Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Histone variants meet their match

Key Points

  • Chromatin is organized into specialized domains, some of which contain specialized histones called variant histones. Variant histones have evolved to carry out functions that are distinct from those of the major core histones.

  • Histones are deposited onto DNA by chaperones. Recent studies have shown that some chaperones recruit specific histone variants for deposition. The chaperones HIRA and SWR1 specifically recruit and exchange the histone variants H3.3 and H2AZ, respectively, whereas the chromatin assembly factor-1 (CAF1) mediates the deposition of the H3.1 major core histone in a process that is coupled to DNA replication.

  • The implications of two modes of deposition of the histones H3 and H4 (that is, tetramers versus dimers) are discussed, as they are important for the transmission of epigenetic information from the mother to the daughter cells.

  • The functions and possible modes of deposition of other variant histones such as CENPA, H2AX and others are also discussed.

  • Both H3.3 and H2AZ have been suggested to function in activated transcription on the basis of their localization to euchromatic loci. Models are proposed whereby histone exchangers coordinate with FACT — a chaperone that has a crucial role in facilitating transcription elongation on chromatin — to allow the incorporation of histone variants during the process of transcription.

  • A model is also presented that addresses CAF1-mediated deposition of histone H3 that is methylated at Lys9, through CAF1 interaction with the histone methyltransferase SUV39H1, which results in the formation of repressive chromatin.

Abstract

A fascinating aspect of how chromatin structure impacts on gene expression and cellular identity is the transmission of information from mother to daughter cells, independently of the primary DNA sequence. This epigenetic information seems to be contained within the covalent modifications of histone polypeptides and the distinctive characteristics of variant histone subspecies. There are specific deposition pathways for some histone variants, which provide invaluable mechanistic insights into processes whereby the major histones are exchanged for their more specialized counterparts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Canonical core histones and their variants.
Figure 2: Synergism between SWR1, HIRA and FACT.
Figure 3: Mechanism of repression by histone-exchange complexes and histone methyltransferases.

Similar content being viewed by others

References

  1. Malik, H. S. & Henikoff, S. Phylogenomics of the nucleosome. Nature Struct. Biol. 10, 882–891 (2003). An outstanding, comprehensive review on the evolution and functions of variant histones.

    CAS  PubMed  Google Scholar 

  2. Kimmins, S. S. & Sassone-Corsi, P. Chromatin remodelling and epigenetic features of germ cells. Nature (in the press).

  3. Jackson, V. In vivo studies on the dynamics of histone–DNA interaction: evidence for nucleosome dissolution during replication and transcription and a low level of dissolution independent of both. Biochemistry 29, 719–731 (1990).

    CAS  PubMed  Google Scholar 

  4. Kimura, H. & Cook, P. R. Kinetics of core histones in living human cells: little exchange of H3 and H4 and some rapid exchange of H2B. J. Cell Biol. 153, 1341–1353 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Lever, M. A., Th'ng, J. P., Sun, X. & Hendzel, M. J. Rapid exchange of histone H1.1 on chromatin in living human cells. Nature 408, 873–876 (2000).

    CAS  PubMed  Google Scholar 

  6. Wilhelm, F. X., Wilhelm, M. L., Erard, M. & Duane, M. P. Reconstitution of chromatin: assembly of the nucleosome. Nucleic Acids Res. 5, 505–521 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Smith, S. & Stillman, B. Stepwise assembly of chromatin during DNA replication in vitro. EMBO J. 10, 971–980 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Sobel, R. E., Cook, R. G., Perry, C. A., Annunziato, A. T. & Allis, C. D. Conservation of deposition-related acetylation sites in newly synthesized histones H3 and H4. Proc. Natl Acad. Sci. USA 92, 1237–1241 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Mello, J. A. & Almouzni, G. The ins and outs of nucleosome assembly. Curr. Opin. Genet. Dev. 11, 136–141 (2001).

    CAS  PubMed  Google Scholar 

  10. Ma, X. J., Wu, J., Altheim, B. A., Schultz, M. C. & Grunstein, M. Deposition-related sites K5/K12 in histone H4 are not required for nucleosome deposition in yeast. Proc. Natl Acad. Sci. USA 95, 6693–6698 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Shibahara, K., Verreault, A. & Stillman, B. The N-terminal domains of histones H3 and H4 are not necessary for chromatin assembly factor-1-mediated nucleosome assembly onto replicated DNA in vitro. Proc. Natl Acad. Sci. USA 97, 7766–7771 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Tyler, J. K. et al. The RCAF complex mediates chromatin assembly during DNA replication and repair. Nature 402, 555–560 (1999).

    CAS  PubMed  Google Scholar 

  13. Nishioka, K. et al. PR-Set7 is a nucleosome-specific methyltransferase that modifies lysine 20 of histone H4 and is associated with silent chromatin. Mol. Cell 9, 1201–1213 (2002).

    CAS  PubMed  Google Scholar 

  14. Rice, J. C. et al. Mitotic-specific methylation of histone H4 Lys 20 follows increased PR-Set7 expression and its localization to mitotic chromosomes. Genes Dev. 16, 2225–2230 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Bracken, A. P. et al. EZH2 is downstream of the pRB–E2F pathway, essential for proliferation and amplified in cancer. EMBO J. 22, 5323–5335 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Loyola, A. & Almouzni, G. Histone chaperones, a supporting role in the limelight. Biochim. Biophys. Acta 1677, 3–11 (2004).

    CAS  PubMed  Google Scholar 

  17. Zalensky, A. O. et al. Human testis/sperm-specific histone H2B (hTSH2B). Molecular cloning and characterization. J. Biol. Chem. 277, 43474–43480 (2002).

    CAS  PubMed  Google Scholar 

  18. Churikov, D. et al. Novel human testis-specific histone H2B encoded by the interrupted gene on the X chromosome. Genomics 84, 745–756 (2004).

    CAS  PubMed  Google Scholar 

  19. Ahmad, K. & Henikoff, S. The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly. Mol. Cell 9, 1191–1200 (2002). Shows the direct visualization of RI incorporation of H3.3 into chromatin.

    CAS  PubMed  Google Scholar 

  20. McKittrick, E., Gafken, P. R., Ahmad, K. & Henikoff, S. Histone H3.3 is enriched in covalent modifications associated with active chromatin. Proc. Natl Acad. Sci. USA 101, 1525–1530 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Tagami, H., Ray-Gallet, D., Almouzni, G. & Nakatani, Y. Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell 116, 51–61 (2004). Describes the existence of unique pre-deposition complexes that mediate the incorporation of histones H3.1 and H3.3.

    CAS  PubMed  Google Scholar 

  22. Adkins, M. W. & Tyler, J. K. The histone chaperone Asf1p mediates global chromatin disassembly in vivo. J. Biol. Chem. 279, 52069–52074 (2004).

    CAS  PubMed  Google Scholar 

  23. Maga, G. & Hubscher, U. Proliferating cell nuclear antigen (PCNA): a dancer with many partners. J. Cell Sci. 116, 3051–3060 (2003).

    CAS  PubMed  Google Scholar 

  24. Moggs, J. G. et al. A CAF-1–PCNA-mediated chromatin assembly pathway triggered by sensing DNA damage. Mol. Cell. Biol. 20, 1206–1218 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Shibahara, K. & Stillman, B. Replication-dependent marking of DNA by PCNA facilitates CAF-1-coupled inheritance of chromatin. Cell 96, 575–585 (1999).

    CAS  PubMed  Google Scholar 

  26. Ray-Gallet, D. et al. HIRA is critical for a nucleosome assembly pathway independent of DNA synthesis. Mol. Cell 9, 1091–1100 (2002).

    CAS  PubMed  Google Scholar 

  27. Mello, J. A. et al. Human Asf1 and CAF-1 interact and synergize in a repair-coupled nucleosome assembly pathway. EMBO Rep. 3, 329–334 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Palmer, D. K., O'Day, K., Wener, M. H., Andrews, B. S. & Margolis, R. L. A 17-kD centromere protein (CENP-A) copurifies with nucleosome core particles and with histones. J. Cell Biol. 104, 805–815 (1987).

    CAS  PubMed  Google Scholar 

  29. Sullivan, K. F., Hechenberger, M. & Masri, K. Human CENP-A contains a histone H3 related histone fold domain that is required for targeting to the centromere. J. Cell Biol. 127, 581–592 (1994).

    CAS  PubMed  Google Scholar 

  30. Howman, E. V. et al. Early disruption of centromeric chromatin organization in centromere protein A (Cenpa) null mice. Proc. Natl Acad. Sci. USA 97, 1148–1153 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Sharp, J. A., Franco, A. A., Osley, M. A. & Kaufman, P. D. Chromatin assembly factor I and Hir proteins contribute to building functional kinetochores in S. cerevisiae. Genes Dev. 16, 85–100 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Wieland, G., Orthaus, S., Ohndorf, S., Diekmann, S. & Hemmerich, P. Functional complementation of human centromere protein A (CENP-A) by Cse4p from Saccharomyces cerevisiae. Mol. Cell. Biol. 24, 6620–6630 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Black, B. E. et al. Structural determinants for generating centromeric chromatin. Nature 430, 578–582 (2004).

    CAS  PubMed  Google Scholar 

  34. Faast, R. et al. Histone variant H2A.Z is required for early mammalian development. Curr. Biol. 11, 1183–1187 (2001).

    CAS  PubMed  Google Scholar 

  35. Clarkson, M. J., Wells, J. R., Gibson, F., Saint, R. & Tremethick, D. J. Regions of variant histone His2AvD required for Drosophila development. Nature 399, 694–697 (1999).

    CAS  PubMed  Google Scholar 

  36. Allis, C. D. et al. hv1 is an evolutionarily conserved H2A variant that is preferentially associated with active genes. J. Biol. Chem. 261, 1941–1948 (1986).

    CAS  PubMed  Google Scholar 

  37. Meneghini, M. D., Wu, M. & Madhani, H. D. Conserved histone variant H2A.Z protects euchromatin from the ectopic spread of silent heterochromatin. Cell 112, 725–736 (2003).

    CAS  PubMed  Google Scholar 

  38. Rusche, L. N., Kirchmaier, A. L. & Rine, J. The establishment, inheritance, and function of silenced chromatin in Saccharomyces cerevisiae. Annu. Rev. Biochem. 72, 481–516 (2003).

    CAS  PubMed  Google Scholar 

  39. Suto, R. K., Clarkson, M. J., Tremethick, D. J. & Luger, K. Crystal structure of a nucleosome core particle containing the variant histone H2A.Z. Nature Struct. Biol. 7, 1121–1124 (2000).

    CAS  PubMed  Google Scholar 

  40. Rangasamy, D., Berven, L., Ridgway, P. & Tremethick, D. J. Pericentric heterochromatin becomes enriched with H2A.Z during early mammalian development. EMBO J. 22, 1599–1607 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Rangasamy, D., Greaves, I. & Tremethick, D. J. RNA interference demonstrates a novel role for H2A.Z in chromosome segregation. Nature Struct. Mol. Biol. 11, 650–655 (2004).

    CAS  Google Scholar 

  42. Mizuguchi, G. et al. ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex. Science 303, 343–348 (2004). Describes the purification of the Swr1 chromatin-remodelling complex that resulted in the recognition of its role in the exchange of H2AZ into chromatin.

    CAS  PubMed  Google Scholar 

  43. Krogan, N. J. et al. A Snf2 family ATPase complex required for recruitment of the histone H2A variant Htz1. Mol. Cell 12, 1565–1576 (2003). Reports the identification of the H2AZ exchange complex Swr1 by a genetic screen that was designed to identify novel genes involved in transcription elongation.

    CAS  PubMed  Google Scholar 

  44. Kobor, M. S. et al. A protein complex containing the conserved Swi2/Snf2-related ATPase Swr1p deposits histone variant H2A.Z into euchromatin. PLoS Biol. 2, E131 (2004). Describes the identification of the Swr1 histone-exchange complex by the biochemical analysis of the interaction partners of H2AZ that facilitate its incorporation into chromatin.

    PubMed  PubMed Central  Google Scholar 

  45. Matangkasombut, O., Buratowski, R. M., Swilling, N. W. & Buratowski, S. Bromodomain factor 1 corresponds to a missing piece of yeast TFIID. Genes Dev. 14, 951–962 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Ebbert, R., Birkmann, A. & Schuller, H. J. The product of the SNF2/SWI2 paralogue INO80 of Saccharomyces cerevisiae required for efficient expression of various yeast structural genes is part of a high-molecular-weight protein complex. Mol. Microbiol. 32, 741–751 (1999).

    CAS  PubMed  Google Scholar 

  47. Park, Y. J., Dyer, P. N., Tremethick, D. J. & Luger, K. A new fluorescence resonance energy transfer approach demonstrates that the histone variant H2AZ stabilizes the histone octamer within the nucleosome. J. Biol. Chem. 279, 24274–24282 (2004).

    CAS  PubMed  Google Scholar 

  48. Fan, J. Y., Gordon, F., Luger, K., Hansen, J. C. & Tremethick, D. J. The essential histone variant H2A.Z regulates the equilibrium between different chromatin conformational states. Nature Struct. Biol. 9, 172–176 (2002).

    CAS  PubMed  Google Scholar 

  49. Belotserkovskaya, R. et al. FACT facilitates transcription-dependent nucleosome alteration. Science 301, 1090–1093 (2003).

    CAS  PubMed  Google Scholar 

  50. Orphanides, G., LeRoy, G., Chang, C. H., Luse, D. S. & Reinberg, D. FACT, a factor that facilitates transcript elongation through nucleosomes. Cell 92, 105–116 (1998).

    CAS  PubMed  Google Scholar 

  51. Downs, J. A., Lowndes, N. F. & Jackson, S. P. A role for Saccharomyces cerevisiae histone H2A in DNA repair. Nature 408, 1001–1004 (2000).

    CAS  PubMed  Google Scholar 

  52. Rogakou, E. P., Pilch, D. R., Orr, A. H., Ivanova, V. S. & Bonner, W. M. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J. Biol. Chem. 273, 5858–5868 (1998).

    CAS  PubMed  Google Scholar 

  53. Stiff, T. et al. ATM and DNA-PK function redundantly to phosphorylate H2AX after exposure to ionizing radiation. Cancer Res. 64, 2390–2396 (2004).

    CAS  PubMed  Google Scholar 

  54. Madigan, J. P., Chotkowski, H. L. & Glaser, R. L. DNA double-strand break-induced phosphorylation of Drosophila histone variant H2Av helps prevent radiation-induced apoptosis. Nucleic Acids Res. 30, 3698–3705 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Celeste, A. et al. Genomic instability in mice lacking histone H2AX. Science 296, 922–927 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Celeste, A. et al. Histone H2AX phosphorylation is dispensable for the initial recognition of DNA breaks. Nature Cell Biol. 5, 675–679 (2003).

    CAS  PubMed  Google Scholar 

  57. Fernandez-Capetillo, O. et al. H2AX is required for chromatin remodeling and inactivation of sex chromosomes in male mouse meiosis. Dev. Cell 4, 497–508 (2003).

    CAS  PubMed  Google Scholar 

  58. Cheung, W. L. et al. Apoptotic phosphorylation of histone H2B is mediated by mammalian sterile twenty kinase. Cell 113, 507–517 (2003).

    CAS  PubMed  Google Scholar 

  59. Fernandez-Capetillo, O., Allis, C. D. & Nussenzweig, A. Phosphorylation of histone H2B at DNA double-strand breaks. J. Exp. Med. 199, 1671–1677 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. de la Barre, A. E., Angelov, D., Molla, A. & Dimitrov, S. The N-terminus of histone H2B, but not that of histone H3 or its phosphorylation, is essential for chromosome condensation. EMBO J. 20, 6383–6393 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Fernandez-Capetillo, O., Lee, A., Nussenzweig, M. & Nussenzweig, A. H2AX: the histone guardian of the genome. DNA Repair (Amst.) 3, 959–967 (2004).

    CAS  Google Scholar 

  62. Pehrson, J. R. & Fried, V. A. MacroH2A, a core histone containing a large nonhistone region. Science 257, 1398–1400 (1992).

    CAS  PubMed  Google Scholar 

  63. Costanzi, C. & Pehrson, J. R. Histone macroH2A1 is concentrated in the inactive X chromosome of female mammals. Nature 393, 599–601 (1998).

    CAS  PubMed  Google Scholar 

  64. Mermoud, J. E., Costanzi, C., Pehrson, J. R. & Brockdorff, N. Histone macroH2A1.2 relocates to the inactive X chromosome after initiation and propagation of X-inactivation. J. Cell Biol. 147, 1399–1408 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Rasmussen, T. P., Mastrangelo, M. A., Eden, A., Pehrson, J. R. & Jaenisch, R. Dynamic relocalization of histone MacroH2A1 from centrosomes to inactive X chromosomes during X inactivation. J. Cell Biol. 150, 1189–1198 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Angelov, D. et al. The histone variant macroH2A interferes with transcription factor binding and SWI/SNF nucleosome remodeling. Mol. Cell 11, 1033–1041 (2003).

    CAS  PubMed  Google Scholar 

  67. Chadwick, B. P., Valley, C. M. & Willard, H. F. Histone variant macroH2A contains two distinct macrochromatin domains capable of directing macroH2A to the inactive X chromosome. Nucleic Acids Res. 29, 2699–2705 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Gautier, T. et al. Histone variant H2ABbd confers lower stability to the nucleosome. EMBO Rep. 5, 715–720 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Bao, Y. et al. Nucleosomes containing the histone variant H2A.Bbd organize only 118 base pairs of DNA. EMBO J. 23, 3314–3324 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Bruno, M. et al. Histone H2A/H2B dimer exchange by ATP-dependent chromatin remodeling activities. Mol. Cell 12, 1599–1606 (2003).

    CAS  PubMed  Google Scholar 

  71. Hirschhorn, J. N., Brown, S. A., Clark, C. D. & Winston, F. Evidence that SNF2/SWI2 and SNF5 activate transcription in yeast by altering chromatin structure. Genes Dev. 6, 2288–2298 (1992).

    CAS  PubMed  Google Scholar 

  72. Mason, P. B. & Struhl, K. The FACT complex travels with elongating RNA polymerase II and is important for the fidelity of transcriptional initiation in vivo. Mol. Cell. Biol. 23, 8323–8333 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Saunders, A. et al. Tracking FACT and the RNA polymerase II elongation complex through chromatin in vivo. Science 301, 1094–1096 (2003).

    CAS  PubMed  Google Scholar 

  74. Endoh, M. et al. Human Spt6 stimulates transcription elongation by RNA polymerase II in vitro. Mol. Cell. Biol. 24, 3324–3336 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Wada, T. et al. DSIF, a novel transcription elongation factor that regulates RNA polymerase II processivity, is composed of human Spt4 and Spt5 homologs. Genes Dev. 12, 343–356 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Hartzog, G. A., Wada, T., Handa, H. & Winston, F. Evidence that Spt4, Spt5, and Spt6 control transcription elongation by RNA polymerase II in Saccharomyces cerevisiae. Genes Dev. 12, 357–369 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Kaplan, C. D., Morris, J. R., Wu, C. & Winston, F. Spt5 and spt6 are associated with active transcription and have characteristics of general elongation factors in D. melanogaster. Genes Dev. 14, 2623–2634 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Andrulis, E. D., Guzman, E., Doring, P., Werner, J. & Lis, J. T. High-resolution localization of Drosophila Spt5 and Spt6 at heat shock genes in vivo: roles in promoter proximal pausing and transcription elongation. Genes Dev. 14, 2635–2649 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Bortvin, A. & Winston, F. Evidence that Spt6p controls chromatin structure by a direct interaction with histones. Science 272, 1473–1476 (1996).

    CAS  PubMed  Google Scholar 

  80. Kaplan, C. D., Laprade, L. & Winston, F. Transcription elongation factors repress transcription initiation from cryptic sites. Science 301, 1096–1099 (2003).

    CAS  PubMed  Google Scholar 

  81. Murzina, N., Verreault, A., Laue, E. & Stillman, B. Heterochromatin dynamics in mouse cells: interaction between chromatin assembly factor 1 and HP1 proteins. Mol. Cell 4, 529–540 (1999).

    CAS  PubMed  Google Scholar 

  82. Yamamoto, K. & Sonoda, M. Self-interaction of heterochromatin protein 1 is required for direct binding to histone methyltransferase, SUV39H1. Biochem. Biophys. Res. Commun. 301, 287–292 (2003).

    CAS  PubMed  Google Scholar 

  83. Quivy, J. P. et al. A CAF-1 dependent pool of HP1 during heterochromatin duplication. EMBO J. 23, 3516–3526 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Rice, J. C. et al. Histone methyltransferases direct different degrees of methylation to define distinct chromatin domains. Mol. Cell 12, 1591–1598 (2003).

    CAS  PubMed  Google Scholar 

  85. Peters, A. H. et al. Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. Mol. Cell 12, 1577–1589 (2003).

    CAS  PubMed  Google Scholar 

  86. Schotta, G. et al. A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin. Genes Dev. 18, 1251–1262 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Heard, E. et al. Methylation of histone H3 at Lys-9 is an early mark on the X chromosome during X inactivation. Cell 107, 727–738 (2001).

    CAS  PubMed  Google Scholar 

  88. Silva, J. et al. Establishment of histone h3 methylation on the inactive X chromosome requires transient recruitment of Eed–Enx1 polycomb group complexes. Dev. Cell 4, 481–495 (2003).

    CAS  PubMed  Google Scholar 

  89. Plath, K. et al. Role of histone H3 lysine 27 methylation in X inactivation. Science 300, 131–135 (2003).

    CAS  PubMed  Google Scholar 

  90. Kohlmaier, A. et al. A chromosomal memory triggered by Xist regulates histone methylation in X inactivation. PLoS Biol. 2, E171 (2004).

    PubMed  PubMed Central  Google Scholar 

  91. Vaquero, A., Loyola, A. & Reinberg, D. The constantly changing face of chromatin. Sci. Aging Knowledge Environ. 2003, RE4 (2003).

    PubMed  Google Scholar 

  92. Zhang, Y. & Reinberg, D. Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev. 15, 2343–2360 (2001).

    CAS  PubMed  Google Scholar 

  93. Turner, B. M. Cellular memory and the histone code. Cell 111, 285–291 (2002).

    CAS  PubMed  Google Scholar 

  94. Jenuwein, T. & Allis, C. D. Translating the histone code. Science 293, 1074–1080 (2001).

    CAS  PubMed  Google Scholar 

  95. Cuthbert, G. L. et al. Histone deimination antagonizes arginine methylation. Cell 118, 545–553 (2004).

    CAS  PubMed  Google Scholar 

  96. Wang, H. et al. mAM facilitates conversion by ESET of dimethyl to trimethyl lysine 9 of histone H3 to cause transcriptional repression. Mol. Cell 12, 475–487 (2003).

    CAS  PubMed  Google Scholar 

  97. Shi, Y. et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119, 941–953 (2004).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Ken Marians, Jerry Hurwitz, Steven Henikoff, Yoshihiro Nakatani and Geneviève Almouzni for helpful discussions. We would also like to thank Lynne Vales for critical reading of the manuscript and members of the Reinberg laboratory for discussions. We apologize to colleagues whose work we have not cited owing to space limitations. This work was supported by grants from the National Institutes of Health and the Howard Hughes Medical Institute to D.R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danny Reinberg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Swiss-Prot

Bdf1

CAF1

CENPA

Cse4

H2ABBD

H2AX

H2AZ

H3.1

H3.2

H3.3

HIRA

macroH2A

PCNA

Swr1

Spt6

FURTHER INFORMATION

Kavitha Sarma's web page

Danny Reinberg's laboratory

Glossary

ORPHAN GENE

A protein-coding region that bears little or no homology to genes in distant species.

HISTONE LYSINE METHYLTRANSFERASE

An enzyme that catalyses the transfer of methyl groups onto the ε-amino residue of lysines in histones.

ALPHA SATELLITE REPEAT

Large highly repetitive stretches of (A+T)-rich DNA sequences in the human genome that are usually untranscribed.

HISTONE CHAPERONE

A protein that escorts histones to DNA for deposition.

CHROMATIN-REMODELLING FACTOR

A protein that alters the dynamic organization of nucleosomes to help in the activation or repression of gene expression.

HISTONE ACETYLTRANSFERASE

An enzyme that catalyses the addition of an acetyl group to specific lysine residues in histones.

MACRONUCLEUS

The larger of the two nuclei in the unicellular ciliate Tetrahymena thermophila. This is the somatic nucleus and is transcriptionally active.

MICRONUCLEUS

The smaller 'germline' nucleus in Tetrahymena thermophila, which is transcriptionally silent.

CONJUGATION

A process of sexual reproduction that occurs in some unicellular organisms and that involves the exchange of genetic material between two cells through a so-called sex pilus.

MATING-TYPE LOCUS

The genomic region in yeast that determines the mating type or 'sex' of the haploid yeast cell.

BROMODOMAIN

An evolutionarily conserved domain that has been shown to bind to acetylated residues.

CHROMATIN IMMUNOPRECIPITATION

(ChIP). A technique by which direct or indirect protein–DNA interactions in chromatin can be studied using antibodies against specific chromosomal proteins.

X INACTIVATION

The process whereby one of the two copies of the X chromosome in female mammals is silenced to compensate for the presence of a single copy in males.

LEUCINE-ZIPPER MOTIF

A leucine-rich protein domain that mediates interactions with other proteins with a similar domain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarma, K., Reinberg, D. Histone variants meet their match. Nat Rev Mol Cell Biol 6, 139–149 (2005). https://doi.org/10.1038/nrm1567

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1567

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing