Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The HSP70 chaperone machinery: J proteins as drivers of functional specificity

A Corrigendum to this article was published on 23 September 2010

Key Points

  • Heat shock 70 kDa proteins (HSP70s) are ubiquitous molecular chaperone machines, with the core consisting of an HSP70, a J protein and a nucleotide exchange factor (NEF). These machines function in a myriad of biological processes, including modulating polypeptide folding, degradation and translocation across membranes, as well as protein–protein interactions.

  • Functional diversity of the HSP70 chaperone machinery is provided mainly by J proteins, as many J proteins can interact with the same HSP70 to regulate different functions. Apart from the characteristic HSP70-interacting J domain, J proteins are structurally highly divergent.

  • The basic function of J proteins is to bind HSP70 and regulate client capture by accelerating ATP hydrolysis of HSP70s. Through different localization (for example, interactions with membranes or ribosomes), J proteins can tether HSP70 to specific sites or position HSP70 towards specific clients.

  • Some J proteins bind to clients first and deliver substrates to HSP70s, thus providing client specificity or directing the fate of client processing through either refolding or degradation.

  • Certain J proteins interact with folded client proteins. In this case, the HSP70 machine is involved in the modulation of protein–protein interactions. In certain instances, the HSP70 machinery can facilitate protein unfolding, rather than the more common role of protein folding.

  • The three structurally unrelated families of NEFs might further contribute to the functional diversification of the core HSP70 machinery, although little is understood about how this may occur.

Abstract

Heat shock 70 kDa proteins (HSP70s) are ubiquitous molecular chaperones that function in a myriad of biological processes, modulating polypeptide folding, degradation and translocation across membranes, and protein–protein interactions. This multitude of roles is not easily reconciled with the universality of the activity of HSP70s in ATP-dependent client protein-binding and release cycles. Much of the functional diversity of the HSP70s is driven by a diverse class of cofactors: J proteins. Often, multiple J proteins function with a single HSP70. Some target HSP70 activity to clients at precise locations in cells and others bind client proteins directly, thereby delivering specific clients to HSP70 and directly determining their fate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Protein folding and degradation through the client protein–chaperone binding and release cycle.
Figure 2: Canonical model of the core HSP70 machinery's mode of action in protein folding and HSP70 structure.
Figure 3: Diversity in domain architecture of yeast and human J proteins.
Figure 4: J domain and client protein-binding domain structures.
Figure 5: J protein function with or without client binding.
Figure 6: J protein tethering to the site of action.
Figure 7: Examples of J protein function beyond protein refolding.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Ellis, J. Proteins as molecular chaperones. Nature 328, 378–379 (1987).

    Article  CAS  PubMed  Google Scholar 

  2. Hartl, F. U. & Hayer-Hartl, M. Converging concepts of protein folding in vitro and in vivo. Nature Struct. Mol. Biol. 16, 574–581 (2009). Excellent review on general protein folding concepts and chaperone networks.

    Article  CAS  Google Scholar 

  3. Bukau, B., Weissman, J. & Horwich, A. Molecular chaperones and protein quality control. Cell 125, 443–451 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Rudiger, S., Germeroth, L., Schneider-Mergener, J. & Bukau, B. Substrate specificity of the DnaK chaperone determined by screening cellulose-bound peptide libraries. EMBO J. 16, 1501–1507 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mayer, M. P. & Bukau, B. Hsp70 chaperones: cellular functions and molecular mechanism. Cell. Mol. Life Sci. 62, 670–684 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Szabo, A. et al. The ATP hydrolysis-dependent reaction cycle of the Escherichia coli Hsp70 system DnaK, DnaJ, and GrpE. Proc. Natl Acad. Sci. USA 91, 10345–10349 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. McCarty, J. S., Buchberger, A., Reinstein, J. & Bukau, B. The role of ATP in the functional cycle of the DnaK chaperone system. J. Mol. Biol. 249, 126–137 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Laufen, T. et al. Mechanism of regulation of Hsp70 chaperones by DnaJ cochaperones. Proc. Natl Acad. Sci. USA 96, 5452–5457 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Diamant, S. & Goloubinoff, P. Temperature-controlled activity of DnaK-DnaJ-GrpE chaperones: protein-folding arrest and recovery during and after heat shock depends on the substrate protein and the GrpE concentration. Biochemistry 37, 9688–9694 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Gassler, C. S., Wiederkehr, T., Brehmer, D., Bukau, B. & Mayer, M. P. Bag-1M accelerates nucleotide release for human Hsc70 and Hsp70 and can act concentration-dependent as positive and negative cofactor. J. Biol. Chem. 276, 32538–32544 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Nollen, E. A., Brunsting, J. F., Song, J., Kampinga, H. H. & Morimoto, R. I. Bag1 functions in vivo as a negative regulator of Hsp70 chaperone activity. Mol. Cell. Biol. 20, 1083–1088 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Craig, E. A., Huang, P., Aron, R. & Andrew, A. The diverse roles of J-proteins, the obligate Hsp70 co-chaperone. Rev. Physiol. Biochem. Pharmacol. 156, 1–21 (2006).

    CAS  PubMed  Google Scholar 

  13. Hageman, J. & Kampinga, H. H. Computational analysis of the human HSPH/HSPA/DNAJ family and cloning of a human HSPH/HSPA/DNAJ expression library. Cell Stress Chaperones 14, 1–21 (2009). Provides a wealth of bioinformatic data on the human HSP70, HSP110 and DNAJ family members and their expression during development and in various human tissues.

    Article  CAS  PubMed  Google Scholar 

  14. Greene, M. K., Maskos, K. & Landry, S. J. Role of the J-domain in the cooperation of Hsp40 with Hsp70. Proc. Natl Acad. Sci. USA 95, 6108–6113 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jiang, J. et al. Structural basis of J cochaperone binding and regulation of Hsp70. Mol. Cell 28, 422–433 (2007). Structural insights in to how the J domain interacts with and regulates HSP70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vogel, M., Mayer, M. P. & Bukau, B. Allosteric regulation of Hsp70 chaperones involves a conserved interdomain linker. J. Biol. Chem. 281, 38705–38711 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Swain, J. F. et al. Hsp70 chaperone ligands control domain association via an allosteric mechanism mediated by the interdomain linker. Mol. Cell 26, 27–39 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Suh, W. C. et al. Interaction of the Hsp70 molecular chaperone, DnaK, with its cochaperone DnaJ. Proc. Natl Acad. Sci. USA 95, 15223–15228 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gassler, C. S. et al. Mutations in the DnaK chaperone affecting interaction with the DnaJ cochaperone. Proc. Natl Acad. Sci. USA 95, 15229–15234 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Huang, P., Gautschi, M., Walter, W., Rospert, S. & Craig, E. A. The Hsp70 Ssz1 modulates the function of the ribosome-associated J-protein Zuo1. Nature Struct. Mol. Biol. 12, 497–504 (2005).

    Article  CAS  Google Scholar 

  21. Cheetham, M. E. & Caplan, A. J. Structure, function and evolution of DnaJ: conservation and adaptation of chaperone function. Cell Stress Chaperones 3, 28–36 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ohtsuka, K. & Hata, M. Mammalian HSP40/DNAJ homologs: cloning of novel cDNAs and a proposal for their classification and nomenclature. Cell Stress Chaperones 5, 98–112 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hennessy, F., Cheetham, M. E., Dirr, H. W. & Blatch, G. L. Analysis of the levels of conservation of the J domain among the various types of DnaJ-like proteins. Cell Stress Chaperones 5, 347–358 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Goffin, L. & Georgopoulos, C. Genetic and biochemical characterization of mutations affecting the carboxy-terminal domain of the Escherichia coli molecular chaperone DnaJ. Mol. Microbiol 30, 329–340 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Lu, Z. & Cyr, D. M. The conserved carboxyl terminus and zinc finger-like domain of the co-chaperone Ydj1 assist Hsp70 in protein folding. J. Biol. Chem. 273, 5970–5978 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Li, J., Qian, X. & Sha, B. The crystal structure of the yeast Hsp40 Ydj1 complexed with its peptide substrate. Structure 11, 1475–1483 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Linke, K., Wolfram, T., Bussemer, J. & Jakob, U. The roles of the two zinc binding sites in DnaJ. J. Biol. Chem. 278, 44457–44466 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Kota, P., Summers, D. W., Ren, H. Y., Cyr, D. M. & Dokholyan, N. V. Identification of a consensus motif in substrates bound by a Type I Hsp40. Proc. Natl Acad. Sci. USA 106, 11073–11078 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wu, Y., Li, J., Jin, Z., Fu, Z. & Sha, B. The crystal structure of the C-terminal fragment of yeast Hsp40 Ydj1 reveals novel dimerization motif for Hsp40. J. Mol. Biol. 346, 1005–1011 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Sha, B., Lee, S. & Cyr, D. M. The crystal structure of the peptide-binding fragment from the yeast Hsp40 protein Sis1. Structure 8, 799–807 (2000). Structural comparison of the canonical peptide-binding domain of the class I J protein sc Ydj1 with the peptide-binding domain of the class II J protein sc Sis1.

    Article  CAS  PubMed  Google Scholar 

  31. Lopez, N., Aron, R. & Craig, E. A. Specificity of class II Hsp40 Sis1 in maintenance of yeast prion [RNQ+]. Mol. Biol. Cell 14, 1172–1181 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cajo, G. C. et al. The role of the DIF motif of the DnaJ (Hsp40) co-chaperone in the regulation of the DnaK (Hsp70) chaperone cycle. J. Biol. Chem. 281, 12436–12444 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Kampinga, H. H. et al. Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 14, 105–111 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Nakatsukasa, K., Huyer, G., Michaelis, S. & Brodsky, J. L. Dissecting the ER-associated degradation of a misfolded polytopic membrane protein. Cell 132, 101–112 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yan, W. et al. Zuotin, a ribosome-associated DnaJ molecular chaperone. EMBO J. 17, 4809–4817 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nelson, R. J., Ziegelhoffer, T., Nicolet, C., Werner-Washburne, M. & Craig, E. A. The translation machinery and 70 kd heat shock protein cooperate in protein synthesis. Cell 71, 97–105 (1992).

    Article  CAS  PubMed  Google Scholar 

  37. Hundley, H. A., Walter, W., Bairstow, S. & Craig, E. A. Human Mpp11 J protein: ribosome-tethered molecular chaperones are ubiquitous. Science 308, 1032–1034 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Otto, H. et al. The chaperones MPP11 and Hsp70L1 form the mammalian ribosome-associated complex. Proc. Natl Acad. Sci. USA 102, 10064–10069 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chacinska, A., Koehler, C. M., Milenkovic, D., Lithgow, T. & Pfanner, N. Importing mitochondrial proteins: machineries and mechanisms. Cell 138, 628–644 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mokranjac, D., Berg, A., Adam, A., Neupert, W. & Hell, K. Association of the Tim14•Tim16 subcomplex with the TIM23 translocase is crucial for function of the mitochondrial protein import motor. J. Biol. Chem. 282, 18037–18045 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. D'Silva, P. R., Schilke, B., Hayashi, M. & Craig, E. A. Interaction of the J-protein heterodimer Pam18/Pam16 of the mitochondrial import motor with the translocon of the inner membrane. Mol. Biol. Cell 19, 424–432 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Slutsky-Leiderman, O. et al. The interplay between components of the mitochondrial protein translocation motor studied using purified components. J. Biol. Chem. 282, 33935–33942 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Schiller, D., Cheng, Y. C., Liu, Q., Walter, W. & Craig, E. A. Residues of Tim44 involved in both association with the translocon of the inner mitochondrial membrane and regulation of mitochondrial Hsp70 tethering. Mol. Cell Biol. 28, 4424–4433 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sahi, C. & Craig, E. A. Network of general and specialty J protein chaperones of the yeast cytosol. Proc. Natl Acad. Sci. USA 104, 7163–7168 (2007). First evidence to show that several functions of the HSP70 machineries only require J domain-mediated stimulation of the ATPase activity of HSP70 and that little or no specificity resides in the J domain itself.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Higurashi, T., Hines, J. K., Sahi, C., Aron, R. & Craig, E. A. Specificity of the J-protein Sis1 in the propagation of 3 yeast prions. Proc. Natl Acad. Sci. USA 105, 16596–16601 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Agashe, V. R. et al. Function of trigger factor and DnaK in multidomain protein folding: increase in yield at the expense of folding speed. Cell 117, 199–209 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Johnson, J. L. & Craig, E. A. An essential role for the substrate-binding region of Hsp40s in Saccharomyces cerevisiae. J. Cell Biol. 152, 851–856 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shen, Y. & Hendershot, L. M. ERdj3, a stress-inducible endoplasmic reticulum DnaJ homologue, serves as a cofactor for BiP's interactions with unfolded substrates. Mol. Biol. Cell 16, 40–50 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jin, Y., Awad, W., Petrova, K. & Hendershot, L. M. Regulated release of ERdj3 from unfolded proteins by BiP. EMBO J. 27, 2873–2882 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hageman, J. et al. A DNAJB Chaperone Subfamily with HDAC-dependent activities suppresses toxic protein aggregation. Mol. Cell 37, 355–369 (2010). A functional comparison of class I and class II human J proteins and the identification of a class II subgroup with anti-aggregation properties that are largely HSP70-independent.

    Article  CAS  PubMed  Google Scholar 

  51. Kazemi-Esfarjani, P. & Benzer, S. Genetic suppression of polyglutamine toxicity in Drosophila. Science 287, 1837–1840 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Fayazi, Z. et al. A Drosophila ortholog of the human MRJ modulates polyglutamine toxicity and aggregation. Neurobiol. Dis. 24, 226–244 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Chuang, J. Z. et al. Characterization of a brain-enriched chaperone, MRJ, that inhibits Huntingtin aggregation and toxicity independently. J. Biol. Chem. 277, 19831–19838 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Chapple, J. P., van der Spuy, J., Poopalasundaram, S. & Cheetham, M. E. Neuronal DnaJ proteins HSJ1a and HSJ1b: a role in linking the Hsp70 chaperone machine to the ubiquitin-proteasome system? Biochem. Soc. Trans. 32, 640–642 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Westhoff, B., Chapple, J. P., van der Spuy, J., Hohfeld, J. & Cheetham, M. E. HSJ1 is a neuronal shuttling factor for the sorting of chaperone clients to the proteasome. Curr. Biol. 15, 1058–1064 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Michels, A. A. et al. Hsp70 and Hsp40 chaperone activities in the cytoplasm and the nucleus of mammalian cells. J. Biol. Chem. 272, 33283–33289 (1997).

    Article  CAS  PubMed  Google Scholar 

  57. Howarth, J. L. et al. Hsp40 molecules that target to the ubiquitin-proteasome system decrease inclusion formation in models of polyglutamine disease. Mol. Ther. 15, 1100–1105 (2007). First direct evidence that a J protein ( hs DNAJB2) specifically and exclusively directs clients towards degradation and does not assist in folding or refolding but actually competes with other chaperones that favour these events.

    Article  CAS  PubMed  Google Scholar 

  58. Bailey, C. K., Andriola, I. F., Kampinga, H. H. & Merry, D. E. Molecular chaperones enhance the degradation of expanded polyglutamine repeat androgen receptor in a cellular model of spinal and bulbar muscular atrophy. Hum. Mol. Genet. 11, 515–523 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Rujano, M. A., Kampinga, H. H. & Salomons, F. A. Modulation of polyglutamine inclusion formation by the Hsp70 chaperone machine. Exp. Cell Res. 313, 3568–3578 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Cunnea, P. M. et al. ERdj5, an endoplasmic reticulum (ER)-resident protein containing DnaJ and thioredoxin domains, is expressed in secretory cells or following ER stress. J. Biol. Chem. 278, 1059–1066 (2003).

    Article  CAS  PubMed  Google Scholar 

  61. Hosoda, A., Kimata, Y., Tsuru, A. & Kohno, K. JPDI, a novel endoplasmic reticulum-resident protein containing both a BiP-interacting J-domain and thioredoxin-like motifs. J. Biol. Chem. 278, 2669–2676 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Ushioda, R. et al. ERdj5 is required as a disulfide reductase for degradation of misfolded proteins in the ER. Science 321, 569–572 (2008). Identifies the mode of action of the ER resident hs DNAJC10 (also known as ERdj5) as the specific support of ER-associated protein degradation.

    Article  CAS  PubMed  Google Scholar 

  63. Zylicz, M., Ang, D., Liberek, K. & Georgopoulos, C. Initiation of lambda DNA replication with purified host- and bacteriophage-encoded proteins: the role of the dnaK, dnaJ and grpE heat shock proteins. EMBO J. 8, 1601–1608 (1989). Original findings showing that the HSP70 core machine modulates the protein–protein interactions of folded clients rather than acting on unfolded clients only (as is often incorrectly assumed).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hoffmann, H. J., Lyman, S. K., Lu, C., Petit, M. A. & Echols, H. Activity of the Hsp70 chaperone complex — DnaK, DnaJ, and GrpE — in initiating phage lambda DNA replication by sequestering and releasing lambda P protein. Proc. Natl Acad. Sci. USA 89, 12108–12111 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Meyer, A. E., Hung., N. J., Yang, P., Johnson, A. W. & Craig, E. A. The specialized cytosolic J-protein, Jjj1, functions in 60S ribosomal subunit biogenesis. Proc. Natl Acad. Sci. USA 104, 1558–1563 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Demoinet, E., Jacquier, A., Lutfalla, G. & Fromont-Racine, M. The Hsp40 chaperone Jjj1 is required for the nucleo-cytoplasmic recycling of preribosomal factors in Saccharomyces cerevisiae. RNA 13, 1570–1581 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Meyer, A. E., Hoover, L. A. & Craig, E. A. The cytosolic J-protein, Jjj1, and Rei1 function in the removal of the pre-60S subunit factor Arx1. J. Biol. Chem. 285, 961–968 (2010).

    Article  CAS  PubMed  Google Scholar 

  68. Fotin, A. et al. Molecular model for a complete clathrin lattice from electron cryomicroscopy. Nature 432, 573–579 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Scheele, U., Kalthoff, C. & Ungewickell, E. Multiple interactions of auxilin 1 with clathrin and the AP-2 adaptor complex. J. Biol. Chem. 276, 36131–36138 (2001).

    Article  CAS  PubMed  Google Scholar 

  70. Heymann, J. B. et al. Visualization of the binding of Hsc70 ATPase to clathrin baskets: implications for an uncoating mechanism. J. Biol. Chem. 280, 7156–7161 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Rapoport, I., Boll., W., Yu, A., Bocking, T. & Kirchhausen, T. A motif in the clathrin heavy chain required for the Hsc70/auxilin uncoating reaction. Mol. Biol. Cell 19, 405–413 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Braell, W. A., Schlossman, D. M., Schmid, S. L. & Rothman, J. E. Dissociation of clathrin coats coupled to the hydrolysis of ATP: role of an uncoating ATPase. J. Cell Biol. 99, 734–741 (1984).

    Article  CAS  PubMed  Google Scholar 

  73. Voisine, C. et al. Jac1, a mitochondrial J-type chaperone, is involved in the biogenesis of Fe/S. clusters in Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 98, 1483–1488 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lutz, T., Westermann, B., Neupert, W. & Herrmann, J. M. The mitochondrial proteins Ssq1 and Jac1 are required for the assembly of iron sulfur clusters in mitochondria. J. Mol. Biol. 307, 815–825 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Vickery, L. E. & Cupp-Vickery, J. R. Molecular chaperones HscA/Ssq1 and HscB/Jac1 and their roles in iron-sulfur protein maturation. Crit. Rev. Biochem. Mol. Biol. 42, 95–111 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Chandramouli, K. & Johnson, M. K. HscA and HscB stimulate [2Fe-2S] cluster transfer from IscU to apoferredoxin in an ATP-dependent reaction. Biochemistry 45, 11087–11095 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Dutkiewicz, R. et al. The Hsp70 chaperone Ssq1p is dispensable for iron-sulfur cluster formation on the scaffold protein Isu1p. J. Biol. Chem. 281, 7801–7808 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Bonomi, F., Iametti, S., Morleo, A., Ta, D. & Vickery, L. E. Studies on the mechanism of catalysis of iron-sulfur cluster transfer from IscU[2Fe2S] by HscA/HscB chaperones. Biochemistry 47, 12795–12801 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Kim, J. H. et al. Structure and dynamics of the iron-sulfur cluster assembly scaffold protein IscU and its interaction with the cochaperone HscB. Biochemistry 48, 6062–6071 (2009). Reports the alternative conformations of the Fe–S scaffold protein, providing insight into how this specialized J protein and HSP70 might facilitate cluster transfer.

    Article  CAS  PubMed  Google Scholar 

  80. Schilke, B. et al. Evolution of mitochondrial chaperones utilized in Fe-S cluster biogenesis. Curr. Biol. 16, 1660–1665 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Sahi, C., Lee, T., Inada, M., Pleiss, J. A. & Craig, E. A. Cwc23, an essential J-protein critical for pre-mRNA splicing with a dispensable J-domain. Mol. Cell Biol. (2009). The most extreme example of a J protein acting independently of its J domain.

  82. Pandit, S. et al. Spp382p interacts with multiple yeast splicing factors, including possible regulators of Prp43 DExD/H-Box protein function. Genetics 183, 195–206 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Pandit, S., Lynn, B. & Rymond, B. C. Inhibition of a spliceosome turnover pathway suppresses splicing defects. Proc. Natl Acad. Sci. USA 103, 13700–13705 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yang, C., Comptom, M. M. & Yang, P. Dimeric novel HSP40 is incorporated into the radial spoke complex during the assembly process in flagella. Mol. Biol. Cell 16, 637–648 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Yang, C., Owen, H. A. & Yang, P. Dimeric heat shock protein 40 binds radial spokes for generating coupled power strokes and recovery strokes of 9 + 2 flagella. J. Cell Biol. 180, 403–415 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Polier, S., Dragovic, Z., Hartl, F. U. & Bracher, A. Structural basis for the cooperation of Hsp70 and Hsp110 chaperones in protein folding. Cell 133, 1068–1079 (2008). Provides insight into the action of HSP110s as HSP70 nucleotide exchange factors.

    Article  CAS  PubMed  Google Scholar 

  87. Schuermann, J. P. et al. Structure of the Hsp110:Hsc70 nucleotide exchange machine. Mol. Cell 31, 232–243 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Cyr, D. M. Swapping nucleotides, tuning Hsp70. Cell 133, 945–947 (2008). An overview on the various modes of action of the different NEFs on HSP70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Schroder, H., Langer, T., Hartl, F. U. & Bukau, B. DnaK, DnaJ and GrpE form a cellular chaperone machinery capable of repairing heat-induced protein damage. EMBO J. 12, 4137–4144 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ang, D., Chandrasekhar, G. N., Zylicz, M. & Georgopoulos, C. Escherichia coli grpE gene codes for heat shock protein B25.3, essential for both lambda DNA replication at all temperatures and host growth at high temperature. J. Bacteriol. 167, 25–29 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Laloraya, S., Dekker, P. J., Voos, W., Craig, E. A. & Pfanner, N. Mitochondrial GrpE modulates the function of matrix Hsp70 in translocation and maturation of preproteins. Mol. Cell. Biol. 15, 7098–7105 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Westermann, B., Prip-Buus, C., Neupert, W. & Schwarz, E. The role of the GrpE homologue, Mge1p, in mediating protein import and protein folding in mitochondria. EMBO J. 14, 3452–3460 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Tyson, J. R. & Stirling, C. J. LHS1 and SIL1 provide a lumenal function that is essential for protein translocation into the endoplasmic reticulum. EMBO J. 19, 6440–6452 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kabani, M., Beckerich, J. M. & Brodsky, J. L. Nucleotide exchange factor for the yeast Hsp70 molecular chaperone Ssa1p. Mol. Cell Biol. 22, 4677–4689 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Boisrame, A., Kabani, M., Beckerich, J. M., Hartmann, E. & Gaillardin, C. Interaction of Kar2p and Sls1p is required for efficient co-translational translocation of secreted proteins in the yeast Yarrowia lipolytica. J. Biol. Chem. 273, 30903–30908 (1998).

    Article  CAS  PubMed  Google Scholar 

  96. Chung, K. T., Shen, Y. & Hendershot, L. M. BAP, a mammalian BiP-associated protein, is a nucleotide exchange factor that regulates the ATPase activity of BiP. J. Biol. Chem. 277, 47557–47563 (2002).

    Article  CAS  PubMed  Google Scholar 

  97. Travers, K. J. et al. Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell 101, 249–258 (2000).

    Article  CAS  PubMed  Google Scholar 

  98. Mukai, H. et al. Isolation and characterization of SSE1 and SSE2, new members of the yeast HSP70 multigene family. Gene 132, 57–66 (1993).

    Article  CAS  PubMed  Google Scholar 

  99. Oh, H. J., Easton, D., Murawski, M., Kaneko, Y. & Subjeck, J. R. The chaperoning activity of hsp110. Identification of functional domains by use of targeted deletions. J. Biol. Chem. 274, 15712–15718 (1999).

    Article  CAS  PubMed  Google Scholar 

  100. Dragovic, Z., Broadley, S. A., Shomura, Y., Bracher, A. & Hartl, F. U. Molecular chaperones of the Hsp110 family act as nucleotide exchange factors of Hsp70s. EMBO J. 25, 2519–2528 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Raviol, H., Sadlish, H., Rodriguez, F., Mayer, M. P. & Bukau, B. Chaperone network in the yeast cytosol: Hsp110 is revealed as an Hsp70 nucleotide exchange factor. EMBO J. 25, 2510–2518 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Shaner, L., Sousa, R. & Morano, K. A. Characterization of Hsp70 binding and nucleotide exchange by the yeast Hsp110 chaperone Sse1. Biochemistry 45, 15075–15084 (2006).

    Article  CAS  PubMed  Google Scholar 

  103. Takayama, S. & Reed, J. C. Molecular chaperone targeting and regulation by BAG family proteins. Nature Cell Biol. 3, 237–241 (2001). An overview on the Bag family of proteins, which were the first mammalian NEFs to be identified.

    Article  CAS  Google Scholar 

  104. Alberti, S. et al. Ubiquitylation of BAG-1 suggests a novel regulatory mechanism during the sorting of chaperone substrates to the proteasome. J. Biol. Chem. 277, 45920–45927 (2002).

    Article  CAS  PubMed  Google Scholar 

  105. Luders, J., Demand, J. & Hohfeld, J. The ubiquitin-related BAG-1 provides a link between the molecular chaperones Hsc70/Hsp70 and the proteasome. J. Biol. Chem. 275, 4613–4617 (2000).

    Article  CAS  PubMed  Google Scholar 

  106. Carra, S., Seguin, S. J., Lambert, H. & Landry, J. HspB8 chaperone activity toward poly(Q)-containing proteins depends on its association with Bag3, a stimulator of macroautophagy. J. Biol. Chem. 283, 1437–1444 (2008).

    Article  CAS  PubMed  Google Scholar 

  107. Carra, S., Brunsting, J. F., Lambert, H., Landry, J. & Kampinga, H. H. HspB8 participates in protein quality control by a non-chaperone-like mechanism that requires eIF2α phosphorylation. J. Biol. Chem. 284, 5523–5532 (2009).

    Article  PubMed  Google Scholar 

  108. Teter, S. A. et al. Polypeptide flux through bacterial Hsp70: DnaK cooperates with trigger factor in chaperoning nascent chains. Cell 97, 755–765 (1999).

    Article  CAS  PubMed  Google Scholar 

  109. Kerner, M. J. et al. Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli. Cell 122, 209–220 (2005).

    Article  CAS  PubMed  Google Scholar 

  110. Wandinger, S. K., Richter, K. & Buchner, J. The Hsp90 chaperone machinery. J. Biol. Chem. 283, 18473–18477 (2008).

    Article  CAS  PubMed  Google Scholar 

  111. Smith, D. F. & Toft, D. O. Minireview: the intersection of steroid receptors with molecular chaperones: observations and questions. Mol. Endocrinol. 22, 2229–2240 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Haslbeck, M., Franzmann, T., Weinfurtner, D. & Buchner, J. Some like it hot: the structure and function of small heat-shock proteins. Nature Struct. Mol. Biol. 12, 842–846 (2005).

    Article  CAS  Google Scholar 

  113. Liberek, K., Lewandowska, A. & Zietkiewicz, S. Chaperones in control of protein disaggregation. EMBO J. 27, 328–335 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Hohfeld, J., Minami, Y. & Hartl, F. U. Hip, a novel cochaperone involved in the eukaryotic Hsc70/Hsp40 reaction cycle. Cell 83, 589–598 (1995).

    Article  CAS  PubMed  Google Scholar 

  115. Prapapanich, V., Chen, S., Toran, E. J., Rimerman, R. A. & Smith, D. F. Mutational analysis of the hsp70-interacting protein Hip. Mol. Cell Biol. 16, 6200–6207 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ziegelhoffer, T., Johnson, J. L. & Craig, E. A. Chaperones get Hip. Protein folding. Curr. Biol. 6, 272–275 (1996).

    Article  CAS  PubMed  Google Scholar 

  117. Gebauer, M., Zeiner, M. & Gehring, U. Proteins interacting with the molecular chaperone hsp70/hsc70: physical associations and effects on refolding activity. FEBS Lett. 417, 109–113 (1997).

    Article  CAS  PubMed  Google Scholar 

  118. Nollen, E. A. et al. Modulation of in vivo HSP70 chaperone activity by Hip and Bag-1. J. Biol. Chem. 276, 4677–4682 (2001).

    Article  CAS  PubMed  Google Scholar 

  119. Nelson, G. M. et al. The heat shock protein 70 cochaperone hip enhances functional maturation of glucocorticoid receptor. Mol. Endocrinol. 18, 1620–1630 (2004).

    Article  CAS  PubMed  Google Scholar 

  120. Ballinger, C. A. et al. Identification of CHIP, a novel tetratricopeptide repeat-containing protein that interacts with heat shock proteins and negatively regulates chaperone functions. Mol. Cell. Biol. 19, 4535–4545 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Zhang, M. et al. Chaperoned ubiquitylation — crystal structures of the CHIP U box E3 ubiquitin ligase and a CHIP-Ubc13-Uev1a complex. Mol. Cell 20, 525–538 (2005).

    Article  CAS  PubMed  Google Scholar 

  122. Connell, P. et al. The co-chaperone CHIP regulates protein triage decisions mediated by heat-shock proteins. Nature Cell Biol. 3, 93–96 (2001).

    Article  CAS  PubMed  Google Scholar 

  123. Meacham, G. C., Patterson, C., Zhang, W., Younger, J. M. & Cyr, D. M. The Hsc70 co-chaperone CHIP targets immature CFTR for proteasomal degradation. Nature Cell Biol. 3, 100–105 (2001).

    Article  CAS  PubMed  Google Scholar 

  124. Xu, W. et al. Chaperone-dependent E3 ubiquitin ligase CHIP mediates a degradative pathway for c-ErbB2/Neu. Proc. Natl Acad. Sci. USA 99, 12847–12852 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Rosser, M. F., Washburn, E., Muchowski, P. J., Patterson, C. & Cyr, D. M. Chaperone functions of the E3 ubiquitin ligase CHIP. J. Biol. Chem. 282, 22267–22277 (2007).

    Article  CAS  PubMed  Google Scholar 

  126. Kampinga, H. H., Kanon, B., Salomons, F. A., Kabakov, A. E. & Patterson, C. Overexpression of the cochaperone CHIP enhances Hsp70-dependent folding activity in mammalian cells. Mol. Cell Biol. 23, 4948–4958 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Marber, M. S. et al. Overexpression of the rat inducible 70-kD heat stress protein in a transgenic mouse increases the resistance of the heart to ischemic injury. J. Clin. Invest. 95, 1446–1456 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Radford, N. B. et al. Cardioprotective effects of 70-kDa heat shock protein in transgenic mice. Proc. Natl Acad. Sci. USA 93, 2339–2342 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Cummings, C. J. et al. Over-expression of inducible HSP70 chaperone suppresses neuropathology and improves motor function in SCA1 mice. Hum. Mol. Genet. 10, 1511–1518 (2001).

    Article  CAS  PubMed  Google Scholar 

  130. Hansson, O. et al. Overexpression of heat shock protein 70 in R6/2 Huntington's disease mice has only modest effects on disease progression. Brain Res. 970, 47–57 (2003).

    Article  CAS  PubMed  Google Scholar 

  131. Adachi, H. et al. Heat shock protein 70 chaperone overexpression ameliorates phenotypes of the spinal and bulbar muscular atrophy transgenic mouse model by reducing nuclear-localized mutant androgen receptor protein. J. Neurosci. 23, 2203–2211 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Jaattela, M. Over-expression of hsp70 confers tumorigenicity to mouse fibrosarcoma cells. Int. J. Cancer 60, 689–693 (1995).

    Article  CAS  PubMed  Google Scholar 

  133. Nylandsted, J. et al. Eradication of glioblastoma, and breast and colon carcinoma xenografts by Hsp70 depletion. Cancer Res. 62, 7139–7142 (2002).

    CAS  PubMed  Google Scholar 

  134. Ellis, R. J. & Hemmingsen, S. M. Molecular chaperones: proteins essential for the biogenesis of some macromolecular structures. Trends Biochem. Sci. 14, 339–342 (1989).

    Article  CAS  PubMed  Google Scholar 

  135. Bertelsen, E. B., Chang, L., Gestwicki, J. E. & Zuiderweg, E. R. Solution conformation of wild-type, E. coli Hsp70 (DnaK) chaperone complexed with ADP and substrate. Proc. Natl Acad. Sci. USA 106, 8471–8476 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Vogel, M., Bukau, B. & Mayer, M. P. Allosteric regulation of Hsp70 chaperones by a proline switch. Mol. Cell 21, 359–367 (2006).

    Article  CAS  PubMed  Google Scholar 

  137. Pellecchia, M., Szyperski, T., Wall, D., Georgopoulos, C. & Wuthrich, K. NMR structure of the J-domain and the Gly/Phe-rich region of the Escherichia coli DnaJ chaperone. J. Mol. Biol. 260, 236–250 (1996).

    Article  CAS  PubMed  Google Scholar 

  138. Caplan, A. J., Tsai, J., Casey, P. J. & Douglas, M. G. Farnesylation of YDJ1p is required for function at elevated growth temperatures in Saccharomyces cerevisiae. J. Biol. Chem. 267, 18890–18895 (1992).

    CAS  PubMed  Google Scholar 

  139. Flom, G. A., Lemieszek, M., Fortunato, E. A. & Johnson, J. L. Farnesylation of Ydj1 is required for in vivo interaction with Hsp90 client proteins. Mol. Biol. Cell 19, 5249–5258 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Cupp-Vickery, J. R. & Vickery, L. E. Crystal structure of Hsc20, a J-type co-chaperone from Escherichia coli. J. Mol. Biol. 304, 835–845 (2000).

    Article  CAS  PubMed  Google Scholar 

  141. Fuzery, A. K. et al. Solution structure of the iron-sulfur cluster cochaperone HscB and its binding surface for the iron-sulfur assembly scaffold protein IscU. Biochemistry 47, 9394–9404 (2008).

    Article  CAS  PubMed  Google Scholar 

  142. Andrew, A. J., Dutkiewicz, R., Knieszner, H., Craig, E. A. & Marszalek, J. Characterization of the interaction between the J-protein Jac1p and the scaffold for Fe-S cluster biogenesis, Isu1p. J. Biol. Chem. 281, 14580–14587 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

H.H.K.'s work on J proteins was funded by Senter Novem (IOP genomics grant IGE03018), the Prinses Beatrix Foundation (WAR05-0129) and the High Q foundation (Grant 0944). E.A.C.'s work was funded by the National Institutes of Health grants (GM27870 and GM31107) and the Muscular Dystrophy Association. The authors wish to thank J. Hageman for his detailed work on the human J proteins and help with the bioinformatics and M. Cheetham (UK) for valuable discussions on the functionality and nomenclature of the human J proteins.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

41580_2010_BFnrm2941_MOESM2_ESM.pdf

Supplementary information S1 Figure | Diversity in domain architecture of Hsp70-proteins (panel A) and Nucleotide Exchange Factors (panel B) from yeast (Saccharomyces cerevisiae) and Homo sapiens. (PDF 441 kb)

41580_2010_BFnrm2941_MOESM3_ESM.pdf

Supplementary information S2 Figure | Domain structure of yeast (A) and human (B) J-proteins: Extension of figure 3 with all individual J-proteins from Saccharomyces cerevisiae (A) and Homo Sapiens (B) and their most prominent domain features. (PDF 831 kb)

41580_2010_BFnrm2941_MOESM4_ESM.pdf

Supplementary information S3 Figure | Chaperone networks: Hsp70 core-machines can form partnerships with at least three other Hsp-families. (PDF 1458 kb)

Related links

Related links

DATABASES

PDB

1FPO

1XBL

2B26

2KHO

FURTHER INFORMATION

Harm H. Kampinga's homepage

Elizabeth A. Craig's homepage

Saccharomyces Genome Database

Glossary

Zinc finger

A small, functional, independently folded domain that requires the coordination of one or more zinc ions for structural stabilization. Zinc fingers vary widely in structure and can function in DNA and RNA binding, protein–protein interactions and membrane association.

ERAD

A pathway along which misfolded proteins are transported from the ER to the cytosol for proteasomal degradation.

Translocon

A complex of proteins that forms a channel in a membrane and is associated with the translocation of polypeptides from one cellular compartment to another.

PolyQ protein

A protein containing a tract of several Glu residues. In inheritable neurodegenerative disorders such as Huntington's disease, these Glu tracts are expanded, leading to disease-causing protein aggregation.

Histone deacetylase

An enzyme that removes acetyl groups from ε-N-acetyl lysines from histones and many other proteins. Acetylation (by histone acetyltransferases) and deacetylation is a common post-translational modification to regulate protein function.

Ubiquitin-interacting motif

A single α-helix motif oriented either parallel or antiparallel to the central β-strand that binds ubiquitin and can assist in protein degradation by the proteasome.

Ubiquitylation

The tagging of proteins with a small protein called ubiquitin by ubiquitin ligases. Tagging with multiple ubiquitin moieties leads to the binding of the tagged protein to the proteasome that will degrade it.

Protein-disulphide isomerase with thioredoxin domain

A domain that can catalyse the formation and breakage of disulphide bonds between Cys residues in proteins as they fold. The typical thioredoxin fold refers to a canonical four-stranded antiparallel β-sheet sandwiched between two α-helices.

Clathrin-coated vesicle

A vesicle surrounded by a polyhedral lattice of triskelion-shaped clathrin molecules that plays an important part in the selective sorting of cargo at the cell membrane, trans-Golgi network and endosomal compartments for multiple membrane traffic pathways.

Fe–S cluster

An ensemble of iron and sulphide centres found in various metalloproteins and crucial for the function of many proteins.They are best known for their role in oxidation-reduction reactions of mitochondrial electron transport, but they also have regulatory roles.

Spliceosome

A dynamic complex of specialized RNA and protein subunits that removes introns from a transcribed pre-mRNA segment (splicing).

Autophagy

A catabolic process involving the engulfment of (usually damaged) organelles and long-lived proteins or protein aggregates by double-membrane vesicles (autophagosomes) that fuse with lysosomes, where their contents are degraded by acidic lysosomal hydrolases.

E3 ubiquitin ligase

A protein that catalyses the attachment of multiple ubiquitin moieties onto a target, an already monoubiquitylated protein. Polyubiquitylation marks proteins for degradation by the proteasome.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kampinga, H., Craig, E. The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nat Rev Mol Cell Biol 11, 579–592 (2010). https://doi.org/10.1038/nrm2941

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2941

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing