Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The multifunctional nucleolus

Key Points

  • The primary function of the nucleolus is as the site of ribosome-subunit biogenesis in eukaryotic cells. The initial ribosomal RNA (rRNA) precursor is transcribed by RNA polymerase I and is subsequently processed and assembled with the many ribosomal proteins to form ribosome subunits, which are exported to the cytoplasm.

  • The nucleolus is a dynamic structure that disassembles when cells enter mitosis and reassembles following cell division. This involves a complex and highly regulated series of stepwise molecular assembly and disassembly pathways.

  • Nucleoli respond to changes in cellular growth rate and metabolic activity by altering rates of ribosome production, which indicates that they constantly receive and react to signalling events. Various proteins and activities have been shown to associate with the nucleolus specifically at different stages of the cell cycle, which suggests a role for nucleoli in regulating specific aspects of cell-cycle progression.

  • The nucleolus has been linked to several human diseases involving a range of different mechanisms. Multiple genetic disorders have been mapped to human genes that encode proteins that are known to associate with nucleoli, whereas many forms of cancer and viral infections affect nucleolar structure or the biogenesis of ribosomes.

  • As well as its role in coordinating the processing and maturation of rRNAs, several lines of evidence indicate that the nucleolus is also involved in the processing and/or maturation of additional classes of cellular ribonucleoproteins (RNPs), including the signal recognition particle and telomerase reverse transcriptase. This supports a role for the nucleolus as an important centre for RNP biogenesis.

Abstract

The nucleolus is a distinct subnuclear compartment that was first observed more than 200 years ago. Nucleoli assemble around the tandemly repeated ribosomal DNA gene clusters and 28S, 18S and 5.8S ribosomal RNAs (rRNAs) are transcribed as a single precursor, which is processed and assembled with the 5S rRNA into ribosome subunits. Although the nucleolus is primarily associated with ribosome biogenesis, several lines of evidence now show that it has additional functions. Some of these functions, such as regulation of mitosis, cell-cycle progression and proliferation, many forms of stress response and biogenesis of multiple ribonucleoprotein particles, will be discussed, as will the relation of the nucleolus to human diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Model of ribosome biogenesis.
Figure 2: Visualization of the nucleolus.
Figure 3: The nucleolar proteome.
Figure 4: Nucleolar disassembly and reassembly during cell division.
Figure 5: Roles of nucleoli in the cell cycle.
Figure 6: p53 in the nucleolus.
Figure 7: RNA modifications in the nucleolus.

Similar content being viewed by others

References

  1. Fatica, A. & Tollervey, D. Making ribosomes. Curr. Opin. Cell Biol. 14, 313–318 (2002).

    CAS  PubMed  Google Scholar 

  2. Tschochner, H. & Hurt, E. Pre-ribosomes on the road from the nucleolus to the cytoplasm. Trends Cell Biol. 13, 255–263 (2003).

    CAS  PubMed  Google Scholar 

  3. Andersen, J. S. et al. Directed proteomic analysis of the human nucleolus. Curr. Biol. 12, 1–11 (2002).

    PubMed  Google Scholar 

  4. Pendle, A. F. et al. Proteomic analysis of the Arabidopsis nucleolus suggests novel nucleolar functions. Mol. Biol. Cell 16, 260–269 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Scherl, A. et al. Functional proteomic analysis of human nucleolus. Mol. Biol. Cell 13, 4100–4109 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Andersen, J. S. et al. Nucleolar proteome dynamics. Nature 433, 77–83 (2005). A quantitative proteomic approach for the temporal characterization of protein flux through the nucleolus in response to transcription and proteasome inhibitors.

    CAS  PubMed  Google Scholar 

  7. Leung, A. K., Andersen, J. S., Mann, M. & Lamond, A. I. Bioinformatic analysis of the nucleolus. Biochem. J. 376, 553–569 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Coute, Y. et al. Deciphering the human nucleolar proteome. Mass Spectrom. Rev. 25, 215–234 (2006).

    CAS  PubMed  Google Scholar 

  9. Hinsby, A. M. et al. A wiring of the human nucleolus. Mol. Cell 22, 285–295 (2006).

    CAS  PubMed  Google Scholar 

  10. Heix, J. et al. Mitotic silencing of human rRNA synthesis: inactivation of the promoter selectivity factor SL1 by cdc2/cyclin B-mediated phosphorylation. EMBO J. 17, 7373–7381 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Leung, A. K. et al. Quantitative kinetic analysis of nucleolar breakdown and reassembly during mitosis in live human cells. J. Cell Biol. 166, 787–800 (2004). The authors characterize the reproducible and defined temporal order in which nucleolar components reassemble after mitosis.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Roussel, P., Andre, C., Comai, L. & Hernandez-Verdun, D. The rDNA transcription machinery is assembled during mitosis in active NORs and absent in inactive NORs. J. Cell Biol. 133, 235–246 (1996).

    CAS  PubMed  Google Scholar 

  13. Dundr, M., Misteli, T. & Olson, M. O. The dynamics of postmitotic reassembly of the nucleolus. J. Cell Biol. 150, 433–446 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Gautier, T., Robert-Nicoud, M., Guilly, M. N. & Hernandez-Verdun, D. Relocation of nucleolar proteins around chromosomes at mitosis. A study by confocal laser scanning microscopy. J. Cell Sci. 102, 729–737 (1992).

    CAS  PubMed  Google Scholar 

  15. Dimario, P. J. Cell and molecular biology of nucleolar assembly and disassembly. Int. Rev. Cytol. 239, 99–178 (2004).

    CAS  PubMed  Google Scholar 

  16. Dundr, M. et al. Location of the HIV-1 Rev protein during mitosis: inactivation of the nuclear export signal alters the pathway for postmitotic reentry into nucleoli. J. Cell Sci. 109, 2239–2251 (1996).

    CAS  PubMed  Google Scholar 

  17. Sirri, V., Roussel, P. & Hernandez-Verdun, D. In vivo release of mitotic silencing of ribosomal gene transcription does not give rise to precursor ribosomal RNA processing. J. Cell Biol. 148, 259–270 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Savino, T. M., Gebrane-Younes, J., De Mey, J., Sibarita, J. B. & Hernandez-Verdun, D. Nucleolar assembly of the rRNA processing machinery in living cells. J. Cell Biol. 153, 1097–1110 (2001). A directional and dynamic nuclear flow of proteins is described both between PNBs and between PNBs and nucleoli.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Hernandez-Verdun, D. Nucleolus: from structure to dynamics. Histochem. Cell Biol. 125, 127–137 (2006).

    CAS  PubMed  Google Scholar 

  20. Angelier, N. et al. Tracking the interactions of rRNA processing proteins during nucleolar assembly in living cells. Mol. Biol. Cell 16, 2862–2871 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Sirri, V., Hernandez-Verdun, D. & Roussel, P. Cyclin-dependent kinases govern formation and maintenance of the nucleolus. J. Cell Biol. 156, 969–981 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Visintin, R. & Amon, A. The nucleolus: the magician's hat for cell cycle tricks. Curr. Opin. Cell Biol. 12, 752 (2000).

    CAS  PubMed  Google Scholar 

  23. Kroetz, M. B. SUMO: a ubiquitin-like protein modifier. Yale J. Biol. Med. 78, 197–201 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Johnson, E. S. Protein modification by SUMO. Annu. Rev. Biochem. 73, 355–382 (2004).

    CAS  PubMed  Google Scholar 

  25. Gong, L. & Yeh, E. T. Characterization of a family of nucleolar SUMO-specific proteases with preference for SUMO-2 or SUMO-3. J. Biol. Chem. 281, 15869–15877 (2006).

    CAS  PubMed  Google Scholar 

  26. Di Bacco, A. et al. The SUMO-specific protease SENP5 is required for cell division. Mol. Cell. Biol. 26, 4489–4498 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Visintin, R. et al. The phosphatase Cdc14 triggers mitotic exit by reversal of Cdk-dependent phosphorylation. Mol. Cell 2, 709–718 (1998).

    CAS  PubMed  Google Scholar 

  28. Shou, W. et al. Exit from mitosis is triggered by Tem1-dependent release of the protein phosphatase Cdc14 from nucleolar RENT complex. Cell 97, 233–244 (1999).

    CAS  PubMed  Google Scholar 

  29. Azzam, R. et al. Phosphorylation by cyclin B–Cdk underlies release of mitotic exit activator Cdc14 from the nucleolus. Science 305, 516–519 (2004).

    CAS  PubMed  Google Scholar 

  30. D'Amours, D., Stegmeier, F. & Amon, A. Cdc14 and condensin control the dissolution of cohesin-independent chromosome linkages at repeated DNA. Cell 117, 455–469 (2004).

    CAS  PubMed  Google Scholar 

  31. Ceulemans, H. & Bollen, M. Functional diversity of protein phosphatase-1, a cellular economizer and reset button. Physiol. Rev. 84, 1–39 (2004).

    CAS  PubMed  Google Scholar 

  32. Andreassen, P. R., Lacroix, F. B., Villa-Moruzzi, E. & Margolis, R. L. Differential subcellular localization of protein phosphatase-1α, γ1, and δ isoforms during both interphase and mitosis in mammalian cells. J. Cell Biol. 141, 1207–1215 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Trinkle-Mulcahy, L., Sleeman, J. E. & Lamond, A. I. Dynamic targeting of protein phosphatase 1 within the nuclei of living mammalian cells. J. Cell Sci. 114, 4219–4228 (2001).

    CAS  PubMed  Google Scholar 

  34. Trinkle-Mulcahy, L., Chusainow, J., Lam, Y. W., Swift, S. & Lamond, A. Visualization of intracellular pp1 targeting through transiently and stably expressed fluorescent protein fusions. Methods Mol. Biol. 365, 133–154 (2006).

    Google Scholar 

  35. Vagnarelli, P. et al. Condensin and Repo-Man–PP1 co-operate in the regulation of chromosome architecture during mitosis. Nature Cell Biol. 8, 1133–1142 (2006).

    CAS  PubMed  Google Scholar 

  36. Trinkle-Mulcahy, L. & Lamond, A. I. Mitotic phosphatases: no longer silent partners. Curr. Opin. Cell Biol. 18, 623–631 (2006).

    CAS  PubMed  Google Scholar 

  37. Wong, J. M., Kusdra, L. & Collins, K. Subnuclear shuttling of human telomerase induced by transformation and DNA damage. Nature Cell Biol. 4, 731–736 (2002).

    CAS  PubMed  Google Scholar 

  38. Khurts, S. et al. Nucleolin interacts with telomerase. J. Biol. Chem. 279, 51508–51515 (2004).

    CAS  PubMed  Google Scholar 

  39. Prives, C. Signaling to p53: breaking the MDM2–p53 circuit. Cell 95, 5–8 (1998).

    CAS  PubMed  Google Scholar 

  40. Wsierska-Gadek, J. & Horky, M. How the nucleolar sequestration of p53 protein or its interplayers contributes to its (re)-activation. Ann. NY Acad. Sci. 1010, 266–272 (2003).

    PubMed  Google Scholar 

  41. Bertwistle, D., Sugimoto, M. & Sherr, C. J. Physical and functional interactions of the Arf tumor suppressor protein with nucleophosmin/B23. Mol. Cell. Biol. 24, 985–996 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Olson, M. O. J. Sensing cellular stress: another new function for the nucleolus? Sci. STKE 224, pe 10 (2004).

    Google Scholar 

  43. Mayer, C., Bierhoff, H. & Grummt, I. The nucleolus as a stress sensor: JNK2 inactivates the transcription factor TIF-IA and down-regulates rRNA synthesis. Genes Dev. 19, 933–941 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Marciniak, R. A., Lombard, D. B., Johnson, F. B. & Guarente, L. Nucleolar localization of the Werner syndrome protein in human cells. Proc. Natl Acad. Sci. USA 95, 6887–6892 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Brosh, R. M. Jr et al. p53 Modulates the exonuclease activity of Werner syndrome protein. J. Biol. Chem. 276, 35093–35102 (2001).

    CAS  PubMed  Google Scholar 

  46. Isaac, C. et al. Characterization of the nucleolar gene product, treacle, in Treacher Collins syndrome. Mol. Biol. Cell 11, 3061–3071 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Heiss, N. S. et al. Dyskerin localizes to the nucleolus and its mislocalization is unlikely to play a role in the pathogenesis of dyskeratosis congenita. Hum. Mol. Genet. 8, 2515–2524 (1999).

    CAS  PubMed  Google Scholar 

  48. Woo, L. L., Futami, K., Shimamoto, A., Furuichi, Y. & Frank, K. M. The Rothmund–Thomson gene product RECQL4 localizes to the nucleolus in response to oxidative stress. Exp. Cell Res. 312, 3443–3457 (2006).

    CAS  PubMed  Google Scholar 

  49. Bachrati, C. Z. & Hickson, I. D. RecQ helicases: suppressors of tumorigenesis and premature aging. Biochem. J. 374, 577–606 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Yankiwski, V., Marciniak, R. A., Guarente, L. & Neff, N. F. Nuclear structure in normal and Bloom syndrome cells. Proc. Natl Acad. Sci. USA 97, 5214–5219 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Werner, S. R., Prahalad, A. K., Yang, J. & Hock, J. M. RECQL4-deficient cells are hypersensitive to oxidative stress/damage: insights for osteosarcoma prevalence and heterogeneity in Rothmund–Thomson syndrome. Biochem. Biophys. Res. Commun. 345, 403–409 (2006).

    CAS  PubMed  Google Scholar 

  52. Moseley, J. M. et al. Parathyroid hormone-related protein purified from a human lung cancer cell line. Proc. Natl Acad. Sci. USA 84, 5048–5052 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Lam, M. H., Hu, W., Xiao, C. Y., Gillespie, M. T. & Jans, D. A. Molecular dissection of the importin β1-recognized nuclear targeting signal of parathyroid hormone-related protein. Biochem. Biophys. Res. Commun. 282, 629–634 (2001).

    CAS  PubMed  Google Scholar 

  54. Henderson, J. E. et al. Nucleolar localization of parathyroid hormone-related peptide enhances survival of chondrocytes under conditions that promote apoptotic cell death. Mol. Cell. Biol. 15, 4064–4075 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Dittmer, A. et al. Parathyroid hormone-related protein regulates tumor-relevant genes in breast cancer cells. J. Biol. Chem. 281, 14563–14572 (2006).

    CAS  PubMed  Google Scholar 

  56. Choesmel, V. et al. Impaired ribosome biogenesis in Diamond–Blackfan anemia. Blood 109, 1275–1283 (2007). RPS19 is shown to have an essential role in biogenesis of the 40S small ribosome subunit in human cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Wang, C., Query, C. C. & Meier, U. T. Immunopurified small nucleolar ribonucleoprotein particles pseudouridylate rRNA independently of their association with phosphorylated Nopp140. Mol. Cell. Biol. 22, 8457–8466 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Heiss, N. S. et al. X-linked dyskeratosis congenita is caused by mutations in a highly conserved gene with putative nucleolar functions. Nature Genet. 19, 32–38 (1998).

    CAS  PubMed  Google Scholar 

  59. Mitchell, J. R., Wood, E. & Collins, K. A telomerase component is defective in the human disease dyskeratosis congenita. Nature 402, 551–555 (1999).

    CAS  PubMed  Google Scholar 

  60. Montanaro, L. et al. Dyskerin expression influences the level of ribosomal RNA pseudo-uridylation and telomerase RNA component in human breast cancer. J. Pathol. 210, 10–18 (2006).

    CAS  PubMed  Google Scholar 

  61. Ruggero, D. et al. Dyskeratosis congenita and cancer in mice deficient in ribosomal RNA modification. Science 299, 259–262 (2003). Hypomorphic Dkc1 mutant ( Dkc1 m) mice recapitulate the clinical features of dyskeratosis congenita. Dkc1 m cells were impaired in rRNA pseudouridylation before the onset of disease.

    CAS  PubMed  Google Scholar 

  62. Ruggero, D. & Pandolfi, P. P. Does the ribosome translate cancer? Nature Rev. Cancer 3, 179–192 (2003).

    CAS  Google Scholar 

  63. Grandori, C. et al. c-Myc binds to human ribosomal DNA and stimulates transcription of rRNA genes by RNA polymerase I. Nature Cell Biol. 7, 311–318 (2005).

    CAS  PubMed  Google Scholar 

  64. Arabi, A. et al. c-Myc associates with ribosomal DNA and activates RNA polymerase I transcription. Nature Cell Biol. 7, 303–310 (2005).

    CAS  PubMed  Google Scholar 

  65. Kondo, T. et al. Identification and characterization of nucleophosmin/B23/numatrin which binds the anti-oncogenic transcription factor IRF-1 and manifests oncogenic activity. Oncogene 15, 1275–1281 (1997).

    CAS  PubMed  Google Scholar 

  66. Grisendi, S. et al. Role of nucleophosmin in embryonic development and tumorigenesis. Nature 437, 147–153 (2005).

    CAS  PubMed  Google Scholar 

  67. Naoe, T., Suzuki, T., Kiyoi, H. & Urano, T. Nucleophosmin: a versatile molecule associated with hematological malignancies. Cancer Sci. 97, 963–969 (2006).

    CAS  PubMed  Google Scholar 

  68. Ochs, R. L., Stein, T. W. Jr & Tan, E. M. Coiled bodies in the nucleolus of breast cancer cells. J. Cell Sci. 107, 385–399 (1994).

    CAS  PubMed  Google Scholar 

  69. Aydin, H., Zhou, M., Herawi, M. & Epstein, J. I. Number and location of nucleoli and presence of apoptotic bodies in diagnostically challenging cases of prostate adenocarcinoma on needle biopsy. Hum. Pathol. 36, 1172–1177 (2005).

    CAS  PubMed  Google Scholar 

  70. Adeyemi, B. F., Kolude, B. M., Akang, E. E. & Lawoyin, J. O. A study of the utility of silver nucleolar organizer regions in categorization and prognosis of salivary gland tumors. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 102, 513–520 (2006).

    PubMed  Google Scholar 

  71. Dove, B. K. et al. Changes in nucleolar morphology and proteins during infection with the coronavirus infectious bronchitis virus. Cell Microbiol. 8, 1147–1157 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Hiscox, J. A. The nucleolus — a gateway to viral infection? Arch. Virol. 147, 1077–1089 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Ryabov, E. V., Kim, S. H. & Taliansky, M. Identification of a nuclear localization signal and nuclear export signal of the umbraviral long-distance RNA movement protein. J. Gen. Virol. 85, 1329–1333 (2004).

    CAS  PubMed  Google Scholar 

  74. Kim, S. H., Ryabov, E. V., Brown, J. W. & Taliansky, M. Involvement of the nucleolus in plant virus systemic infection. Biochem. Soc. Trans. 32, 557–560 (2004).

    CAS  PubMed  Google Scholar 

  75. Hatanaka, M. Discovery of the nucleolar targeting signal. Bioessays 12, 143–148 (1990).

    CAS  PubMed  Google Scholar 

  76. Bevington, J. M. et al. Adeno-associated virus interactions with B23/nucleophosmin: identification of sub-nucleolar virion regions. Virology 357, 102–113 (2007).

    CAS  PubMed  Google Scholar 

  77. Fankhauser, C., Izaurralde, E., Adachi, Y., Wingfield, P. & Laemmli, U. K. Specific complex of human immunodeficiency virus type 1 Rev and nucleolar B23 proteins: dissociation by the Rev response element. Mol. Cell. Biol. 11, 2567–2575 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Michienzi, A., De Angelis, F. G., Bozzoni, I. & Rossi, J. J. A nucleolar localizing Rev binding element inhibits HIV replication. AIDS Res. Ther. 3, 13 (2006).

    PubMed  PubMed Central  Google Scholar 

  79. Donmez-Altuntas, H. et al. Evaluation of the nucleolar organizer regions in Alzheimer's disease. Gerontology 51, 297–301 (2005).

    PubMed  Google Scholar 

  80. Wills, N. M. & Atkins, J. F. The potential role of ribosomal frameshifting in generating aberrant proteins implicated in neurodegenerative diseases. RNA 12, 1149–1153 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. De Rooij, K. E., Dorsman, J. C., Smoor, M. A., Den Dunnen, J. T. & Van Ommen, G. J. Subcellular localization of the Huntington's disease gene product in cell lines by immunofluorescence and biochemical subcellular fractionation. Hum. Mol. Genet. 5, 1093–1099 (1996).

    CAS  PubMed  Google Scholar 

  82. Gerbi, S. A., Borovjagin, A. V. & Lange, T. S. The nucleolus: a site of ribonucleoprotein maturation. Curr. Opin. Cell Biol. 15, 318–325 (2003).

    CAS  PubMed  Google Scholar 

  83. Kiss, T. Small nucleolar RNAs: an abundant group of noncoding RNAs with diverse cellular functions. Cell 109, 145–148 (2002).

    CAS  PubMed  Google Scholar 

  84. Wang, H., Boisvert, D., Kim, K. K., Kim, R. & Kim, S. H. Crystal structure of a fibrillarin homologue from Methanococcus jannaschii, a hyperthermophile, at 1.6 Å resolution. EMBO J. 19, 317–323 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Henras, A. K., Capeyrou, R., Henry, Y. & Caizergues-Ferrer, M. Cbf5p, the putative pseudouridine synthase of H/ACA-type snoRNPs, can form a complex with Gar1p and Nop10p in absence of Nhp2p and box H/ACA snoRNAs. RNA 10, 1704–1712 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Li, L. & Ye, K. Crystal structure of an H/ACA box ribonucleoprotein particle. Nature 443, 302–307 (2006).

    CAS  PubMed  Google Scholar 

  87. Walter, P. & Johnson, A. E. Signal sequence recognition and protein targeting to the endoplasmic reticulum membrane. Annu. Rev. Cell Biol. 10, 87–119 (1994).

    CAS  PubMed  Google Scholar 

  88. Jacobson, M. R. & Pederson, T. Localization of signal recognition particle RNA in the nucleolus of mammalian cells. Proc. Natl Acad. Sci. USA 95, 7981–7986 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Jacobson, M. R. et al. Nuclear domains of the RNA subunit of RNase P. J. Cell Sci. 110, 829–837 (1997).

    CAS  PubMed  Google Scholar 

  90. Ganot, P., Jady, B. E., Bortolin, M. L., Darzacq, X. & Kiss, T. Nucleolar factors direct the 2′-O-ribose methylation and pseudouridylation of U6 spliceosomal RNA. Mol. Cell. Biol. 19, 6906–6917 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Desterro, J. M. et al. Dynamic association of RNA-editing enzymes with the nucleolus. J. Cell Sci. 116, 1805–1818 (2003).

    CAS  PubMed  Google Scholar 

  92. Vitali, P. et al. ADAR2-mediated editing of RNA substrates in the nucleolus is inhibited by C/D small nucleolar RNAs. J. Cell Biol. 169, 745–753 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Li, C. F. et al. An ARGONAUTE4-containing nuclear processing center colocalized with Cajal bodies in Arabidopsis thaliana. Cell 126, 93–106 (2006).

    CAS  PubMed  Google Scholar 

  94. Pontes, O. et al. The Arabidopsis chromatin-modifying nuclear siRNA pathway involves a nucleolar RNA processing center. Cell 126, 79–92 (2006).

    CAS  PubMed  Google Scholar 

  95. Politz, J. C., Zhang, F. & Pederson, T. MicroRNA-206 colocalizes with ribosome-rich regions in both the nucleolus and cytoplasm of rat myogenic cells. Proc. Natl Acad. Sci. USA 103, 18957–18962 (2006). miR-206 was found to be localized in the cytoplasm and the nucleolus, which suggests that miR-206 can associate both with nascent ribosomes in the nucleolus and with exported, functional ribosomes in the cytoplasm.

    CAS  PubMed  Google Scholar 

  96. Mais, C., Wright, J. E., Prieto, J. L., Raggett, S. L. & McStay, B. UBF-binding site arrays form pseudo-NORs and sequester the RNA polymerase I transcription machinery. Genes Dev. 19, 50–64 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. McStay, B. Nucleolar dominance: a model for rRNA gene silencing. Genes Dev. 20, 1207–1214 (2006).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to B. McStay for providing FISH images and D.P. Bazett-Jones for EF-TEM images. We thank Y. Wah Lam and other members of the Lamond group for advice and for providing images. A.I.L. is a Wellcome Trust Principal Research Fellow. F.-M.B. is supported by a fellowship from the Caledonian Research Foundation and S.V.K. by a fellowship from the Netherlands Organization for Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angus I. Lamond.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

OMIM

Alzheimer's disease

dyskeratosis congenita syndrome

Huntington's disease

FURTHER INFORMATION

Angus I. Lamond's homepage

Glossary

Acrocentric chromosome

A chromosome with a centromere that is located near one end of the chromosome. Humans have five pairs of acrocentric chromosomes.

Small nucleolar ribonucleoproteins

Nucleolar RNA–protein complexes that function in pre-ribosomal RNA processing.

CENP proteins

Proteins that associate with the centromere, the region of a chromosome that is attached to the spindle during nuclear division.

Chromosomal passenger protein

A protein that shares a characteristic pattern of association with chromatin in prophase, centromeres in metaphase and early anaphase, and the midzone and midbody in late anaphase and telophase, respectively.

Cdc14 early anaphase release (FEAR) network

A signalling network in which the role for the protein phosphatase Cdc14 is key in the coordination of the multiple events that occur during anaphase, such as partitioning of the DNA, regulation of spindle stability, activation of microtubule forces and initiation of mitotic exit.

Werner syndrome

A rare autosomal recessive disorder, characterized by the early development of various age-related diseases. The gene that is responsible for Werner syndrome (WRN) encodes a DNA helicase that is homologous to Escherichia coli RecQ.

Bloom syndrome

An autosomal recessive disorder that is characterized by growth deficiency, unusual facial features, sun sensitivity, telangiectatic erythema, immunodeficiency and a predisposition to cancer. BLM, the gene that is mutated in Bloom syndrome, encodes a DNA helicase of the RECQ family.

Rothmund–Thomson syndrome

(RTS). Patients exhibit chromosome fragility, skin and skeletal defects, cataracts and an increased predisposition to osteosarcoma. Some cases of RTS are caused by mutations in the DNA helicase gene RECQL4.

Promyelocytic leukaemia nuclear body

A round nuclear structure that contains several proteins, including the promyelocytic leukaemia protein (PML). It is thought to be the site of recruitment of various proteins and might also have a role in gene transcription.

Cajal body

A round nuclear structure that contains several proteins, including coilin and survival of motor neuron (SMN1). It is thought to be the site of small nuclear ribonucleoprotein assembly and small nuclear RNA maturation.

Small nuclear RNPs

Nuclear RNA–protein complexes that combine with pre-mRNA and various proteins to form the spliceosomes.

Signal recognition particle

A ribonucleoprotein complex that is responsible for the recognition of the N-terminal signal-peptide sequence on nascent proteins and for the proper targeting of proteins onto a receptor on the cytoplasmic face of the endoplasmic reticulum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boisvert, FM., van Koningsbruggen, S., Navascués, J. et al. The multifunctional nucleolus. Nat Rev Mol Cell Biol 8, 574–585 (2007). https://doi.org/10.1038/nrm2184

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2184

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing