Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

The mechanisms of kinesin motor motility: lessons from the monomeric motor KIF1A

Abstract

Most kinesins move processively along microtubules by using energy derived from ATP hydrolysis. Almost all of the intermediate structures of this ATPase reaction cycle have been solved for the monomeric kinesin 3 family motor KIF1A. Based on this structural information, we propose a common mechanism of kinesin motility, focusing on the regulation of kinesin motility through their interaction with microtubules and by their 'neck-linker' region, which connects their motor domain to cargo and kinesin partner heads.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure and motility models of KIF5 and KIF1A.
Figure 2: Atomic mechanism of KIF1A nucleotide exchange.
Figure 3: Three-step docking of the neck linker.
Figure 4: Structural model of KIF1A and its application to the hand-over-hand model for KIF5.

Similar content being viewed by others

References

  1. Hirokawa, N. & Noda, Y. Intracellular transport and kinesin superfamily proteins, KIFs: structure, function, and dynamics. Physiol. Rev. 88, 1089–1118 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Hirokawa, N., Noda, Y., Tanaka, Y. & Niwa, S. Kinesin superfamily motor proteins and intracellular transport. Nature Rev. Mol. Cell Biol. 10, 682–696 (2009).

    Article  CAS  Google Scholar 

  3. Aizawa, H., Sekine, Y., Takemura, R., Zhang, Z., Nangaku, M. & Hirokawa, N. Kinesin family in murine central nervous system. J. Cell Biol. 119, 1287–1296 (1992).

    Article  CAS  PubMed  Google Scholar 

  4. Miki, H., Setou, M., Kaneshiro, K. & Hirokawa, N. All kinesin superfamily protein, KIF, genes in mouse and human. Proc. Natl Acad. Sci. USA. 98, 7004–7011 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Miki, H., Okada, Y. & Hirokawa, N. Analysis of the kinesin superfamily: insights into structure and function. Trends Cell Biol. 2005 15, 467–476 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Lawrence, C. J. et al. A standardized kinesin nomenclature. J. Cell Biol. 1, 19–22 (2004).

    Article  Google Scholar 

  7. Moores, C. A. & Milligan, R. A. Lucky 13 – microtubule depolymerisation by kinesin-13 motors. J. Cell Sci. 119, 3905–3913 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Endow S. A. Determinants of molecular motor directionality. Nature Cell Biol. 6, E163–E167 (1999).

    Article  Google Scholar 

  9. Vale, R. D. et al., Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell 42, 39–50 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Brady, S. T. A novel brain ATPase with properties expected for the fast axonal transport motor. Nature 317, 73–75 (1985).

    Article  CAS  PubMed  Google Scholar 

  11. Okada, Y., Yamazaki, H., Sekine-Aizawa, Y. & Hirokawa, N. The neuron-specific kinesin superfamily protein KIF1A is a unique monomeric motor for anterograde axonal transport of synaptic vesicle precursors. Cell 81, 769–780 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Yonekawa, Y. et al. Defect in synaptic vesicle precursor transport and neuronal cell death in KIF1A motor protein-deficient mice. J. Cell Biol. 141, 431–441 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Niwa, S., Tanaka, Y. & Hirokawa, N. KIF1Bβ- and KIF1A-mediated axonal transport of presynaptic regulator Rab3 occurs in a GTP-dependent manner through DENN/MADD. Nature Cell Biol. 10, 1269–1279 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Hall, D. H. & Hedgecock, E. M. Kinesin-related gene unc-104 is required for axonal transport of synaptic vesicles in C. Elegans. Cell 65, 837–847 (1991).

    Article  CAS  PubMed  Google Scholar 

  15. Howard, J., Hudspeth, A. J. & Vale, R. D. Movement of microtubules by single kinesin molecules. Nature 342, 154–158 (1989).

    Article  CAS  PubMed  Google Scholar 

  16. Block, S. M., Goldstein, L. S. & Schnapp, B. J. Bead movement by single kinesin molecules studied with optical tweezers. Nature 348, 348–352 (1990).

    Article  CAS  PubMed  Google Scholar 

  17. Svoboda, K., Schmidt, C., F., Schnapp, B. J. & Block, S. M. Direct observation of kinesin stepping by optical trapping interferometry. Nature 365, 721–727 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. Hackney, D. D. Highly processive microtubule-stimulated ATP hydrolysis by dimeric kinesin head domains. Nature 377, 448–450 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Vale, R. D., Funatsu, T., Pierce, D. W., Romberg, L., Harada, Y. & Yanagida, T. Direct observation of single kinesin molecules moving along microtubules. Nature 380, 451–453 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Okada, Y. & Hirokawa, N. A processive single-headed motor: kinesin superfamily protein KIF1A. Science 283, 1152–1157 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Hackney, D. D. Evidence for alternating head catalysis by kinesin during microtubule-stimulated ATP hydrolysis Proc. Natl Acad. Sci. USA 91, 6865–6869 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hirokawa, N. et al. Submolecular domains of bovine brain kinesin identified by electron microscopy and monoclonal antibody decoration. Cell 56, 867–878 (1989).

    Article  CAS  PubMed  Google Scholar 

  23. Asbury, C. L., Fehr, A. N. & Block, S. M. Kinesin moves by an asymmetric hand-over-hand mechanism. Science 302, 2130–2134 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kaseda, K., Higuchi, H. & Hirose, K. Alternate fast and slow stepping of a heterodimeric kinesin molecule. Nature Cell Biol., 5, 1079–1082 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Yildiz, A., Tomishige, M., Vale, R. D. & Selvin, P. R. Kinesin walks hand-over-hand. Science 303, 676–678 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Okada, Y. & Hirokawa, N. Mechanism of the single-headed processivity: diffusional anchoring between the K-loop of kinesin and the C terminus of tubulin. Proc. Natl Acad. Sci. USA. 97, 640–645 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Okada, Y., Higuchi, H. & Hirokawa, N. Processivity of the single-headed kinesin KIF1A through biased binding to tubulin. Nature 424, 574–577 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Kapitein, L. C. et al. Microtubule cross-linking triggers the directional motility of kinesin-5. J. Cell Biol., 181, 421–428 (2008).

    Article  Google Scholar 

  29. Helenius, J., Brouhard, G., Kalaidzidis, Y., Dies, S. & Howard, J. The depolymerizing kinesin MCAK uses lattice diffusion to rapidly target microtubule ends. Nature 441, 115–119 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Ovechkina, Y., Wagenbach, M. & Wordeman, L. K-loop insertion restores microtubule depolymerizing activity of a “neck-less” MCAK mutant. J. Cell Biol. 159, 557–562 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kull, F. J., Sablin, E. P., Lau, R., Fletterick, R. J. & Vale, R. D. Crystal structure of the kinesin motor domain reveals a structural similarity to myosin. Nature 380, 550–555 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tomishige, M., Klopfenstein, D. R. & Vale, R. D. Conversion of Unc104/KIF1A kinesin into a processive motor after dimerization. Science 297, 2263–2267 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Hoeng, J. C. et al. High-resolution crystal structure and in vivo function of a kinesin-2 homologue in Giardia intestinalis. Mol. Biol. Cell 19, 3124–3137 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kikkawa, M. et al. Switch-based mechanism of kinesin motors. Nature 411, 439–445 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Turner, J. et al. Crystal structure of the mitotic spindle kinesin Eg5 reveals a novel conformation of the neck-linker. J. Biol. Chem. 276, 25496–25502 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Cochran, J. C. et al. ATPase cycle of the nonmotile kinesin NOD allows microtubule end tracking and drives chromosome movement. Cell 136, 110–122 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ogawa, T., Nitta, R., Okada, Y. & Hirokawa, N. A common mechanism for microtubule destabilizers — M type kinesin stabilize curling of the protofilament using the class-specific neck and loops. Cell 116, 591–602 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Sablin, E. P., Kull, F. J., Cooke, R., Vale, R. D. & Fletterick, R. J. Crystal structure of the motor domain of the kinesin-related motor ncd. Nature 380, 555–559 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. Nitta, R., Kikkawa, M., Okada, Y. & Hirokawa, N. KIF1A alternately uses two loops to bind microtubules. Science 305, 678–683 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Nitta, R., Okada, Y. & Hirokawa, N. Structural model for strain-dependent microtubule activation of Mg-ADP release from kinesin. Nature Struct. Mol. Biol. 15, 1067–1075 (2008).

    Article  CAS  Google Scholar 

  41. Kull, F. J. & Endow, S. A. Kinesin: switch I & II and the motor mechanism. J. Cell Sci. 115, 15–23 (2002).

    CAS  PubMed  Google Scholar 

  42. Sindelar, C. V. & Downing, K. H. The beginning of kinesin's force-generating cycle visualized at 9A resolution. J. Cell Biol. 177, 377–385 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hirose, K., Akimaru, E., Akiba, T., Endow, A. S. & Amos, L. A. Large conformational changes in a kinesin motor catalyzed by interaction with microtubules: Mol. Cell 23, 913–923 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kikkawa, M. & Hirokawa, N. High-resolution cryo-EM maps show the nucleotide binding pocket of KIF1A in open and closed conformations. EMBO J. 25, 4187–4194 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rice, S. et al. A structural change in the kinesin motor protein that drives motility. Nature 402, 778–784 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Thorn K. S., Ubersax J. A., Vale R. D. Engineering the processive run length of the kinesin motor. J. Cell Biol. 151, 1093–1100 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jiang, W., Stock, M. F., Li, X. & Hackney, D. D. Influence of kinesin neck domain on dimerization and ATPase kinetics. J. Biol. Chem. 272, 7626–7632 (1997).

    Article  CAS  PubMed  Google Scholar 

  48. Case, R. B., Rice, S., Hart, C. L., Ly, B. & Vale, R. D. Role of the kinesin neck linker and catalytic core in microtubule-based motility. Curr. Biol. 10, 157–160 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Rice, S. et al. Thermodynamic properties of the kinesin neck region docking to the catalytic core. Biophys. J. 84, 1844–1854 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Uemura, S. & Ishiwata, S. Loading direction regulates the affinity of ADP for kinesin. Nature Struct. Biol. 4, 308–311 (2003).

    Article  Google Scholar 

  51. Rosenfeld, S. S., Fordyce, P. M., Jefferson, G. M., King, P. H. & Block, S. M. Stepping and stretching. How kinesin uses internal strain to walk processively. J. Biol. Chem. 278, 18550–18556 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Hancock, W. O. & Howard, J. Kinesin's processivity results from mechanical and chemical coordination between the ATP hydrolysis cycles of the two motor domains. Proc. Natl. Acad. Sci. USA 96, 13147–13152 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Crevel, I. M. et al. What kinesin does at roadblocks: the coordination mechanism for molecular walking. EMBO J. 23, 23–32 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Schief, W. R., Clark, R. H., Crevenna, A. H. & Howard, J. Inhibition of kinesin motility by ADP and phosphate supports a hand-over-hand mechanism. Proc. Natl. Acad. Sci. USA 101, 1183–1188 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Klumpp, L. M., Hoenger, A. & Gilbert, S. P. Kinesin's second step. Proc. Natl. Acad. Sci. USA 101, 3444–3449 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Alonso, M. C. et al. An ATP gate controls tubulin binding by the tethered head of kinesin-1. Science 316, 120–123 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mori, T., Vale, R. D. & Tomishige M. How kinesin waits between steps. Nature 450, 750–754 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Guydosh, N. R. & Block, S. M. Direct observation of the binding state of the kinesin head to the microtubule. Nature 461, 125–128 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Asenjo, A. B. & Sosa, H. A mobile kinesin-head intermediate during the ATP-waiting state. Proc. Natl. Acad. Sci. USA 106, 5657–5662 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yildiz A., Tomishige M., Gennerich A. and Vale R. D. Intramolecular strain coordinates kinesin stepping behavior along microtubules. Cell 134, 1030–1041 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Keiko Hirose for cryo-electron microscopy maps of kar3 and members of the Hirokawa laboratory for assistance and discussion. This work was supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan, Grant-in-Aid for Specially Promoted Research to N.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobutaka Hirokawa.

Supplementary information

Supplementary information S1 (movie) | Overview of the atomic structure of kinesin motor domain. (SWF 8384 kb)

41580_2009_BFnrm2807_MOESM2_ESM.pdf

Supplementary information S2 (movie) | Conformation changes of KIF1A during the ATPase reaction cycle. (SWF 583 kb)

41580_2009_BFnrm2807_MOESM4_ESM.pdf

Supplementary information S3 (movie) | Coupling between switch I and switch II during the ATPase cycle. (SWF 7400 kb)

41580_2009_BFnrm2807_MOESM6_ESM.pdf

41580_2009_BFnrm2807_MOESM7_ESM.pdf

Supplementary information S4 (figure) | Conserved role of loop L7 as the trigger for the microtubule activation of Mg-ADP release. (PDF 453 kb)

Supplementary information S5 (movie) | Structure-based model of the 'ATP gating' of dimeric kinesin. (MOV 6316 kb)

41580_2009_BFnrm2807_MOESM9_ESM.pdf

Supplementary information S6 (movie) | Structural model of the monomeric motility of KIF1A. (MOV 6823 kb)

41580_2009_BFnrm2807_MOESM11_ESM.pdf

Related links

Related links

FURTHER INFORMATION

Nobutaka Hirokawa's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirokawa, N., Nitta, R. & Okada, Y. The mechanisms of kinesin motor motility: lessons from the monomeric motor KIF1A. Nat Rev Mol Cell Biol 10, 877–884 (2009). https://doi.org/10.1038/nrm2807

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2807

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing