Dev. Cell 20, 827–840 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Daniel, C. W., Robinson, S. & Silberstein, G. B. The role of TGF-β in patterning and growth of the mammary ductal tree. J. Mammary Gland Biol. Neoplasia 1, 331–341 (1996).

    Article  CAS  PubMed  Google Scholar 

  81. Silberstein, G. B. & Daniel, C. W. Glycosaminoglycans in the basal lamina and extracellular matrix of the developing mouse mammary duct. Dev. Biol. 90, 215–222 (1982).

    Article  CAS  PubMed  Google Scholar 

  82. Sternlicht, M. D. & Werb, Z. How matrix metalloproteinases regulate cell behavior. Annu. Rev. Cell Dev. Biol. 17, 463–516 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Chrzanowska-Wodnicka, M. & Burridge, K. Rho-stimulated contractility drives the formation of stress fibers and focal adhesions. J. Cell Biol. 133, 1403–1415 (1996).

    Article  CAS  PubMed  Google Scholar 

  84. Landsverk, M. L. & Epstein, H. F. Genetic analysis of myosin II assembly and organization in model organisms. Cell. Mol. Life Sci. 62, 2270–2282 (2005).

    Article  CAS  PubMed  Google Scholar 

  85. McNeill, H., Ryan, T. A., Smith, S. J. & Nelson, W. J. Spatial and temporal dissection of immediate and early events following cadherin-mediated epithelial cell adhesion. J. Cell Biol. 120, 1217–1226 (1993).

    Article  CAS  PubMed  Google Scholar 

  86. Gjorevski, N. & Nelson, C. M. Endogenous patterns of mechanical stress are required for branching morphogenesis. Integr. Biol. (Camb.) 2, 424–434 (2010). Demonstrated that mechanical stress is non-uniformly distributed within engineered mammary epithelial tissues and that branching morphogenesis occurs at regions of the tissue where stress is high.

    Article  CAS  Google Scholar 

  87. Paszek, M. J. et al. Tensional homeostasis and the malignant phenotype. Cancer Cell 8, 241–254 (2005). For the first time, this study related the mechanical environment of mammary tissue to the malignant phenotype. The authors found that elevated tumour-like matrix stiffness impairs mammary tissue architecture and enhances growth through enhanced integrin clustering, extracellular signal-regulated kinase activation and RHO-associated protein kinase-mediated contractility.

    Article  CAS  PubMed  Google Scholar 

  88. Wozniak, M. A., Desai, R., Solski, P. A., Der, C. J. & Keely, P. J. ROCK-generated contractility regulates breast epithelial cell differentiation in response to the physical properties of a three-dimensional collagen matrix. J. Cell Biol. 163, 583–595 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Tang, D., Mehta, D. & Gunst, S. J. Mechanosensitive tyrosine phosphorylation of paxillin and focal adhesion kinase in tracheal smooth muscle. Am. J. Physiol. 276, C250–C258 (1999).

    Article  CAS  PubMed  Google Scholar 

  90. Yano, Y., Geibel, J. & Sumpio, B. E. Tyrosine phosphorylation of pp125FAK and paxillin in aortic endothelial cells induced by mechanical strain. Am. J. Physiol. 271, C635–C649 (1996).

    Article  CAS  PubMed  Google Scholar 

  91. Nagy, T. et al. Mammary epithelial-specific deletion of the focal adhesion kinase gene leads to severe lobulo-alveolar hypoplasia and secretory immaturity of the murine mammary gland. J. Biol. Chem. 282, 31766–31776 (2007).

    Article  CAS  PubMed  Google Scholar 

  92. van Miltenburg, M. H. et al. Complete focal adhesion kinase deficiency in the mammary gland causes ductal dilation and aberrant branching morphogenesis through defects in Rho kinase-dependent cell contractility. FASEB J. 23, 3482–3493 (2009).

    Article  CAS  PubMed  Google Scholar 

  93. Alcaraz, J. et al. Laminin and biomimetic extracellular elasticity enhance functional differentiation in mammary epithelia. EMBO J. 27, 2829–2838 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Provenzano, P. P., Inman, D. R., Eliceiri, K. W. & Keely, P. J. Matrix density-induced mechanoregulation of breast cell phenotype, signaling and gene expression through a FAK-ERK linkage. Oncogene 28, 4326–4343 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Levental, K. R. et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139, 891–906 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Vogel, V. & Sheetz, M. Local force and geometry sensing regulate cell functions. Nature Rev. Mol. Cell Biol. 7, 265–275 (2006).

    Article  CAS  Google Scholar 

  97. Muschler, J. & Streuli, C. H. Cell-matrix interactions in mammary gland development and breast cancer. Cold Spring Harb. Perspect. Biol. 2, a003202 (2011).

    Google Scholar 

  98. Fata, J. E., Werb, Z. & Bissell, M. J. Regulation of mammary gland branching morphogenesis by the extracellular matrix and its remodeling enzymes. Breast Cancer Res. 6, 1–11 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. Gehler, S. et al. Filamin A-β1 integrin complex tunes epithelial cell response to matrix tension. Mol. Biol. Cell 20, 3224–3238 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Prajapati, R. T., Chavally-Mis, B., Herbage, D., Eastwood, M. & Brown, R. A. Mechanical loading regulates protease production by fibroblasts in three-dimensional collagen substrates. Wound Repair Regen. 8, 226–237 (2000).

    Article  CAS  PubMed  Google Scholar 

  101. Ruddy, J. M. et al. Differential effects of mechanical and biological stimuli on matrix metalloproteinase promoter activation in the thoracic aorta. Circulation 120, S262–S268 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Connelly, J. T. et al. Actin and serum response factor transduce physical cues from the microenvironment to regulate epidermal stem cell fate decisions. Nature Cell Biol. 12, 711–718 (2010). Reported that the actin cytoskeleton and transcription factors from the myocardin family transduce physical cues to regulate transcription and ultimately stem cell differentiation.

    Article  CAS  PubMed  Google Scholar 

  103. Miralles, F., Posern, G., Zaromytidou, A. I. & Treisman, R. Actin dynamics control SRF activity by regulation of its coactivator MAL. Cell 113, 329–342 (2003).

    Article  CAS  PubMed  Google Scholar 

  104. Gomez, E. W., Chen, Q. K., Gjorevski, N. & Nelson, C. M. Tissue geometry patterns epithelial–mesenchymal transition via intercellular mechanotransduction. J. Cell. Biochem. 110, 44–51 (2010). Showed that endogenous patterns of mechanical stress can induce spatially localized EMT within engineered mammary tissues by controlling the balance of monomeric and filamentous actin and consequently the nuclear translocation of myocardin-related transcription factor A (MRTFA).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Lee, K., Gjorevski, N., Boghaert, E., Radisky, D. C. & Nelson, C. M. Snail1, Snail2, and E47 promote mammary epithelial branching morphogenesis. EMBO J. 30, 2662–2674 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kouros-Mehr, H. & Werb, Z. Candidate regulators of mammary branching morphogenesis identified by genome-wide transcript analysis. Dev. Dyn. 235, 3404–3412 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Chen, C. S. Mechanotransduction — a field pulling together? J. Cell Sci. 121, 3285–3292 (2008).

    Article  CAS  PubMed  Google Scholar 

  108. Chiquet-Ehrismann, R. et al. Tenascin-C expression by fibroblasts is elevated in stressed collagen gels. J. Cell Biol. 127, 2093–2101 (1994).

    Article  CAS  PubMed  Google Scholar 

  109. Inaguma, Y. et al. Epithelial induction of stromal tenascin in the mouse mammary gland: from embryogenesis to carcinogenesis. Dev. Biol. 128, 245–255 (1988).

    Article  CAS  PubMed  Google Scholar 

  110. Filas, B. A., Efimov, I. R. & Taber, L. A. Optical coherence tomography as a tool for measuring morphogenetic deformation of the looping heart. Anat. Rec. (Hoboken) 290, 1057–1068 (2007).

    Article  Google Scholar 

  111. Varner, V. D., Voronov, D. A. & Taber, L. A. Mechanics of head fold formation: investigating tissue-level forces during early development. Development 137, 3801–3811 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Andresen, V. et al. Infrared multiphoton microscopy: subcellular-resolved deep tissue imaging. Curr. Opin. Biotechnol. 20, 54–62 (2009).

    Article  CAS  PubMed  Google Scholar 

  113. Ewald, A. J., Werb, Z. & Egeblad, M. Dynamic, long-term in vivo imaging of tumor-stroma interactions in mouse models of breast cancer using spinning-disk confocal microscopy. Cold Spring Harb. Protoc 2011, pdb.top97 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Kedrin, D. et al. Intravital imaging of metastatic behavior through a mammary imaging window. Nature Methods 5, 1019–1021 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Vakoc, B. J. et al. Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging. Nature Med. 15, 1219–1223 (2009).

    Article  CAS  PubMed  Google Scholar 

  116. Ridley, A. J. et al. Cell migration: integrating signals from front to back. Science 302, 1704–1709 (2003).

    Article  CAS  PubMed  Google Scholar 

  117. Brahmbhatt, A. A. & Klemke, R. L. ERK and RhoA differentially regulate pseudopodia growth and retraction during chemotaxis. J. Biol. Chem. 278, 13016–13025 (2003).

    Article  CAS  PubMed  Google Scholar 

  118. Webb, D. J., Parsons, J. T. & Horwitz, A. F. Adhesion assembly, disassembly and turnover in migrating cells — over and over and over again. Nature Cell Biol. 4, e97–e100 (2002).

    Article  CAS  PubMed  Google Scholar 

  119. Friedl, P. & Gilmour, D. Collective cell migration in morphogenesis, regeneration and cancer. Nature Rev. Mol. Cell Biol. 10, 445–457 (2009).

    Article  CAS  Google Scholar 

  120. Caussinus, E., Colombelli, J. & Affolter, M. Tip-cell migration controls stalk-cell intercalation during Drosophila tracheal tube elongation. Curr. Biol. 18, 1727–1734 (2008). Showed that tensile forces generated by tip cells in D. melanogaster tracheal branches drive the intercalation of the remaining cells within the branch.

    Article  CAS  PubMed  Google Scholar 

  121. Ewald, A. J., Brenot, A., Duong, M., Chan, B. S. & Werb, Z. Collective epithelial migration and cell rearrangements drive mammary branching morphogenesis. Dev. Cell 14, 570–581 (2008). Used long-term time-lapse imaging to visualize the dynamics of epithelial cells during branching morphogenesis of mammary organoids and observed that branching occurs through a multilayered, partially polarized epithelium, which featured large-scale coordinated cell movements.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Mori, H., Gjorevski, N., Inman, J. L., Bissell, M. J. & Nelson, C. M. Self-organization of engineered epithelial tubules by differential cellular motility. Proc. Natl Acad. Sci. USA 106, 14890–14895 (2009). Demonstrated that differential motility is sufficient to drive cell sorting within engineered mammary tissues. Cells expressing high levels of MMP14 exhibit high directional persistence, which promotes their localization to the leading edge of the tissue.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Thiery, J. P., Acloque, H., Huang, R. Y. & Nieto, M. A. Epithelial–mesenchymal transitions in development and disease. Cell 139, 871–890 (2009).

    Article  CAS  PubMed  Google Scholar 

  124. Kalluri, R. & Weinberg, R. A. The basics of epithelial–mesenchymal transition. J. Clin. Invest. 119, 1420–1428 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Revenu, C. & Gilmour, D. EMT 2.0: shaping epithelia through collective migration. Curr. Opin. Genet. Dev. 19, 338–342 (2009).

    Article  CAS  PubMed  Google Scholar 

  126. Onodera, T. et al. Btbd7 regulates epithelial cell dynamics and branching morphogenesis. Science 329, 562–565 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Leroy, P. & Mostov, K. E. Slug is required for cell survival during partial epithelial–mesenchymal transition of HGF-induced tubulogenesis. Mol. Biol. Cell 18, 1943–1952 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Arendt, L. M., Rudnick, J. A., Keller, P. J. & Kuperwasser, C. Stroma in breast development and disease. Semin. Cell Dev. Biol. 21, 11–18 (2010).

    Article  CAS  PubMed  Google Scholar 

  129. Hovey, R. C. & Aimo, L. Diverse and active roles for adipocytes during mammary gland growth and function. J. Mammary Gland Biol. Neoplasia 15, 279–290 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Pavlovich, A. L., Manivannan, S. & Nelson, C. M. Adipose stroma induces branching morphogenesis of engineered epithelial tubules. Tissue Eng. Part A 16, 3719–3726 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Landskroner-Eiger, S., Park, J., Israel, D., Pollard, J. W. & Scherer, P. E. Morphogenesis of the developing mammary gland: stage-dependent impact of adipocytes. Dev. Biol. 344, 968–978 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Couldrey, C. et al. Adipose tissue: a vital in vivo role in mammary gland development but not differentiation. Dev. Dyn. 223, 459–468 (2002). Showed that an absence of white adipose tissue prevents pubertal mammary morphogenesis but not alveolar differentiation during pregnancy.

    Article  PubMed  Google Scholar 

  133. Kamikawa, A. et al. Diet-induced obesity disrupts ductal development in the mammary glands of nonpregnant mice. Dev. Dyn. 238, 1092–1099 (2009).

    Article  CAS  PubMed  Google Scholar 

  134. Thorn, S. R., Giesy, S. L., Myers, M. G. Jr & Boisclair, Y. R. Mammary ductal growth is impaired in mice lacking leptin-dependent signal transducer and activator of transcription 3 signaling. Endocrinology 151, 3985–3995 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Hovey, R. C., Goldhar, A. S., Baffi, J. & Vonderhaar, B. K. Transcriptional regulation of vascular endothelial growth factor expression in epithelial and stromal cells during mouse mammary gland development. Mol. Endocrinol. 15, 819–831 (2001).

    Article  CAS  PubMed  Google Scholar 

  136. Liang, Y., Brekken, R. A. & Hyder, S. M. Vascular endothelial growth factor induces proliferation of breast cancer cells and inhibits the anti-proliferative activity of anti-hormones. Endocr. Relat. Cancer 13, 905–919 (2006).

    Article  CAS  PubMed  Google Scholar 

  137. Dabrosin, C., Margetts, P. J. & Gauldie, J. Estradiol increases extracellular levels of vascular endothelial growth factor in vivo in murine mammary cancer. Int. J. Cancer 107, 535–540 (2003).

    Article  CAS  PubMed  Google Scholar 

  138. Reed, J. R. & Schwertfeger, K. L. Immune cell location and function during post-natal mammary gland development. J. Mammary Gland Biol. Neoplasia 15, 329–339 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Coussens, L. M. & Pollard, J. W. Leukocytes in mammary development and cancer. Cold Spring Harb. Perspect. Biol. 3, a003285 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Van Nguyen, A. & Pollard, J. W. Colony stimulating factor-1 is required to recruit macrophages into the mammary gland to facilitate mammary ductal outgrowth. Dev. Biol. 247, 11–25 (2002).

    Article  CAS  PubMed  Google Scholar 

  141. Gouon-Evans, V., Rothenberg, M. E. & Pollard, J. W. Postnatal mammary gland development requires macrophages and eosinophils. Development 127, 2269–2282 (2000). Demonstrated an essential role for macrophages and eosinophils in postnatal mammary morphogenesis.

    Article  CAS  PubMed  Google Scholar 

  142. Ingman, W. V., Wyckoff, J., Gouon-Evans, V., Condeelis, J. & Pollard, J. W. Macrophages promote collagen fibrillogenesis around terminal end buds of the developing mammary gland. Dev. Dyn. 235, 3222–3229 (2006).

    Article  CAS  PubMed  Google Scholar 

  143. Lilla, J. N., Joshi, R. V., Craik, C. S. & Werb, Z. Active plasma kallikrein localizes to mast cells and regulates epithelial cell apoptosis, adipocyte differentiation, and stromal remodeling during mammary gland involution. J. Biol. Chem. 284, 13792–13803 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Atabai, K., Sheppard, D. & Werb, Z. Roles of the innate immune system in mammary gland remodeling during involution. J. Mammary Gland Biol. Neoplasia 12, 37–45 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Lilla, J. N. & Werb, Z. Mast cells contribute to the stromal microenvironment in mammary gland branching morphogenesis. Dev. Biol. 337, 124–133 (2010).

    Article  CAS  PubMed  Google Scholar 

  146. Russell, J. S., McGee, S. O., Ip, M. M., Kuhlmann, D. & Masso-Welch, P. A. Conjugated linoleic acid induces mast cell recruitment during mouse mammary gland stromal remodeling. J. Nutr. 137, 1200–1207 (2007).

    Article  CAS  PubMed  Google Scholar 

  147. Orimo, A. et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121, 335–348 (2005).

    Article  CAS  PubMed  Google Scholar 

  148. Montesano, R., Matsumoto, K., Nakamura, T. & Orci, L. Identification of a fibroblast-derived epithelial morphogen as hepatocyte growth factor. Cell 67, 901–908 (1991).

    Article  CAS  PubMed  Google Scholar 

  149. Simian, M. et al. The interplay of matrix metalloproteinases, morphogens and growth factors is necessary for branching of mammary epithelial cells. Development 128, 3117–3131 (2001).

    Article  CAS  PubMed  Google Scholar 

  150. Fleming, J. M. et al. Interlobular and intralobular mammary stroma: genotype may not reflect phenotype. BMC Cell Biol. 9, 46 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Knox, S. M. et al. Parasympathetic innervation maintains epithelial progenitor cells during salivary organogenesis. Science 329, 1645–1647 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Gyorki, D. E., Asselin-Labat, M. L., van Rooijen, N., Lindeman, G. J. & Visvader, J. E. Resident macrophages influence stem cell activity in the mammary gland. Breast Cancer Res. 11, R62 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Pull, S. L., Doherty, J. M., Mills, J. C., Gordon, J. I. & Stappenbeck, T. S. Activated macrophages are an adaptive element of the colonic epithelial progenitor niche necessary for regenerative responses to injury. Proc. Natl Acad. Sci. USA 102, 99–104 (2005).

    Article  CAS  PubMed  Google Scholar 

  154. Crick, F. Diffusion in embryogenesis. Nature 225, 420–422 (1970).

    Article  CAS  PubMed  Google Scholar 

  155. Chen, C. S., Mrksich, M., Huang, S., Whitesides, G. M. & Ingber, D. E. Geometric control of cell life and death. Science 276, 1425–1428 (1997).

    Article  CAS  PubMed  Google Scholar 

  156. Nelson, C. M. et al. Emergent patterns of growth controlled by multicellular form and mechanics. Proc. Natl Acad. Sci. USA 102, 11594–11599 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. McBeath, R., Pirone, D. M., Nelson, C. M., Bhadriraju, K. & Chen, C. S. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell 6, 483–495 (2004).

    Article  CAS  PubMed  Google Scholar 

  158. Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).

    Article  CAS  PubMed  Google Scholar 

  159. Nelson, C. M., Khauv, D., Bissell, M. J. & Radisky, D. C. Change in cell shape is required for matrix metalloproteinase-induced epithelial–mesenchymal transition of mammary epithelial cells. J. Cell. Biochem. 105, 25–33 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Ruiz, S. A. & Chen, C. S. Emergence of patterned stem cell differentiation within multicellular structures. Stem Cells 26, 2921–2927 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Harris, A. K. Is cell sorting caused by differences in the work of intercellular adhesion? A critique of the Steinberg hypothesis. J. Theor. Biol. 61, 267–285 (1976).

    Article  CAS  PubMed  Google Scholar 

  162. Schotz, E.-M. et al. Quantitative differences in tissue surface tension influence zebrafish germ layer positioning. HFSP J. 2, 1–56 (2008).

    Article  Google Scholar 

  163. Foty, R. A. & Steinberg, M. S. The differential adhesion hypothesis: a direct evaluation. Dev. Biol. 278, 255–263 (2005).

    Article  CAS  PubMed  Google Scholar 

  164. Rauzi, M., Verant, P., Lecuit, T. & Lenne, P. F. Nature and anisotropy of cortical forces orienting Drosophila tissue morphogenesis. Nature Cell Biol. 10, 1401–1410 (2008).

    Article  CAS  PubMed  Google Scholar 

  165. Larsen, M., Wei, C. & Yamada, K. M. Cell and fibronectin dynamics during branching morphogenesis. J. Cell Sci. 119, 3376–3384 (2006).

    Article  CAS  PubMed  Google Scholar 

  166. Chi, X. et al. Ret-dependent cell rearrangements in the Wolffian duct epithelium initiate ureteric bud morphogenesis. Dev. Cell 17, 199–209 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. DeOme, K. B., Faulkin, L. J. Jr, Bern, H. A. & Blair, P. B. Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H mice. Cancer Res. 19, 515–520 (1959).

    CAS  PubMed  Google Scholar 

  168. Shackleton, M. et al. Generation of a functional mammary gland from a single stem cell. Nature 439, 84–88 (2006).

    Article  CAS  PubMed  Google Scholar 

  169. Stingl, J. et al. Purification and unique properties of mammary epithelial stem cells. Nature 439, 993–997 (2006).

    Article  CAS  PubMed  Google Scholar 

  170. Kim, N. D., Oberley, T. D. & Clifton, K. H. Primary culture of flow cytometry-sorted rat mammary epithelial cell (RMEC) subpopulations in a reconstituted basement membrane, Matrigel. Exp. Cell Res. 209, 6–20 (1993).

    Article  CAS  PubMed  Google Scholar 

  171. Kim, N. D. & Clifton, K. H. Characterization of rat mammary epithelial cell subpopulations by peanut lectin and anti-Thy-1.1 antibody and study of flow-sorted cells in vivo. Exp. Cell Res. 207, 74–85 (1993).

    Article  CAS  PubMed  Google Scholar 

  172. Kamiya, K., Gould, M. N. & Clifton, K. H. Quantitative studies of ductal versus alveolar differentiation from rat mammary clonogens. Proc. Soc. Exp. Biol. Med. 219, 217–225 (1998).

    Article  CAS  PubMed  Google Scholar 

  173. Kordon, E. C. & Smith, G. H. An entire functional mammary gland may comprise the progeny from a single cell. Development 125, 1921–1930 (1998).

    Article  CAS  PubMed  Google Scholar 

  174. Visvader, J. E. & Smith, G. H. Murine mammary epithelial stem cells: discovery, function, and current status. Cold Spring Harb. Perspect. Biol. 3, a004879 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Sleeman, K. E., Kendrick, H., Ashworth, A., Isacke, C. M. & Smalley, M. J. CD24 staining of mouse mammary gland cells defines luminal epithelial, myoepithelial/basal and non-epithelial cells. Breast Cancer Res. 8, R7 (2006).

    Article  CAS  PubMed  Google Scholar 

  176. Sleeman, K. E. et al. Dissociation of estrogen receptor expression and in vivo stem cell activity in the mammary gland. J. Cell Biol. 176, 19–26 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Asselin-Labat, M. L. et al. Gata-3 is an essential regulator of mammary-gland morphogenesis and luminal-cell differentiation. Nature Cell Biol. 9, 201–209 (2007).

    Article  CAS  PubMed  Google Scholar 

  178. Lim, E. et al. Transcriptome analyses of mouse and human mammary cell subpopulations reveal multiple conserved genes and pathways. Breast Cancer Res. 12, R21 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  179. Taddei, I. et al. β1 integrin deletion from the basal compartment of the mammary epithelium affects stem cells. Nature Cell Biol. 10, 716–722 (2008).

    Article  CAS  PubMed  Google Scholar 

  180. Anderson, L. H., Boulanger, C. A., Smith, G. H., Carmeliet, P. & Watson, C. J. Stem cell marker prominin-1 regulates branching morphogenesis, but not regenerative capacity, in the mammary gland. Dev. Dyn. 240, 674–681 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Liu, S. et al. Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res. 66, 6063–6071 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Dontu, G. et al. Role of notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Res. 6, R605–R615 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Korkaya, H. et al. Regulation of mammary stem/progenitor cells by PTEN/Akt/β-catenin signaling. PLoS Biol. 7, e1000121 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  184. Bai, L. & Rohrschneider, L. R. s-SHIP promoter expression marks activated stem cells in developing mouse mammary tissue. Genes Dev. 24, 1882–1892 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Villadsen, R. et al. Evidence for a stem cell hierarchy in the adult human breast. J. Cell Biol. 177, 87–101 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. LaBarge, M. A. et al. Human mammary progenitor cell fate decisions are products of interactions with combinatorial microenvironments. Integr. Biol. (Camb.) 1, 70–79 (2009).

    Article  CAS  Google Scholar 

  187. Booth, B. W. et al. The mammary microenvironment alters the differentiation repertoire of neural stem cells. Proc. Natl Acad. Sci. USA 105, 14891–14896 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Boulanger, C. A., Mack, D. L., Booth, B. W. & Smith, G. H. Interaction with the mammary microenvironment redirects spermatogenic cell fate in vivo. Proc. Natl Acad. Sci. USA 104, 3871–3876 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Sternlicht, M. D. Key stages in mammary gland development: the cues that regulate ductal branching morphogenesis. Breast Cancer Res. 8, 201 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize to colleagues whose work could not be discussed owing to space limitations. The authors are supported by grants from the US National Institutes of Health (CA128660, HL110335 and GM083997), Susan G. Komen for the Cure (FAS0703855), the David & Lucile Packard Foundation and the Alfred P. Sloan Foundation. C.M.N. holds a Career Award at the Scientific Interface from the Burroughs Wellcome Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Celeste M. Nelson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Authors' homepage

Glossary

Adipocytes

Also known as fat cells. Adipocytes contain one or more lipid droplets and comprise the body's adipose tissue.

Placodes

Epithelial thickenings in the embryo that give rise to an organ.

Chemotactic gradients

Chemical gradients that influence the directional motion of cells in the process of chemotaxis.

Organoids

Multicellular structures that resemble organs in architecture and function.

Paracrine signalling

A form of cell signalling in which a signal released by one cell elicits an effect within a nearby cell.

Endocrine signalling

A form of cell signalling in which a hormonal signal released by an endocrine gland elicits an effect within a distant cell.

Primary cilia

Long, slender sensory organelles that project from eukaryotic cells and are composed of a microtubule-based cytoskeleton.

MicroRNA

Small non-coding RNA molecules that regulate gene expression at the post-transcriptional level.

Autocrine signalling

A form of cell signalling in which a signal released by a given cell elicits an effect within the same cell.

Morphogen

A chemical signal that forms a concentration gradient and mediates pattern formation during tissue development.

Microfabrication

The process of fabricating micrometre-sized structures. Used in biomedical research to control the size, shape and spatial arrangement of proteins, cells and tissues.

Mechanical stress

A physical quantity defined as force per unit area.

Mechanotransduction

The phenomenon whereby cells interpret mechanical signals and transform them into a biochemical response, such as signalling or changes in gene expression.

Collective migration

The process in which cells move as a group, without dissolving cell–cell junctions.

Lateral inhibition

The signalling process through which a group of cells reduces the activity of an adjacent group.

Tensile forces

Forces that tend to extend a body.

Directional persistence

The tendency of a cell to move in a straight line.

Angiogenesis

The formation of new blood vessels from existing ones.

Macrophages

A type of blood cell that mediates the body's immune response by ingesting foreign material, including pathogens.

Eosinophils

A type of blood cell that mediates the body's immune response by producing chemical agents to combat multicellular pathogens.

Mast cells

A type of cell that is considered to be part of the immune response. Mast cells contain granules rich in histamine and heparin and mediate the body's inflammatory and allergic responses.

Niche

The microenvironment in which stem cells reside, characterized both in terms of location within a tissue and function. The niche is responsible for directing the maintenance, renewal and differentiation of stem cells.

Acinar

A berry-shaped cluster of cells.

Bipotent

The ability to give rise to two types of differentiated cells.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gjorevski, N., Nelson, C. Integrated morphodynamic signalling of the mammary gland. Nat Rev Mol Cell Biol 12, 581–593 (2011). https://doi.org/10.1038/nrm3168

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3168

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing