Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Diversity of degradation signals in the ubiquitin–proteasome system

Key Points

  • Substrate proteins that are destined for elimination are initially attached to polymers of the highly conserved ubiquitin protein. This covalent modification of the substrate targets it to a large protease complex, the 26S proteasome.

  • The attachment of ubiquitin to substrates usually requires the action of three enzymes. E1 ubiquitin-activating enzyme activates the ubiquitin C terminus in an ATP-consuming reaction; E2 ubiquitin-conjugating enzyme receives the activated ubiquitin from E1 and transfers it to a substrate bound to a third enzyme, an E3 ubiquitin-protein ligase.

  • A degradation signal, or 'degron', is generally defined as a minimal element within a protein that is sufficient for recognition and degradation by a proteolytic apparatus. Ubiquitin-pathway degrons require specific E3-binding determinants, an appropriate ubiquitin modification site and a proteasomal degradation initiation site, that allow substrate unfolding and translocation into the proteasome core to occur.

  • The most common acceptor site for polyubiquitin chain addition is a Lys ε-amino group. For some proteins, only one or a few Lys residues can be efficiently ubiquitylated. This implies that for these substrates, the position of the ubiquitin acceptor site or the local structure surrounding it serves as a determinant for degron function. The N-terminal α-amino group and Cys, Ser or Thr residues might also be ubiquitylated in a context-specific manner.

  • Degron activity is regulated in many ways. Post-translational modifications activate many degrons. Examples of such modifications are protein phosphorylation, hydroxylation and proteolytic cleavage. Alternatively, cryptic degrons might be revealed when a protein assumes a specific conformation or assembly state. Polypeptides that fail to assume their native tertiary or quaternary structures, collectively referred to as protein quality control substrates, are often subject to this latter mode of substrate recognition.

  • Combined structural and functional studies of degrons are essential for a full understanding of how the ubiquitin–proteasome system is deployed in vivo.

Abstract

The ubiquitin–proteasome system degrades an enormous variety of proteins that contain specific degradation signals, or 'degrons'. Besides the degradation of regulatory proteins, almost every protein suffers from sporadic biosynthetic errors or misfolding. Such aberrant proteins can be recognized and rapidly degraded by cells. Structural and functional data on a handful of degrons allow several generalizations regarding their mechanism of action. We focus on different strategies of degron recognition by the ubiquitin system, and contrast regulatory degrons that are subject to signalling-dependent modification with those that are controlled by protein folding or assembly, as frequently occurs during protein quality control.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanisms for the activation of N-end rule pathway substrates.
Figure 2: Structure of CycE phosphodegron bound to the F-box protein Fbw7.
Figure 3: Degrons in ER-associated degradation.

Similar content being viewed by others

References

  1. Schimke, R. T. & Doyle, D. Control of enzyme levels in animal tissues. Annu. Rev. Biochem. 39, 929–976 (1970).

    Article  CAS  PubMed  Google Scholar 

  2. Goldberg, A. L. & Dice, J. F. Intracellular protein degradation in mammalian and bacterial cells. Annu. Rev. Biochem. 43, 835–869 (1974).

    Article  CAS  PubMed  Google Scholar 

  3. Hochstrasser, M. Ubiquitin-dependent protein degradation. Annu. Rev. Genet. 30, 405–439 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Hershko, A. & Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem. 67, 425–479 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Pickart, C. M. & Cohen, R. E. Proteasomes and their kin: proteases in the machine age. Nature Rev. Mol. Cell Biol. 5, 177–187 (2004). References 1–5 review the older literature on intracellular proteolysis and various features of the ubiquitin–proteasome system.

    Article  CAS  Google Scholar 

  6. Platt, T., Miller, J. H. & Weber, K. In vivo degradation of mutant lac repressor. Nature 228, 1154–1156 (1970).

    Article  CAS  PubMed  Google Scholar 

  7. Rabinovitz, M. Translational repression in the control of globin chain initiation by hemin. Ann. N. Y Acad. Sci. 241, 322–333 (1974).

    Article  CAS  PubMed  Google Scholar 

  8. Dice, J. F. & Goldberg, A. L. Relationship between in vivo degradative rates and isoelectric points of proteins. Proc. Natl Acad. Sci. USA 72, 3893–3897 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dice, J. F., Hess, E. J. & Goldberg, A. L. Studies on the relationship between the degradative rates of proteins in vivo and their isoelectric points. Biochem. J. 178, 305–312 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Varshavsky, A. Naming a targeting signal. Cell 64, 13–15 (1991).

    Article  CAS  PubMed  Google Scholar 

  11. Lahav-Baratz, S., Sudakin, V., Ruderman, J. V. & Hershko, A. Reversible phosphorylation controls the activity of cyclosome-associated cyclin-ubiquitin ligase. Proc. Natl Acad. Sci. USA 92, 9303–9307 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Turner, G. C., Du, F. & Varshavsky, A. Peptides accelerate their uptake by activating a ubiquitin-dependent proteolytic pathway. Nature 405, 579–583 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Tan, X. et al. Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446, 640–645 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Hershko, A., Ciechanover, A., Heller, H., Haas, A. L. & Rose, I. A. Proposed role of ATP in protein breakdown: conjugation of protein with multiple chains of the polypeptide of ATP-dependent proteolysis. Proc. Natl Acad. Sci. USA 77, 1783–1786 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hershko, A., Heller, H., Eytan, E. & Reiss, Y. The protein substrate binding site of the ubiquitin-protein ligase system. J. Biol. Chem. 261, 11992–11999 (1986).

    Article  CAS  PubMed  Google Scholar 

  16. Hershko, A., Leshinsky, E., Ganoth, D. & Heller, H. ATP-dependent degradation of ubiquitin-protein conjugates. Proc. Natl Acad. Sci. USA 81, 1619–1623 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bachmair, A., Finley, D. & Varshavsky, A. In vivo half-life of a protein is a function of its amino-terminal residue. Science 234, 179–186 (1986). Shows the importance of the N-terminal amino acid in targeting specific substrates for ubiquitin-dependent turnover.

    Article  CAS  PubMed  Google Scholar 

  18. Bartel, B., Wunning, I. & Varshavsky, A. The recognition component of the N-end rule pathway. EMBO J. 9, 3179–3189 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mogk, A., Schmidt, R. & Bukau, B. The N-end rule pathway for regulated proteolysis: prokaryotic and eukaryotic strategies. Trends Cell Biol. 17, 165–172 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Lupas, A. N. & Koretke, K. K. Bioinformatic analysis of ClpS, a protein module involved in prokaryotic and eukaryotic protein degradation. J. Struct. Biol. 141, 77–83 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Erbse, A. et al. ClpS is an essential component of the N-end rule pathway in Escherichia coli. Nature 439, 753–756 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Rao, H., Uhlmann, F., Nasmyth, K. & Varshavsky, A. Degradation of a cohesin subunit by the N-end rule pathway is essential for chromosome stability. Nature 410, 955–959 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Balzi, E., Choder, M., Chen, W. N., Varshavsky, A. & Goffeau, A. Cloning and functional analysis of the arginyl-tRNA-protein transferase gene ATE1 of Saccharomyces cerevisiae. J. Biol. Chem. 265, 7464–7471 (1990).

    Article  CAS  PubMed  Google Scholar 

  24. Ciechanover, A. et al. Purification and characterization of arginyl-tRNA-protein transferase from rabbit reticulocytes. Its involvement in post-translational modification and degradation of acidic NH2 termini substrates of the ubiquitin pathway. J. Biol. Chem. 263, 11155–11167 (1988).

    Article  CAS  PubMed  Google Scholar 

  25. Davydov, I. V. & Varshavsky, A. RGS4 is arginylated and degraded by the N-end rule pathway in vitro. J. Biol. Chem. 275, 22931–22941 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Hu, R. G. et al. The N-end rule pathway as a nitric oxide sensor controlling the levels of multiple regulators. Nature 437, 981–986 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Lee, M. J. et al. RGS4 and RGS5 are in vivo substrates of the N-end rule pathway. Proc. Natl Acad. Sci. USA 102, 15030–15035 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wong, C. C. et al. Global analysis of posttranslational protein arginylation. PLoS Biol. 5, e258 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Tasaki, T. & Kwon, Y. T. The mammalian N-end rule pathway: new insights into its components and physiological roles. Trends Biochem. Sci. 32, 520–528 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Tasaki, T. et al. A family of mammalian E3 ubiquitin ligases that contain the UBR box motif and recognize N-degrons. Mol. Cell. Biol. 25, 7120–7136 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. de Groot, R. J., Rümenapf, T., Kuhn, R. J., Strauss, E. G. & Strauss, J. H. Sindbis virus RNA polymerase is degraded by the N-end rule pathway. Proc. Natl Acad. Sci. USA 88, 8967–8971 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kwon, Y. T. et al. An essential role of N-terminal arginylation in cardiovascular development. Science 297, 96–99 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Zenker, M. et al. Deficiency of UBR1, a ubiquitin ligase of the N-end rule pathway, causes pancreatic dysfunction, malformations and mental retardation (Johanson-Blizzard syndrome). Nature Genet. 37, 1345–1350 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Nash, P. et al. Multisite phosphorylation of a CDK inhibitor sets a threshold for the onset of DNA replication. Nature 414, 514–521 (2001). Identifies the optimal degradation signal for SCFCdc4 and gives a model for how multisite phosphorylation controls SCF substrate ubiquitylation.

    Article  CAS  PubMed  Google Scholar 

  35. Min, J. H. et al. Structure of an HIF-1α -pVHL complex: hydroxyproline recognition in signaling. Science. 296, 1886–1889 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Wu, G. et al. Structure of a β-TrCP1–Skp1–β-catenin complex: destruction motif binding and lysine specificity of the SCFβ-TrCP1 ubiquitin ligase. Mol. Cell 11, 1445–1456 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Orlicky, S., Tang, X., Willems, A., Tyers, M. & Sicheri, F. Structural basis for phosphodependent substrate selection and orientation by the SCFCdc4 ubiquitin ligase. Cell 112, 243–256 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Mizushima, T. et al. Structural basis of sugar-recognizing ubiquitin ligase. Nature Struct. Mol. Biol. 11, 365–370 (2004).

    Article  CAS  Google Scholar 

  39. Zheng, N. et al. Structure of the Cul1–Rbx1–Skp1–F boxSkp2 SCF ubiquitin ligase complex. Nature 416, 703–709 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Hao, B., Oehlmann, S., Sowa, M. E., Harper, J. W. & Pavletich, N. P. Structure of a Fbw7–Skp1–cyclin E complex: multisite-phosphorylated substrate recognition by SCF ubiquitin ligases. Mol. Cell 26, 131–143 (2007). Structural study that provides an alternative view of multisite phosphorylation and SCF substrate recognition.

    Article  CAS  PubMed  Google Scholar 

  41. Tyers, M. & Jorgensen, P. Proteolysis and the cell cycle: with this RING I do thee destroy. Curr. Opin. Genet. Dev. 10, 54–64 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Ang, X. L. & Harper, J. W. Interwoven ubiquitination oscillators and control of cell cycle transitions. Sci. STKE 2004, 2004, pe31 (2004).

    Google Scholar 

  43. Schwob, E., Bohm, T., Mendenhall, M. D. & Nasmyth, K. The B-type cyclin kinase inhibitor p40SIC1 controls the G1 to S transition in S. cerevisiae. Cell 79, 233–244 (1994).

    Article  CAS  PubMed  Google Scholar 

  44. Winston, J. T. et al. The SCFβ-TrCP-ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IκBα and β-catenin and stimulates IkBα ubiquitination in vitro. Genes Dev. 13, 270–283 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Amati, B. & Vlach, J. Kip1 meets SKP2: new links in cell-cycle control. Nature Cell Biol. 1, E91–E93 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Sheaff, R. J., Groudine, M., Gordon, M., Roberts, J. M. & Clurman, B. E. Cyclin E-CDK2 is a regulator of p27Kip1. Genes Dev. 11, 1464–1478 (1997).

    Article  CAS  PubMed  Google Scholar 

  47. Spruck, C. H., Won, K. A. & Reed, S. I. Deregulated cyclin E induces chromosome instability. Nature 401, 297–300 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Klein, P., Pawson, T. & Tyers, M. Mathematical modeling suggests cooperative interactions between a disordered polyvalent ligand and a single receptor site. Curr. Biol. 13, 1669–1678 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Willems, A. R., Schwab, M. & Tyers, M. A hitchhiker's guide to the cullin ubiquitin ligases: SCF and its kin. Biochim. Biophys. Acta 1695, 133–170 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Semenza, G. L., Nejfelt, M. K., Chi, S. M. & Antonarakis, S. E. Hypoxia-inducible nuclear factors bind to an enhancer element located 3′ to the human erythropoietin gene. Proc. Natl Acad. Sci. USA 88, 5680–5684 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kamura, T., Conrad, M. N., Yan, Q., Conaway, R. C. & Conaway, J. W. The Rbx1 subunit of SCF and VHL E3 ubiquitin ligase activates Rub1 modification of cullins Cdc53 and Cul2. Genes Dev. 13, 2928–2933 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kamura, T. et al. Rbx1, a component of the VHL tumor suppressor complex and SCF ubiquitin ligase. Science 284, 657–661 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Ivan, M. et al. HIFα targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292, 464–468 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Jaakkola, P. et al. Targeting of HIF-α to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292, 468–472 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Epstein, A. C. et al. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107, 43–54 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Hon, W. C. et al. Structural basis for the recognition of hydroxyproline in HIF-1 α by pVHL. Nature 417, 975–978 (2002). Provides detailed structural data on the interaction between hydroxylated HIF-1α and VHL.

    Article  CAS  PubMed  Google Scholar 

  57. Beroud, C. et al. Software and database for the analysis of mutations in the VHL gene. Nucleic Acids Res. 26, 256–258 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Perry, J. J., Tainer, J. A. & Boddy, M. N. A SIM-ultaneous role for SUMO and ubiquitin. Trends Biochem. Sci. 33, 201–208 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. Hatakeyama, S. & Nakayama, K. I. Ubiquitylation as a quality control system for intracellular proteins. J. Biochem. 134, 1–8 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Laney, J. D. & Hochstrasser, M. Substrate targeting in the ubiquitin system. Cell 97, 427–430 (1999).

    Article  CAS  PubMed  Google Scholar 

  61. Hampton, R. Y. ER-associated degradation in protein quality control and cellular regulation. Curr. Opin. Cell Biol. 14, 476–482 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Kostova, Z. & Wolf, D. H. For whom the bell tolls: protein quality control of the endoplasmic reticulum and the ubiquitin-proteasome connection. EMBO J. 22, 2309–2317 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sayeed, A. & Ng, D. T. Search and destroy: ER quality control and ER-associated protein degradation. Crit. Rev. Biochem. Mol. Biol. 40, 75–91 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Meusser, B., Hirsch, C., Jarosch, E. & Sommer, T. ERAD: the long road to destruction. Nature Cell Biol. 7, 766–772 (2005). References 61–64 review the mechanisms of ER-associated degradation (ERAD).

    Article  CAS  PubMed  Google Scholar 

  65. Laney, J. D. & Hochstrasser, M. Ubiquitin-dependent degradation of the yeast Matα2 repressor enables a switch in developmental state. Genes Dev. 17, 2259–2270 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chen, P., Johnson, P., Sommer, T., Jentsch, S. & Hochstrasser, M. Multiple ubiquitin-conjugating enzymes participate in the in vivo degradation of the yeast MATα2 repressor. Cell 74, 357–369 (1993).

    Article  CAS  PubMed  Google Scholar 

  67. Swanson, R., Locher, M. & Hochstrasser, M. A conserved ubiquitin ligase of the nuclear envelope/endoplasmic reticulum that functions in both ER-associated and Matα2 repressor degradation. Genes Dev. 15, 2660–2674 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ravid, T., Kreft, S. G. & Hochstrasser, M. Membrane and soluble substrates of the Doa10 ubiquitin ligase are degraded by distinct pathways. EMBO J. 25, 533–543 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Carvalho, P., Goder, V. & Rapoport, T. A. Distinct ubiquitin-ligase complexes define convergent pathways for the degradation of ER proteins. Cell 126, 361–373 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Neuber, O., Jarosch, E., Volkwein, C., Walter, J. & Sommer, T. Ubx2 links the Cdc48 complex to ER-associated protein degradation. Nature Cell Biol. 7, 993–998 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Johnson, P. R., Swanson, R., Rakhilina, L. & Hochstrasser, M. Degradation signal masking by heterodimerization of MATα2 and MATa1 blocks their mutual destruction by the ubiquitin-proteasome pathway. Cell 94, 217–227 (1998). Characterizes the Deg1 degron of Matα2 and physiological regulation of degron recognition by changes in protein quaternary structure.

    Article  CAS  PubMed  Google Scholar 

  72. Arteaga, M. F., Wang, L., Ravid, T., Hochstrasser, M. & Canessa, C. M. An amphipathic helix targets serum and glucocorticoid-induced kinase 1 to the endoplasmic reticulum-associated ubiquitin-conjugation machinery. Proc. Natl Acad. Sci. USA 103, 11178–11183 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Gilon, T., Chomsky, O. & Kulka, R. G. Degradation signals for ubiquitin system proteolysis in Saccharomyces cerevisiae. EMBO J. 17, 2759–2766 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gilon, T., Chomsky, O. & Kulka, R. G. Degradation signals recognized by the Ubc6p–Ubc7p ubiquitin-conjugating enzyme pair. Mol. Cell. Biol. 20, 7214–7219 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ismail, N. & Ng, D. T. Have you HRD? Understanding ERAD is DOAble! Cell 126, 237–239 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Kostova, Z., Tsai, Y. C. & Weissman, A. M. Ubiquitin ligases, critical mediators of endoplasmic reticulum-associated degradation. Semin. Cell Dev. Biol. 18, 770–779 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Deng, M. & Hochstrasser, M. Spatially regulated ubiquitin ligation by an ER/nuclear membrane ligase. Nature 443, 827–831 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Vashist, S. & Ng, D. T. Misfolded proteins are sorted by a sequential checkpoint mechanism of ER quality control. J. Cell Biol. 165, 41–52 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wang, S. & Ng, D. T. W. Lectins sweet-talk proteins into ERAD. Nature Cell Biol. 10, 251–253 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Goldstein, J. L. & Brown, M. S. Regulation of the mevalonate pathway. Nature 343, 425–430 (1990).

    Article  CAS  PubMed  Google Scholar 

  81. Liscum, L. et al. 3-Hydroxy-3-methylglutaryl-CoA reductase: a transmembrane glycoprotein of the endoplasmic reticulum with N-linked 'high-mannose' oligosaccharides. Proc. Natl Acad. Sci. USA 80, 7165–7169 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Liscum, L. et al. Domain structure of 3-hydroxy-3-methylglutaryl coenzyme A reductase, a glycoprotein of the endoplasmic reticulum. J. Biol. Chem. 260, 522–530 (1985).

    Article  CAS  PubMed  Google Scholar 

  83. Chin, D. J. et al. Nucleotide sequence of 3-hydroxy-3-methyl-glutaryl coenzyme A reductase, a glycoprotein of endoplasmic reticulum. Nature 308, 613–617 (1984).

    Article  CAS  PubMed  Google Scholar 

  84. Gil, G., Faust, J. R., Chin, D. J., Goldstein, J. L. & Brown, M. S. Membrane-bound domain of HMG CoA reductase is required for sterol-enhanced degradation of the enzyme. Cell 41, 249–258 (1985).

    Article  CAS  PubMed  Google Scholar 

  85. Skalnik, D. G., Narita, H., Kent, C. & Simoni, R. D. The membrane domain of 3-hydroxy-3-methylglutaryl-coenzyme A reductase confers endoplasmic reticulum localization and sterol-regulated degradation onto beta-galactosidase. J. Biol. Chem. 263, 6836–6841 (1988).

    Article  CAS  PubMed  Google Scholar 

  86. Hua, X., Sakai, J., Brown, M. S. & Goldstein, J. L. Regulated cleavage of sterol regulatory element binding proteins requires sequences on both sides of the endoplasmic reticulum membrane. J. Biol. Chem. 271, 10379–10384 (1996).

    Article  CAS  PubMed  Google Scholar 

  87. Loftus, S. K. et al. Murine model of Niemann-Pick C disease: mutation in a cholesterol homeostasis gene. Science 277, 232–235 (1997).

    Article  CAS  PubMed  Google Scholar 

  88. Burke, R. et al. Dispatched, a novel sterol-sensing domain protein dedicated to the release of cholesterol-modified hedgehog from signaling cells. Cell 99, 803–815 (1999). References 86–88 identify sterol sensing domains in the transmembrane regions of several integral membrane proteins.

    Article  CAS  PubMed  Google Scholar 

  89. Gardner, R. G. & Hampton, R. Y. A 'distributed degron' allows regulated entry into the ER degradation pathway. EMBO J. 18, 5994–6004 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Shearer, A. G. & Hampton, R. Y. Structural control of endoplasmic reticulum-associated degradation: effect of chemical chaperones on 3-hydroxy-3-methylglutaryl-CoA reductase. J. Biol. Chem. 279, 188–196 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. Shearer, A. G. & Hampton, R. Y. Lipid-mediated, reversible misfolding of a sterol-sensing domain protein. EMBO J. 24, 149–159 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ravid, T., Doolman, R., Avner, R., Harats, D. & Roitelman, J. The ubiquitin-proteasome pathway mediates the regulated degradation of mammalian 3-hydroxy-3-methylglutaryl-coenzyme A reductase. J. Biol. Chem. 275, 35840–35847 (2000).

    Article  CAS  PubMed  Google Scholar 

  93. Yang, T. et al. Crucial step in cholesterol homeostasis: sterols promote binding of SCAP to INSIG-1, a membrane protein that facilitates retention of SREBPs in ER. Cell 110, 489–500 (2002). Reports the discovery of INSIG1, a sterol-sensing protein.

    Article  CAS  PubMed  Google Scholar 

  94. Song, B. L., Sever, N. & DeBose-Boyd, R. A. Gp78, a membrane-anchored ubiquitin ligase, associates with Insig-1 and couples sterol-regulated ubiquitination to degradation of HMG CoA reductase. Mol. Cell 19, 829–840 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Lee, J. N., Song, B., DeBose-Boyd, R. A. & Ye, J. Sterol-regulated degradation of Insig-1 mediated by the membrane-bound ubiquitin ligase gp78. J. Biol. Chem. 281, 39308–39315 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Yoshida, Y. A novel role for N-glycans in the ERAD system. J. Biochem. 134, 183–190 (2003).

    Article  CAS  PubMed  Google Scholar 

  97. Gauss, R., Jarosch, E., Sommer, T. & Hirsch, C. A complex of Yos9p and the HRD ligase integrates endoplasmic reticulum quality control into the degradation machinery. Nature Cell Biol. 8, 849–854 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. Szathmary, R., Bielmann, R., Nita-Lazar, M., Burda, P. & Jakob, C. A. Yos9 protein is essential for degradation of misfolded glycoproteins and may function as lectin in ERAD. Mol. Cell 19, 765–775 (2005).

    Article  CAS  PubMed  Google Scholar 

  99. Kim, W., Spear, E. D. & Ng, D. T. Yos9p detects and targets misfolded glycoproteins for ER-associated degradation. Mol. Cell 19, 753–764 (2005).

    Article  CAS  PubMed  Google Scholar 

  100. Bhamidipati, A., Denic, V., Quan, E. M. & Weissman, J. S. Exploration of the topological requirements of ERAD identifies Yos9p as a lectin sensor of misfolded glycoproteins in the ER lumen. Mol. Cell 19, 741–751 (2005). References 97–100 identify YOS9 as a lectin that detects misfolded glycoproteins in the ER lumen.

    Article  CAS  PubMed  Google Scholar 

  101. Mizushima, T. et al. Structural basis for the selection of glycosylated substrates by SCFFbs1 ubiquitin ligase. Proc. Natl Acad. Sci. USA 104, 5777–5781 (2007). Shows that FBS1 of SCFFBS1 recognizes the chitobiose domain in the oligosaccharide base of misfolded glycoproteins in the cytosol.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Helenius, A. Quality control in the secretory assembly line. Philos. Trans. R. Soc. Lond. B. 356, 147–150 (2001).

    Article  CAS  Google Scholar 

  103. Spiro, R. G. Role of N-linked polymannose oligosaccharides in targeting glycoproteins for endoplasmic reticulum-associated degradation. Cell. Mol. Life Sci. 61, 1025–1041 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. Yoshida, Y. et al. E3 ubiquitin ligase that recognizes sugar chains. Nature 418, 438–442 (2002). Identifies FBS1 as a new sugar-binding F-box subunit of the SCF E3 ligase family.

    Article  CAS  PubMed  Google Scholar 

  105. Yoshida, Y., Adachi, E., Fukiya, K., Iwai, K. & Tanaka, K. Glycoprotein-specific ubiquitin ligases recognize N-glycans in unfolded substrates. EMBO Rep. 6, 239–244 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Nakatsukasa, K. & Brodsky, J. L. The recognition and retrotranslocation of misfolded proteins from the endoplasmic reticulum. Traffic 9, 861–870 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Murata, S., Minami, Y., Minami, M., Chiba, T. & Tanaka, K. CHIP is a chaperone-dependent E3 ligase that ubiquitylates unfolded protein. EMBO Rep. 2, 1133–1138 (2001). Shows that CHIP specifically ubiquitylates misfolded substrates in the presence of HSP70 family members.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. McDonough, H. & Patterson, C. CHIP: a link between the chaperone and proteasome systems. Cell Stress Chaperones 8, 303–308 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Jiang, J. et al. CHIP is a U-box-dependent E3 ubiquitin ligase: identification of Hsc70 as a target for ubiquitylation. J. Biol. Chem. 276, 42938–42944 (2001).

    Article  CAS  PubMed  Google Scholar 

  110. Meacham, G. C., Patterson, C., Zhang, W., Younger, J. M. & Cyr, D. M. The Hsc70 co-chaperone CHIP targets immature CFTR for proteasomal degradation. Nature Cell Biol. 3, 100–105 (2001).

    Article  CAS  PubMed  Google Scholar 

  111. Connell, P. et al. The co-chaperone CHIP regulates protein triage decisions mediated by heat-shock proteins. Nature Cell Biol. 3, 93–96 (2001).

    Article  CAS  PubMed  Google Scholar 

  112. Sahara, N. et al. In vivo evidence of CHIP up-regulation attenuating τ aggregation. J. Neurochem. 94, 1254–1263 (2005).

    Article  CAS  PubMed  Google Scholar 

  113. Hatakeyama, S., Matsumoto, M., Yada, M. & Nakayama, K. I. Interaction of U-box-type ubiquitin-protein ligases (E3s) with molecular chaperones. Genes Cells 9, 533–548 (2004).

    Article  CAS  PubMed  Google Scholar 

  114. Miller, V. M. et al. CHIP suppresses polyglutamine aggregation and toxicity in vitro and in vivo. J. Neurosci. 25, 9152–9161 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Younger, J. M. et al. Sequential quality-control checkpoints triage misfolded cystic fibrosis transmembrane conductance regulator. Cell 126, 571–582 (2006).

    Article  CAS  PubMed  Google Scholar 

  116. Rosser, M. F., Washburn, E., Muchowski, P. J., Patterson, C. & Cyr, D. M. Chaperone functions of the E3 ubiquitin ligase CHIP. J. Biol. Chem. 282, 22267–22277 (2007).

    Article  CAS  PubMed  Google Scholar 

  117. Bachmair, A. & Varshavsky, A. The degradation signal in a short-lived protein. Cell 56, 1019–1032 (1989).

    Article  CAS  PubMed  Google Scholar 

  118. Chau, V. et al. A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. Science 243, 1576–1583 (1989).

    Article  CAS  PubMed  Google Scholar 

  119. Huang, T. T., Wuerzberger-Davis, S. M., Wu, Z. H. & Miyamoto, S. Sequential modification of NEMO/IKKγ by SUMO-1 and ubiquitin mediates NF-κB activation by genotoxic stress. Cell 115, 565–576 (2003).

    Article  CAS  PubMed  Google Scholar 

  120. Scherer, D. C., Brockman, J. A., Chen, Z., Maniatis, T. & Ballard, D. W. Signal-induced degradation of Iκ Bα requires site-specific ubiquitination. Proc. Natl Acad. Sci. USA 92, 11259–11263 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Baldi, L., Brown, K., Franzoso, G. & Siebenlist, U. Critical role for lysines 21 and 22 in signal-induced, ubiquitin-mediated proteolysis of I κ B-α. J. Biol. Chem. 271, 376–379 (1996).

    Article  CAS  PubMed  Google Scholar 

  122. Petroski, M. D. & Deshaies, R. J. Redundant degrons ensure the rapid destruction of Sic1 at the G1/S transition of the budding yeast cell cycle. Cell Cycle 2, 410–411 (2003).

    Article  CAS  PubMed  Google Scholar 

  123. Banerjee, A., Gregori, L., Xu, Y. & Chau, V. The bacterially expressed yeast CDC34 gene product can undergo autoubiquitination to form a multiubiquitin chain-linked protein. J. Biol. Chem. 268, 5668–5675 (1993).

    Article  CAS  PubMed  Google Scholar 

  124. Fung, T. K., Yam, C. H. & Poon, R. Y. The N-terminal regulatory domain of cyclin A contains redundant ubiquitination targeting sequences and acceptor sites. Cell Cycle 4, 1411–1420 (2005).

    Article  CAS  PubMed  Google Scholar 

  125. Kirkpatrick, D. S. et al. Quantitative analysis of in vitro ubiquitinated cyclin B1 reveals complex chain topology. Nature Cell Biol. 8, 700–710 (2006).

    Article  CAS  PubMed  Google Scholar 

  126. King, R. W., Glotzer, M. & Kirschner, M. W. Mutagenic analysis of the destruction signal of mitotic cyclins and the structural characterization of ubiquitinated intermediates. Mol. Biol. Cell 7, 1343–1357 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Machida, Y. J. et al. UBE2T is the E2 in the Fanconi anemia pathway and undergoes negative autoregulation. Mol. Cell 23, 589–596 (2006). Shows that mono-ubiquitylation of UBE2T near its catalytic site hinders activity of the E2 enzyme.

    Article  CAS  PubMed  Google Scholar 

  128. Lin, Y., Hwang, W. C. & Basavappa, R. Structural and functional analysis of the human mitotic-specific ubiquitin-conjugating enzyme, UbcH10. J. Biol. Chem. 277, 21913–21921 (2002).

    Article  CAS  PubMed  Google Scholar 

  129. Hodgins, R., Gwozd, C., Arnason, T., Cummings, M. & Ellison, M. J. The tail of a ubiquitin-conjugating enzyme redirects multi-ubiquitin chain synthesis from the lysine 48-linked configuration to a novel nonlysine-linked form. J. Biol. Chem. 271, 28766–28771 (1996).

    Article  CAS  PubMed  Google Scholar 

  130. Ravid, T. & Hochstrasser, M. Autoregulation of an E2 enzyme by ubiquitin-chain assembly on its catalytic residue. Nature Cell Biol. 9, 422–427 (2007). Demonstrates that a polyubiquitin chain attached to the catalytic Cys residue of an E2 enzyme can act as a degron.

    Article  CAS  PubMed  Google Scholar 

  131. Ciechanover, A. & Ben-Saadon, R. N-terminal ubiquitination: more protein substrates join in. Trends Cell Biol. 14, 103–106 (2004).

    Article  CAS  PubMed  Google Scholar 

  132. Bloom, J., Amador, V., Bartolini, F., DeMartino, G. & Pagano, M. Proteasome-mediated degradation of p21 via N-terminal ubiquitinylation. Cell 115, 71–82 (2003).

    Article  CAS  PubMed  Google Scholar 

  133. Ben-Saadon, R. et al. The tumor suppressor protein p16INK4a and the human papillomavirus oncoprotein-58 E7 are naturally occurring lysine-less proteins that are degraded by the ubiquitin system. Direct evidence for ubiquitination at the N-terminal residue. J. Biol. Chem. 279, 41414–41421 (2004).

    Article  CAS  PubMed  Google Scholar 

  134. Li, W., Tu, D., Brunger, A. T. & Ye, Y. A ubiquitin ligase transfers preformed polyubiquitin chains from a conjugating enzyme to a substrate. Nature 446, 333–337 (2007). Shows that the attachment of a polyubiquitin chain on the catalytic Cys of an E2 enzyme is an intermediate step in substrate ubiquitylation.

    Article  CAS  PubMed  Google Scholar 

  135. Cadwell, K. & Coscoy, L. Ubiquitination on nonlysine residues by a viral E3 ubiquitin ligase. Science 309, 127–130 (2005). Shows that ubiquitin covalently attached to a Cys residue in a substrate can target it for degradation.

    Article  CAS  PubMed  Google Scholar 

  136. Wang, X. et al. Ubiquitination of serine, threonine, or lysine residues on the cytoplasmic tail can induce ERAD of MHC-I by viral E3 ligase mK3. J. Cell Biol. 177, 613–624 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Elsasser, S. et al. Proteasome subunit Rpn1 binds ubiquitin-like protein domains. Nature Cell Biol. 4, 725–730 (2002).

    Article  CAS  PubMed  Google Scholar 

  138. Alberti, S. et al. Ubiquitylation of BAG-1 suggests a novel regulatory mechanism during the sorting of chaperone substrates to the proteasome. J. Biol. Chem. 277, 45920–45927 (2002).

    Article  CAS  PubMed  Google Scholar 

  139. Rao, H. & Sastry, A. Recognition of specific ubiquitin conjugates is important for the proteolytic functions of the ubiquitin-associated domain proteins Dsk2 and Rad23. J. Biol. Chem. 277, 11691–11695 (2002).

    Article  CAS  PubMed  Google Scholar 

  140. Thrower, J. S., Hoffman, L., Rechsteiner, M. & Pickart, C. M. Recognition of the polyubiquitin proteolytic signal. EMBO J. 19, 94–102 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Lee, C., Schwartz, M. P., Prakash, S., Iwakura, M. & Matouschek, A. ATP-dependent proteases degrade their substrates by processively unraveling them from the degradation signal. Mol. Cell 7, 627–637 (2001). Shows that the ability of a protein to be degraded depends on the position of the degron within the protein structure and its ability to initiate unfolding.

    Article  CAS  PubMed  Google Scholar 

  142. Takeuchi, J., Chen, H. & Coffino, P. Proteasome substrate degradation requires association plus extended peptide. EMBO J. 26, 123–131 (2007).

    Article  CAS  PubMed  Google Scholar 

  143. Aravind, L. & Koonin, E. V. The U box is a modified RING finger — a common domain in ubiquitination. Curr. Biol. 10, R132–R134 (2000). Reports the discovery of the U-box motif.

    Article  CAS  PubMed  Google Scholar 

  144. Welchman, R. L., Gordon, C. & Mayer, R. J. Ubiquitin and ubiquitin-like proteins as multifunctional signals. Nature Rev. Mol. Cell Biol. 6, 599–609 (2005).

    Article  CAS  Google Scholar 

  145. Petroski, M. D. & Deshaies, R. J. Function and regulation of cullin–RING ubiquitin ligases. Nature Rev. Mol. Cell Biol. 6, 9–20 (2005).

    Article  CAS  Google Scholar 

  146. Schulman, B. A. et al. Insights into SCF ubiquitin ligases from the structure of the Skp1–Skp2 complex. Nature 408, 381–386 (2000).

    Article  CAS  PubMed  Google Scholar 

  147. Hao, B. et al. Structural basis of the Cks1-dependent recognition of p27Kip1 by the SCFSkp2 ubiquitin ligase. Mol. Cell 20, 9–19 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Bloom, Y. Reiss and Y. Xie for comments on the manuscript. Work from the laboratory of M.H. was supported by grants from the National Institutes of Health, USA (GM046904, GM053756 and GM083050). Work in the laboratory of T.R. is supported by the European Union (grant IRG-205425) and by the Lejwa Fund for Biochemistry.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

OMIM 

Fanconi anaemia

FURTHER INFORMATION

Tommer Ravid's homepage

Mark Hochstrasser's homepage

Glossary

RING domain

'Really interesting new gene' motif that consists of a defined pattern of Cys and His residues that coordinate two zinc ions. This motif is engaged in ubiquitin ligation through the recruitment and positioning of the E2 enzyme.

UBR box

A 70-residue zinc-finger-like motif in E3 ubiquitin ligases that serves as a substrate recognition domain for N-end rule substrates.

F-box domain

A protein motif of 50 residues that functions as a binding site for the S-phase-kinase-associated protein-1 (SKP1) adaptor protein. F-box proteins contain additional protein–protein interaction motifs, such as WD40 or leucine-rich repeats, and are the substrate recognition subunits of SCF ligases.

WD40 repeat

A repeat sequence of 40 amino acids with a characteristic Trp-Asp motif that was first found in the β-subunit of heterotrimeric G proteins and is involved in protein–protein interactions. F-box motif-containing proteins often also have these repeats.

Tetratricopeptide repeat (TPR) motif

Tandem repeats of a degenerate 34-amino-acid sequence that mediate protein–protein interactions.

HECT domain

(Homologous to E6-AP C terminus domain). HECT- and RING-domain-containing proteins are the two main classes of E3 ubiquitin ligases. In contrast to RING ligases, HECT-domain ligases form an essential thioester intermediate with ubiquitin as it is being transferred from the E2 enzyme to the substrate.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ravid, T., Hochstrasser, M. Diversity of degradation signals in the ubiquitin–proteasome system. Nat Rev Mol Cell Biol 9, 679–689 (2008). https://doi.org/10.1038/nrm2468

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2468

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing