Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Modelling and analysis of gene regulatory networks

Key Points

  • By combining biological knowledge and experimental data with judicious computational modelling, regulatory networks can be dissected, and analysis results can shed light on life and disease mechanisms.

  • Logical models provide a simplified, yet useful, approach that copes well with partial knowledge. They have been used successfully to identify specific regulatory interactions.

  • Continuous models can describe a wide range of phenomena and can be readily compared to experimental measurements.

  • Single-molecule level models simulate network behaviour at the resolution of individual molecular interactions. They have been successfully applied to regulatory networks that exhibit stochastic behaviour.

  • The advantages and disadvantages of the different approaches are discussed, along with future goals of computational modelling.

Abstract

Gene regulatory networks have an important role in every process of life, including cell differentiation, metabolism, the cell cycle and signal transduction. By understanding the dynamics of these networks we can shed light on the mechanisms of diseases that occur when these cellular processes are dysregulated. Accurate prediction of the behaviour of regulatory networks will also speed up biotechnological projects, as such predictions are quicker and cheaper than lab experiments. Computational methods, both for supporting the development of network models and for the analysis of their functionality, have already proved to be a valuable research tool.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Logical models.
Figure 2: Ordinary differential equation model.
Figure 3: Regulated flux balance analysis model.
Figure 4: Single-molecule level model.
Figure 5: A schematic comparison of regulatory network models.

Similar content being viewed by others

References

  1. Weindruch, R. & Walford, R. L. The Retardation Of Aging And Disease By Dietary Restriction (Thomas, Springfield, 1988).

    Google Scholar 

  2. Glass, L. & Kauffman, S. A. The logical analysis of continuous, non-linear biochemical control networks. J. Theor. Biol. 39, 103–129 (1973).

    CAS  PubMed  Google Scholar 

  3. Thomas, R. Boolean formalization of genetic control circuits. J. Theor. Biol. 42, 563–585 (1973).

    CAS  PubMed  Google Scholar 

  4. Davidson, E. H. et al. A genomic regulatory network for development. Science 295, 1669–1678 (2002). A highly detailed reconstruction of the regulatory network that controls the first 24 hours of sea urchin embryo development.

    CAS  PubMed  Google Scholar 

  5. Smith, J., Theodoris, C. & Davidson, E. H. A gene regulatory network subcircuit drives a dynamic pattern of gene expression. Science 318, 794–797 (2007).

    CAS  PubMed  Google Scholar 

  6. Kauffman, S. A. The Origins Of Order: Self-Organization And Selection In Evolution (Oxford University Press, Oxford, 1993). An accessible description of Kauffman's work, including the Boolean network model and its analysis.

    Google Scholar 

  7. Kauffman, S., Peterson, C., Samuelsson, B. & Troein, C. Random Boolean network models and the yeast transcriptional network. Proc. Natl Acad. Sci. USA 100, 14796–14799 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Li, F., Long, T., Lu, Y., Ouyang, Q. & Tang, C. The yeast cell-cycle network is robustly designed. Proc. Natl Acad. Sci. USA 101, 4781–4786 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. L ähdesmäki, H., Shmulevich, I. & Yli-Harja, O. On learning gene regulatory networks under the Boolean network model. Machine Learning 52, 147–167 (2003).

    Google Scholar 

  10. Akutsu, T., Miyano, S. & Kuhara, S. Identification of genetic networks from a small number of gene expression patterns under the Boolean network model. Pac Symp. Biocomput., 17–28 (1999).

  11. Spellman, P. T. et al. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell 9, 3273–3297 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Shmulevich, I., Dougherty, E. R., Kim, S. & Zhang, W. Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks. Bioinformatics 18, 261–274 (2002).

    CAS  PubMed  Google Scholar 

  13. Shmulevich, I., Gluhovsky, I., Hashimoto, R. F., Dougherty, E. R. & Zhan, W. Steady-state analysis of genetic regulatory networks modelled by probabilistic Boolean networks. Comp. Funct. Genomics 4, 601–608 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Bhattacharya, R. N. & Majumdar, M. Random Dynamical Systems: Theory And Applications (Cambridge University Press, Cambridge, 2007).

    Google Scholar 

  15. Gilks, W. R., Richardson, S. & Spiegelhalter, D. J. Markov Chain Monte Carlo In Practice (Chapman & Hall, Boca Raton, 1998).

    Google Scholar 

  16. Gat-Viks, I., Tanay, A. & Shamir, R. Modeling and analysis of heterogeneous regulation in biological networks. J. Comput. Biol. 11, 1034–1049 (2004).

    CAS  PubMed  Google Scholar 

  17. Gat-Viks, I., Tanay, A., Raijman, D. & Shamir, R. A probabilistic methodology for integrating knowledge and experiments on biological networks. J. Comput. Biol. 13, 165–181 (2006). An exposition of the MetaReg methodology, including the probabilistic layer.

    CAS  PubMed  Google Scholar 

  18. Kschischang, F. R., Frey, B. J. & Loeliger, H. A. Factor graphs and the sum-product algorithm. IEEE Trans. Info. Theory 47, 498–519 (2001).

    Google Scholar 

  19. MacKay, D. J. C. Introduction To Monte Carlo Methods In Learning In Graphical Models (ed. Jordan, M. I.) (Kluwer Academic Press, New York, 1998).

    Google Scholar 

  20. Gat-Viks, I. & Shamir, R. Refinement and expansion of signaling pathways: the osmotic response network in yeast. Genome Res. 17, 358–367 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Petri, C. A. Kommunikation mit Automaten. Schriften des Instituts für Instrumentelle Mathematik (1962).

    Google Scholar 

  22. Koch, I., Schueler, M. & Heiner, M. STEPP — search tool for exploration of Petri net paths: a new tool for Petri net-based path analysis in biochemical networks. In Silico Biol. 5, 129–137 (2005).

    CAS  PubMed  Google Scholar 

  23. Reddy, V. N., Liebman, M. N. & Mavrovouniotis, M. L. Qualitative analysis of biochemical reaction systems. Comput. Biol. Med. 26, 9–24 (1996).

    CAS  PubMed  Google Scholar 

  24. Kuffner, R., Zimmer, R. & Lengauer, T. Pathway analysis in metabolic databases via differential metabolic display (DMD). Bioinformatics 16, 825–836 (2000).

    CAS  PubMed  Google Scholar 

  25. Chaouiya, C., Remy, E., Ruet, P. & Thieffry, D. in Proceedings of the 25th International Conference on Applications and Theory of Petri Nets (eds Cortadella, J. & Reisig, W.) (Springer, Berlin, 2004).

    Google Scholar 

  26. Simao, E., Remy, E., Thieffry, D. & Chaouiya, C. Qualitative modelling of regulated metabolic pathways: application to the tryptophan biosynthesis in E. coli. Bioinformatics 21, 190–196 (2005).

    Google Scholar 

  27. Steggles, L. J., Banks, R., Shaw, O. & Wipat, A. Qualitatively modelling and analysing genetic regulatory networks: a Petri net approach. Bioinformatics 23, 336–343 (2007).

    CAS  PubMed  Google Scholar 

  28. Peterson, J. Petri Net Theory and the Modeling of Systems (Prentice Hall PTR, New Jersey, 1981).

    Google Scholar 

  29. Pearl, J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference (Morgan Kaufmann, San Francisco, 1988). An excellent source on the foundation of probabilistic inference.

    Google Scholar 

  30. Segal, E. et al. Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nature Genet. 34, 166–176 (2003).

    CAS  PubMed  Google Scholar 

  31. Friedman, N. Inferring cellular networks using probabilistic graphical models. Science 303, 799–805 (2004).

    CAS  PubMed  Google Scholar 

  32. Friedman, N., Linial, M., Nachman, I. & Pe'er, D. Using Bayesian networks to analyze expression data. J. Comput. Biol. 7, 601–620 (2000). A pioneering work that describes the use of Bayesian networks for recovering regulatory interactions from experimental data.

    CAS  PubMed  Google Scholar 

  33. Yeang, C. H., Ideker, T. & Jaakkola, T. Physical network models. J. Comput. Biol. 11, 243–262 (2004).

    CAS  PubMed  Google Scholar 

  34. Yeang, C. H. & Vingron, M. A joint model of regulatory and metabolic networks. BMC Bioinformatics 7, 332 (2006).

    PubMed  PubMed Central  Google Scholar 

  35. Lee, T. I. et al. Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298, 799–804 (2002).

    CAS  PubMed  Google Scholar 

  36. Sauer, U. et al. Physiology and metabolic fluxes of wild-type and riboflavin-producing Bacillus subtilis. Appl. Environ. Microbiol. 62, 3687–3696 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Ness, S. A. Basic microarray analysis: strategies for successful experiments. Methods Mol. Biol. 316, 13–33 (2006).

    PubMed  Google Scholar 

  38. Kingsmore, S. F. Multiplexed protein measurement: technologies and applications of protein and antibody arrays. Nature Rev. Drug Discov. 5, 310–320 (2006).

    CAS  Google Scholar 

  39. Hellerstein, M. K. In vivo measurement of fluxes through metabolic pathways: the missing link in functional genomics and pharmaceutical research. Annu. Rev. Nutr. 23, 379–402 (2003).

    CAS  PubMed  Google Scholar 

  40. Yeung, M. K., Tegner, J. & Collins, J. J. Reverse engineering gene networks using singular value decomposition and robust regression. Proc. Natl Acad. Sci. USA 99, 6163–6168 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Golub, G. H. & Van Loan, C. F. Matrix computations (Johns Hopkins University Press, Maryland, 1996).

    Google Scholar 

  42. Weaver, D. C., Workman, C. T. & Stormo, G. D. Modeling regulatory networks with weight matrices. Pac Symp. Biocomput., 112–123 (1999).

  43. Bansal, M., Gatta, G. D. & di Bernardo, D. Inference of gene regulatory networks and compound mode of action from time course gene expression profiles. Bioinformatics 22, 815–822 (2006).

    CAS  PubMed  Google Scholar 

  44. Dasika, M. S., Gupta, A. & Maranas, C. D. A mixed integer linear programming (MILP) framework for inferring time delay in gene regulatory networks. Pac Symp. Biocomput, 474–485 (2004).

  45. Nachman, I., Regev, A. & Friedman, N. Inferring quantitative models of regulatory networks from expression data. Bioinformatics 20, 248–256 (2004).

    Google Scholar 

  46. Klipp, E. Systems Biology In Practice: Concepts, Implementation And Application (Wiley-VCH, Weinheim, 2005). Explains basic concepts in modelling biological networks and provides an excellent introduction for the use of ODEs.

    Google Scholar 

  47. Friedman, N., Murphy, K. & Russell, S. in Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence (eds Cooper, G. F. & Moral, S.) 129–138 (Morgan Kaufmann, San Francisco, 1998).

    Google Scholar 

  48. Kim, S. Y., Imoto, S. & Miyano, S. Inferring gene networks from time series microarray data using dynamic Bayesian networks. Brief Bioinform. 4, 228–235 (2003).

    CAS  PubMed  Google Scholar 

  49. Shamir, R. & Tanay, A. in RECOMB'03 (ACM, Berlin, 2003).

    Google Scholar 

  50. Pan, Y., Durfee, T., Bockhorst, J. & Craven, M. Connecting quantitative regulatory-network models to the genome. Bioinformatics 23, 367–376 (2007).

    Google Scholar 

  51. Li, Z., Shaw, S. M., Yedwabnick, M. J. & Chan, C. Using a state-space model with hidden variables to infer transcription factor activities. Bioinformatics 22, 747–754 (2006).

    PubMed  Google Scholar 

  52. Segal, E., Raveh-Sadka, T., Schroeder, M., Unnerstall, U. & Gaul, U. Predicting expression patterns from regulatory sequence in Drosophila segmentation. Nature 451, 535–540 (2008).

    CAS  PubMed  Google Scholar 

  53. Goodwin, B. C. Temporal Organization In Cells; A Dynamic Theory Of Cellular Control Processes (Academic Press, New York, 1963).

    Google Scholar 

  54. Li, S., Brazhnik, P., Sobral, B. & Tyson, J. J. A quantitative study of the division cycle of Caulobacter crescentus stalked cells. PLoS Comput. Biol. 4, e9 (2008).

    PubMed  PubMed Central  Google Scholar 

  55. McAdams, H. H. & Shapiro, L. A bacterial cell-cycle regulatory network operating in time and space. Science 301, 1874–1877 (2003).

    CAS  PubMed  Google Scholar 

  56. Laub, M. T., McAdams, H. H., Feldblyum, T., Fraser, C. M. & Shapiro, L. Global analysis of the genetic network controlling a bacterial cell cycle. Science 290, 2144–2148 (2000).

    CAS  PubMed  Google Scholar 

  57. Holtzendorff, J. et al. Oscillating global regulators control the genetic circuit driving a bacterial cell cycle. Science 304, 983–987 (2004).

    CAS  PubMed  Google Scholar 

  58. Biondi, E. G. et al. Regulation of the bacterial cell cycle by an integrated genetic circuit. Nature 444, 899–904 (2006).

    CAS  PubMed  Google Scholar 

  59. Chen, K. C. et al. Integrative analysis of cell cycle control in budding yeast. Mol. Biol. Cell 15, 3841–3862 (2004). An ODE model for the yeast cell-cycle regulatory network that is supported by phenotypes of more than 100 mutant strains.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Locke, J. C. et al. Extension of a genetic network model by iterative experimentation and mathematical analysis. Mol. Syst. Biol. 1, 0013 (2005).

    PubMed  Google Scholar 

  61. Klipp, E., Nordlander, B., Kruger, R., Gennemark, P. & Hohmann, S. Integrative model of the response of yeast to osmotic shock. Nature Biotechnol. 23, 975–982 (2005).

    CAS  Google Scholar 

  62. Gebert, J., Radde, N. & Weber, G. Modeling gene regulatory networks with piecewise linear differential equations. Eur. J. Oper. Res. 181, 1148 (2007).

    Google Scholar 

  63. Ropers, D., de Jong, H., Page, M., Schneider, D. & Geiselmann, J. Qualitative simulation of the carbon starvation response in Escherichia coli. Biosystems 84, 124–152 (2006).

    CAS  PubMed  Google Scholar 

  64. Mèuller-Hill, B. The lac Operon: A Short History Of A Genetic Paradigm (Walter de Gruyter, Berlin, 1996).

    Google Scholar 

  65. Covert, M. W., Schilling, C. H. & Palsson, B. Regulation of gene expression in flux balance models of metabolism. J. Theor. Biol. 213, 73–88 (2001).

    CAS  PubMed  Google Scholar 

  66. Kauffman, K. J., Prakash, P. & Edwards, J. S. Advances in flux balance analysis. Curr. Opin. Biotechnol. 14, 491–496 (2003).

    CAS  PubMed  Google Scholar 

  67. Palsson, B. Ø. Systems Biology: Properties Of Reconstructed Networks (Cambridge University Press, New York, 2006). An excellent book about the study of biological networks by one of the leading researchers in this field.

    Google Scholar 

  68. Edwards, J. S., Covert, M. & Palsson, B. Metabolic modelling of microbes: the flux-balance approach. Environ. Microbiol 4, 133–140 (2002).

    PubMed  Google Scholar 

  69. Beg, Q. K. et al. Intracellular crowding defines the mode and sequence of substrate uptake by Escherichia coli and constrains its metabolic activity. Proc. Natl Acad. Sci. USA 104, 12663–12668 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Duarte, N. C., Herrgard, M. J. & Palsson, B. O. Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model. Genome Res. 14, 1298–1309 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Resendis-Antonio, O., Reed, J. L., Encarnacion, S., Collado-Vides, J. & Palsson, B. O. Metabolic reconstruction and modeling of nitrogen fixation in Rhizobium etli. PLoS Comput. Biol. 3, 1887–1895 (2007).

    CAS  PubMed  Google Scholar 

  72. Feist, A. M. et al. A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol. Syst. Biol. 3, 121 (2007).

    PubMed  PubMed Central  Google Scholar 

  73. Papin, J. A., Price, N. D., Edwards, J. S. & Palsson, B. B. The genome-scale metabolic extreme pathway structure in Haemophilus influenzae shows significant network redundancy. J. Theor. Biol. 215, 67–82 (2002).

    CAS  PubMed  Google Scholar 

  74. Covert, M. W. & Palsson, B. O. Transcriptional regulation in constraints-based metabolic models of Escherichia coli. J. Biol. Chem. 277, 28058–28064 (2002).

    CAS  PubMed  Google Scholar 

  75. Covert, M. W., Knight, E. M., Reed, J. L., Herrgard, M. J. & Palsson, B. O. Integrating high-throughput and computational data elucidates bacterial networks. Nature 429, 92–96 (2004). A large-scale model of E. coli metabolic regulation that uses quantitative metabolic flux values.

    CAS  PubMed  Google Scholar 

  76. Barrett, C. L. & Palsson, B. O. Iterative reconstruction of transcriptional regulatory networks: an algorithmic approach. PLoS Comput. Biol. 2, e52 (2006).

    PubMed  PubMed Central  Google Scholar 

  77. Ideker, T. E., Thorsson, V. & Karp, R. M. Discovery of regulatory interactions through perturbation: inference and experimental design. Pac Symp. Biocomput, 305–316 (2000).

  78. Yeang, C. H. et al. Validation and refinement of gene-regulatory pathways on a network of physical interactions. Genome Biol. 6, R62 (2005).

    PubMed  PubMed Central  Google Scholar 

  79. Herrgard, M. J., Lee, B. S., Portnoy, V. & Palsson, B. O. Integrated analysis of regulatory and metabolic networks reveals novel regulatory mechanisms in Saccharomyces cerevisiae. Genome Res. 16, 627–635 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Shlomi, T., Eisenberg, Y., Sharan, R. & Ruppin, E. A genome-scale computational study of the interplay between transcriptional regulation and metabolism. Mol. Syst. Biol. 3, 101 (2007).

    PubMed  PubMed Central  Google Scholar 

  81. Gianchandani, E. P., Papin, J. A., Price, N. D., Joyce, A. R. & Palsson, B. O. Matrix formalism to describe functional states of transcriptional regulatory systems. PLoS Comput. Biol. 2, e101 (2006).

    PubMed  PubMed Central  Google Scholar 

  82. McAdams, H. H. & Arkin, A. It's a noisy business! Genetic regulation at the nanomolar scale. Trends Genet. 15, 65–69 (1999).

    CAS  PubMed  Google Scholar 

  83. Ross, I. L., Browne, C. M. & Hume, D. A. Transcription of individual genes in eukaryotic cells occurs randomly and infrequently. Immunol. Cell Biol. 72, 177–185 (1994).

    CAS  PubMed  Google Scholar 

  84. Bae, K., Lee, C., Hardin, P. E. & Edery, I. dCLOCK is present in limiting amounts and likely mediates daily interactions between the dCLOCK–CYC transcription factor and the PER–TIM complex. J. Neurosci. 20, 1746–1753 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Guptasarma, P. Does replication-induced transcription regulate synthesis of the myriad low copy number proteins of Escherichia coli? Bioessays 17, 987–997 (1995).

    CAS  PubMed  Google Scholar 

  86. Bailone, A., Levine, A. & Devoret, R. Inactivation of prophage λ repressor in vivo. J. Mol. Biol. 131, 553–572 (1979).

    CAS  PubMed  Google Scholar 

  87. Shea, M. A. & Ackers, G. K. The OR control system of bacteriophage λ. A physical-chemical model for gene regulation. J. Mol. Biol. 181, 211–230 (1985).

    CAS  PubMed  Google Scholar 

  88. Golding, I., Paulsson, J., Zawilski, S. M. & Cox, E. C. Real-time kinetics of gene activity in individual bacteria. Cell 123, 1025–1036 (2005).

    CAS  PubMed  Google Scholar 

  89. Ozbudak, E. M., Thattai, M., Kurtser, I., Grossman, A. D. & van Oudenaarden, A. Regulation of noise in the expression of a single gene. Nature Genet. 31, 69–73 (2002).

    CAS  PubMed  Google Scholar 

  90. Raj, A., Peskin, C. S., Tranchina, D., Vargas, D. Y. & Tyagi, S. Stochastic mRNA synthesis in mammalian cells. PLoS Biol. 4, e309 (2006).

    PubMed  PubMed Central  Google Scholar 

  91. Cai, L., Friedman, N. & Xie, X. S. Stochastic protein expression in individual cells at the single molecule level. Nature 440, 358–362 (2006).

    CAS  PubMed  Google Scholar 

  92. Yu, J., Xiao, J., Ren, X., Lao, K. & Xie, X. S. Probing gene expression in live cells, one protein molecule at a time. Science 311, 1600–1603 (2006).

    CAS  PubMed  Google Scholar 

  93. Gillespie, D. T. Stochastic simulation of chemical kinetics. Annu. Rev. Phys. Chem. 58, 35–55 (2007).

    CAS  PubMed  Google Scholar 

  94. McAdams, H. H. & Arkin, A. Stochastic mechanisms in gene expression. Proc. Natl Acad. Sci. USA 94, 814–819 (1997). McAdams and Arkin describe their modelling methodology, which uses Gillespie's SSA, and present simulation results of a simple system that exhibits protein bursts.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Gillespie, D. A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comp. Phys. 22, 403–434 (1976). Gillespie presents his SSA, the understanding of which is of major importance for computational modelling.

    CAS  Google Scholar 

  96. Gillespie, D. Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81, 2340–2361 (1977).

    CAS  Google Scholar 

  97. Halford, S. E. & Marko, J. F. How do site-specific DNA-binding proteins find their targets? Nucleic Acids Res. 32, 3040–3052 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Terry, L. J., Shows, E. B. & Wente, S. R. Crossing the nuclear envelope: hierarchical regulation of nucleocytoplasmic transport. Science 318, 1412–1416 (2007).

    CAS  PubMed  Google Scholar 

  99. Rapoport, T. A., Jungnickel, B. & Kutay, U. Protein transport across the eukaryotic endoplasmic reticulum and bacterial inner membranes. Annu. Rev. Biochem. 65, 271–303 (1996).

    CAS  PubMed  Google Scholar 

  100. Gonze, D. & Goldbeter, A. Circadian rhythms and molecular noise. Chaos 16, 026110 (2006).

    PubMed  Google Scholar 

  101. Niemitalo, O. et al. Modelling of translation of human protein disulfide isomerase in Escherichia coli — a case study of gene optimisation. J. Biotechnol. 120, 11–24 (2005).

    CAS  PubMed  Google Scholar 

  102. Schultz, D., Ben Jacob, E., Onuchic, J. N. & Wolynes, P. G. Molecular level stochastic model for competence cycles in Bacillus subtilis. Proc. Natl Acad. Sci. USA 104, 17582–17587 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Weinberger, L. S., Burnett, J. C., Toettcher, J. E., Arkin, A. P. & Schaffer, D. V. Stochastic gene expression in a lentiviral positive-feedback loop: HIV-1 Tat fluctuations drive phenotypic diversity. Cell 122, 169–182 (2005).

    CAS  PubMed  Google Scholar 

  104. Arkin, A., Ross, J. & McAdams, H. H. Stochastic kinetic analysis of developmental pathway bifurcation in phage λ-infected Escherichia coli cells. Genetics 149, 1633–1648 (1998). A seminal work that quantitatively explains how phage λ makes a stochastic decision between lysis and lysogeny using regulatory network simulation.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Gibson, M. & Bruck, J. Efficient exact stochastic simulation of chemical systems with many species and many channels. J. Phys. Chem. 104, 1876–1889 (1999).

    Google Scholar 

  106. Gillespie, D. Approximate accelerated stochastic simulation of chemically reacting systems. J. Chem. Phys. 115, 1716–1733 (2001).

    CAS  Google Scholar 

  107. Li, H., Cao, Y., Petzold, L. R. & Gillespie, D. T. Algorithms and software for stochastic simulation of biochemical reacting systems. Biotechnol. Prog. 24, 56–61 (2008).

    PubMed  Google Scholar 

  108. Kiehl, T. R., Mattheyses, R. M. & Simmons, M. K. Hybrid simulation of cellular behavior. Bioinformatics 20, 316–322 (2004).

    CAS  PubMed  Google Scholar 

  109. Griffith, M., Courtney, T., Peccoud, J. & Sanders, W. H. Dynamic partitioning for hybrid simulation of the bistable HIV-1 transactivation network. Bioinformatics 22, 2782–2789 (2006).

    CAS  PubMed  Google Scholar 

  110. Takahashi, K., Kaizu, K., Hu, B. & Tomita, M. A multi-algorithm, multi-timescale method for cell simulation. Bioinformatics 20, 538–546 (2004).

    CAS  PubMed  Google Scholar 

  111. Ribeiro, A., Zhu, R. & Kauffman, S. A. A general modeling strategy for gene regulatory networks with stochastic dynamics. J. Comput. Biol. 13, 1630–1639 (2006).

    CAS  PubMed  Google Scholar 

  112. Zhu, R., Ribeiro, A. S., Salahub, D. & Kauffman, S. A. Studying genetic regulatory networks at the molecular level: delayed reaction stochastic models. J. Theor. Biol. 246, 725–745 (2007).

    CAS  PubMed  Google Scholar 

  113. Rao, C. & Arkin, A. Stochastic chemical kinetics and the quasi-steady-state assumption: application to the Gillespie algorithm. J. Chem. Phys. 118, 4999–5010 (2003).

    CAS  Google Scholar 

  114. Furlong, E. E. A topographical map of spatiotemporal patterns of gene expression. Dev. Cell 14, 639–640 (2008).

    CAS  PubMed  Google Scholar 

  115. Gillespie, D. The chemical Langevin equation. J. Chem. Phys. 113, 297–306 (2000).

    CAS  Google Scholar 

  116. Bernstein, J. A., Khodursky, A. B., Lin, P. H., Lin-Chao, S. & Cohen, S. N. Global analysis of mRNA decay and abundance in Escherichia coli at single-gene resolution using two-color fluorescent DNA microarrays. Proc. Natl Acad. Sci. USA 99, 9697–9702 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Kim, V. N. MicroRNA biogenesis: coordinated cropping and dicing. Nature Rev. Mol. Cell Biol. 6, 376–385 (2005).

    CAS  Google Scholar 

  118. van Driel, R. & Fransz, P. Nuclear architecture and genome functioning in plants and animals: what can we learn from both? Exp. Cell Res. 296, 86–90 (2004).

    CAS  PubMed  Google Scholar 

  119. Ogden, S. K. et al. p53 targets chromatin structure alteration to repress α-fetoprotein gene expression. J. Biol. Chem. 276, 42057–42062 (2001).

    CAS  PubMed  Google Scholar 

  120. Wong, W. W., Tsai, T. Y. & Liao, J. C. Single-cell zeroth-order protein degradation enhances the robustness of synthetic oscillator. Mol. Syst. Biol. 3, 130 (2007).

    PubMed  PubMed Central  Google Scholar 

  121. Tetko, I. V. et al. Spatiotemporal expression control correlates with intragenic scaffold matrix attachment regions (S/MARs) in Arabidopsis thaliana. PLoS Comput. Biol. 2, e21 (2006).

    PubMed  PubMed Central  Google Scholar 

  122. Chapman, R. D. et al. Transcribing RNA polymerase II is phosphorylated at CTD residue serine-7. Science 318, 1780–1782 (2007).

    CAS  PubMed  Google Scholar 

  123. Brodersen, P. et al. Widespread translational inhibition by plant miRNAs and siRNAs. Science 320, 1185–1190 (2008).

    CAS  PubMed  Google Scholar 

  124. Zhou, T. et al. Identification of primary transcriptional regulation of cell cycle-regulated genes upon DNA damage. Cell Cycle 6, 972–981 (2007).

    CAS  PubMed  Google Scholar 

  125. Mangan, S. & Alon, U. Structure and function of the feed-forward loop network motif. Proc. Natl Acad. Sci. USA 100, 11980–11985 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Ingram, P. J., Stumpf, M. P. & Stark, J. Network motifs: structure does not determine function. BMC Genomics 7, 108 (2006).

    PubMed  PubMed Central  Google Scholar 

  127. Remy, É., Ruet, P. & Thieffry, D. Graphic requirements for multistability and attractive cycles in a Boolean dynamical framework. Adv. Appl. Math. (2008).

  128. Richard, A. & Comet, J. Necessary conditions for multistationarity in discrete dynamical systems. Dis. Appl. Math. 155, 2403–2413 (2007).

    Google Scholar 

  129. Stern, S., Dror, T., Stolovicki, E., Brenner, N. & Braun, E. Genome-wide transcriptional plasticity underlies cellular adaptation to novel challenge. Mol. Syst. Biol. 3, 106 (2007).

    PubMed  PubMed Central  Google Scholar 

  130. Bar-Even, A. et al. Noise in protein expression scales with natural protein abundance. Nature Genet. 38, 636–643 (2006).

    CAS  PubMed  Google Scholar 

  131. Fisher, R. A. On the dominance ratio. Reprint in Bull. Math. Biol. 52, 297–318 (1990).

    CAS  PubMed  Google Scholar 

  132. May, R. M. Theoretical Ecology: Principles And Applications (Blackwell Scientific Publications, Oxford, 1981).

    Google Scholar 

  133. Nei, M. Molecular Evolutionary Genetics (Columbia University Press, New York, 1987).

    Google Scholar 

  134. Wright, S. Evolution in mendelian populations. Genetics 16, 97–159 (1931).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Min. Lee, J., Gianchandani, E. P., Eddy, J. A. & Papin, J. A. Dynamic analysis of integrated signaling, metabolic, and regulatory networks. PLoS Comput. Biol. 4, e1000086 (2008).

    PubMed  Google Scholar 

  136. Tomita, M. et al. E-CELL: software environment for whole-cell simulation. Bioinformatics 15, 72–84 (1999).

    CAS  PubMed  Google Scholar 

  137. McAdams, H. H. & Shapiro, L. Circuit simulation of genetic networks. Science 269, 650–656 (1995).

    CAS  PubMed  Google Scholar 

  138. Kierzek, A. M. STOCKS: Stochastic kinetic simulations of biochemical systems with Gillespie algorithm. Bioinformatics 18, 470–481 (2002).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank I. Ulitsky and I. Gat-Viks for their comments on the manuscript. This study was supported in part by a grant to the APO-SYS consortium from the European Community's Seventh Framework Programme, and by a grant from the Ministry of Science, Culture and Sport, Israel, and the Ministry of Research, France. G.K. was supported in part by a fellowship from the Edmond J. Safra Bioinformatics program at Tel Aviv University, Israel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ron Shamir.

Supplementary information

Related links

Related links

FURTHER INFORMATION

Ron Shamir's homepage

Glossary

Stochasticity

The property of a system whose behaviour depends on probabilities. In a model with stochasticity, a single initial state can evolve into several different trajectories, each with an associated probability.

Local state

At any time point, the value representing the status of an entity in a model is its (local) state. For example, the state of a protein may indicate whether it is phosphorylated or not (a Boolean value), or the time since its last phosphorylation (a continuous value).

Synchronous model

A model wherein the time steps at which the global state changes are discrete and (usually) equally spaced. On each step, all the states are updated simultaneously, depending on the model's regulation functions and on the global state at the previous step. In asynchronous models, system changes are not confined to specific times and global states do not progress according to 'a common clock'. Time is often continuous, and entities may change their states at different times.

Regulation function

A rule that determines the state of a specific entity in the model as a function of the states of some (other) entities. For example, several transcription factors may together regulate the expression of a gene. The set of entities whose states determine the state of entity X are entity X's regulators.

Global state

The combination of all the local states of a model at one time point.

Steady state

A global state that, once reached, always repeats itself in a trajectory. Another important dynamic behaviour in biological systems is a cycle of global states. For example, the oscillations observed in the cell cycle.

Robustness

A measure of a model's ability to withstand changes without changing its essential properties. For example, in network models, robustness can be quantified as the fraction of edge additions and/or removals that change the trajectory that emanates from some initial state.

Threshold function

A regulation function is a threshold function if it determines the state of the output entity by summing the states of its inputs and comparing the sum to some fixed value. For example, a gene upregulated if any two out of three transcription factors are active can be modelled by such a function.

Trajectory

In logical models, a trajectory is a sequence of global states that occur consecutively. In continuous models, a trajectory is the change of the level of an entity over time.

Markov chain

A stochastic process in which the next state depends only on the present state, regardless of the trajectory that led to the present state.

Heuristic

An algorithm for solving a problem that does not always provide an optimal solution to it. Heuristics are often used when it is impractical to obtain an exact optimal solution, and in many cases they provide satisfactory solutions.

Bayesian network

A probabilistic model that represents (in)dependencies between variables, taking the form of a directed acyclic graph. Often, both inference and learning can be carried out efficiently in such models. Dynamic Bayesian networks are an extension that describes dynamic behaviour.

Module

A set of genes that have identical regulation functions (and regulators). In other contexts, a module can also be a set of genes with a common function.

Inference

The selection of regulatory functions (or regulators) that best agrees with a dataset.

Discretization

A process that transforms continuous numerical values into discrete ones. For example, real-valued measurements can be discretized to 0,1 or 2, corresponding to low, medium and high levels.

Michaelis–Menten functions

Equations that describe the kinetics of an enzymatic reaction. They can be derived from ordinary differential equations that describe the concentration changes of the involved molecular species under some simplifying assumptions.

Solution space

The set of possible solutions to an optimization problem. In the context of flux balance analysis, the solution space corresponds to different combinations of fluxes that optimize the objective function and that satisfy the constraints.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karlebach, G., Shamir, R. Modelling and analysis of gene regulatory networks. Nat Rev Mol Cell Biol 9, 770–780 (2008). https://doi.org/10.1038/nrm2503

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2503

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing