Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The abc's (and xyz's) of peptide sequencing

Key Points

  • For mass spectrometry (MS) analysis, the proteins of interest are proteolytically digested — the resulting peptides are easier to handle, easier to sequence and have better detection efficiencies than intact proteins.

  • Thousands of peptides can be introduced to the mass spectrometer through 'on-line' capillary chromatography. Using MS, their masses can be measured and they can be fragmented to yield partial amino-acid-sequence information (tandem MS).

  • Powerful algorithms can match the data from tandem MS against possible peptide sequences in amino-acid databases. The resulting protein probability scores need to be studied carefully to avoid over-interpreting the identification results, and unbiased statistical techniques are now helping to address such problems.

  • Protein modifications are amenable to MS analysis, as these modifications normally induce mass shifts. However, due to the substoichiometric amounts of protein modifications, selective enrichment and detection methods are usually necessary and there is no guarantee that the complete primary structure of the protein will be covered.

  • Proteins can be quantified by MS using stable-isotope labels. If the relative abundance of a protein in two samples is to be compared, labelling with stable isotopes is the method of choice. The use of isotopically labelled internal standards is recommended for absolute quantification. However, peak intensities and the number of peptides that are observed during a liquid-chromatography–MS experiment (versus the number of theoretically observable peptides that can be derived from the protein of interest) can also be used to estimate protein abundance.

  • There has been great progress in the proteomic analysis of multiprotein complexes and subcellular organelles. However, routine, in-depth proteome analyses of whole-cell lysates, tissue samples and plasma still elude the dynamic-range capabilities and sensitivity of the instruments that are available at present.

Abstract

Proteomics is an increasingly powerful and indispensable technology in molecular cell biology. It can be used to identify the components of small protein complexes and large organelles, to determine post-translational modifications and in sophisticated functional screens. The key — but little understood — technology in mass-spectrometry-based proteomics is peptide sequencing, which we describe and review here in an easily accessible format.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The mass-spectrometry/proteomic experiment.
Figure 2: The liquid-chromatography–tandem-mass-spectrometry experiment.
Figure 3: Mass-spectrometry traces.
Figure 4: Techniques for the relative quantification of protein populations.

Similar content being viewed by others

References

  1. Wilm, M. et al. Femtomole sequencing of proteins from polyacrylamide gels by nano electrospray mass spectrometry. Nature 379, 466–469 (1996). Showed that MS could identify gel-separated proteins using a much smaller quantity of the sample than was required by chemical techniques such as Edman degradation.

    Article  CAS  Google Scholar 

  2. Tyers, M. & Mann, M. From genomics to proteomics. Nature 422, 193–197 (2003).

    Article  CAS  Google Scholar 

  3. Zhu, H., Bilgin, M. & Snyder, M. Proteomics. Annu. Rev. Biochem. 72, 783–812 (2003).

    Article  CAS  Google Scholar 

  4. Phizicky, E., Bastiaens, P. I., Zhu, H., Snyder, M. & Fields, S. Protein analysis on a proteomic scale. Nature 422, 208–215 (2003).

    Article  CAS  Google Scholar 

  5. Sali, A., Glaeser, R., Earnest, T. & Baumeister, W. From words to literature in structural proteomics. Nature 422, 216–225 (2003).

    Article  CAS  Google Scholar 

  6. Hanash, S. Disease proteomics. Nature 422, 226–232 (2003).

    Article  CAS  Google Scholar 

  7. Aebersold, R. & Mann, M. Mass spectrometry-based proteomics. Nature 422, 198–207 (2003).

    Article  CAS  Google Scholar 

  8. Figeys, D. Proteomics in 2002: a year of technical development and wide-ranging applications. Anal. Chem. 75, 2891–2905 (2003).

    Article  CAS  Google Scholar 

  9. Romijn, E. P., Krijgsveld, J. & Heck, A. J. Recent liquid chromatographic–(tandem) mass spectrometric applications in proteomics. J. Chromatogr. A 1000, 589–608 (2003).

    Article  CAS  Google Scholar 

  10. Lin, D., Tabb, D. L. & Yates, J. R. 3rd. Large-scale protein identification using mass spectrometry. Biochim. Biophys. Acta 1646, 1–10 (2003).

    Article  CAS  Google Scholar 

  11. Wu, C. C. & Yates, J. R. 3rd. The application of mass spectrometry to membrane proteomics. Nature Biotechnol. 21, 262–267 (2003).

    Article  CAS  Google Scholar 

  12. Mann, M. & Jensen, O. N. Proteomic analysis of post-translational modifications. Nature Biotechnol. 21, 255–261 (2003).

    Article  CAS  Google Scholar 

  13. Patterson, S. D. & Aebersold, R. H. Proteomics: the first decade and beyond. Nature Genet. 33 (Suppl.), 311–323 (2003).

    Article  CAS  Google Scholar 

  14. Ferguson, P. L. & Smith, R. D. Proteome analysis by mass spectrometry. Annu. Rev. Biophys. Biomol. Struct. 32, 399–424 (2003).

    Article  CAS  Google Scholar 

  15. Mo, W. & Karger, B. L. Analytical aspects of mass spectrometry and proteomics. Curr. Opin. Chem. Biol. 6, 666–675 (2002).

    Article  CAS  Google Scholar 

  16. Mørtz, E. et al. Sequence tag identification of intact proteins by matching tandem mass spectral data against sequence data bases. Proc. Natl Acad. Sci. USA 93, 8264–8267 (1996).

    Article  Google Scholar 

  17. Horn, D. M., Zubarev, R. A. & McLafferty, F. W. Automated de novo sequencing of proteins by tandem high-resolution mass spectrometry. Proc. Natl Acad. Sci. USA 97, 10313–10317 (2000).

    Article  CAS  Google Scholar 

  18. Sze, S. K., Ge, Y., Oh, H. & McLafferty, F. W. Top-down mass spectrometry of a 29-kDa protein for characterization of any posttranslational modification to within one residue. Proc. Natl Acad. Sci. USA 99, 1774–1779 (2002).

    Article  CAS  Google Scholar 

  19. Taylor, G. K. et al. Web and database software for identification of intact proteins using 'top down' mass spectrometry. Anal. Chem. 75, 4081–4086 (2003).

    Article  CAS  Google Scholar 

  20. Fenn, J. B., Mann, M., Meng, C. K., Wong, S. F. & Whitehouse, C. M. Electrospray ionization for mass spectrometry of large biomolecules. Science 246, 64–71 (1989).

    Article  CAS  Google Scholar 

  21. Lasonder, E. et al. Analysis of the Plasmodium falciparum proteome by high-accuracy mass spectrometry. Nature 419, 537–542 (2002).

    Article  CAS  Google Scholar 

  22. Schirle, M., Heurtier, M. A. & Kuster, B. Profiling core proteomes of human cell lines by 1D PAGE and LC–MS/MS. Mol. Cell. Proteomics 2, 1297–1305 (2003).

    Article  CAS  Google Scholar 

  23. Washburn, M. P., Wolters, D. & Yates, J. R. 3rd. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nature Biotechnol. 19, 242–247 (2001). Established the 'shotgun' technology by showing that many proteins in a yeast-cell lysate could be identified in a single experiment.

    Article  CAS  Google Scholar 

  24. Hillenkamp, F., Karas, M., Beavis, R. C. & Chait, B. T. Matrix-assisted laser desorption/ionization mass spectrometry of biopolymers. Anal. Chem. 63, 1193A–1202A (1991).

    Article  CAS  Google Scholar 

  25. Mann, M. A shortcut to interesting human genes: peptide sequence tags, ESTs and computers. Trends Biochem. Sci. 21, 494–495 (1996).

    Article  CAS  Google Scholar 

  26. Taylor, J. A. & Johnson, R. S. Sequence database searches via de novo peptide sequencing by tandem mass spectrometry. Rapid Commun. Mass Spectrom. 11, 1067–1075 (1997).

    Article  CAS  Google Scholar 

  27. Liska, A. J. & Shevchenko, A. Expanding the organismal scope of proteomics: cross-species protein identification by mass spectrometry and its implications. Proteomics 3, 19–28 (2003). This and other papers from this group address the important issue of using cross-species identification for proteins if the genome of the organism of interest has not been sequenced (see also reference 32).

    Article  CAS  Google Scholar 

  28. Perkins, D. N., Pappin, D. J., Creasy, D. M. & Cottrell, J. S. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20, 3551–3567 (1999).

    Article  CAS  Google Scholar 

  29. MacCoss, M. J., Wu, C. C. & Yates, J. R. 3rd. Probability-based validation of protein identifications using a modified SEQUEST algorithm. Anal. Chem. 74, 5593–5599 (2002).

    Article  CAS  Google Scholar 

  30. Olsen, J. V., Ong, S. E. & Mann, M. Trypsin cleaves exclusively C-terminal to arginine and lysine residues. Mol. Cell. Proteomics 3, 608–614 (2004). Shows that trypsin is an exceedingly specific protease (non-tryptic peptides are produced by protein degradation or by the decomposition of peptides at labile bonds before tandem MS).

    Article  CAS  Google Scholar 

  31. Keller, A. et al. Experimental protein mixture for validating tandem mass spectral analysis. Omics 6, 207–212 (2002).

    Article  CAS  Google Scholar 

  32. Shevchenko, A. et al. Charting the proteomes of organisms with unsequenced genomes by MALDI–quadrupole time-of-flight mass spectrometry and BLAST homology searching. Anal. Chem. 73, 1917–1926 (2001).

    Article  CAS  Google Scholar 

  33. Peng, J., Elias, J. E., Thoreen, C. C., Licklider, L. J. & Gygi, S. P. Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC–MS/MS) for large-scale protein analysis: the yeast proteome. J. Proteome Res. 2, 43–50 (2003). Reports the large-scale identification of yeast proteins and, using searches in sequence-reversed databases, it establishes a statistical description for false-positive identification. Finally, by re-analysing the data with the cut-off values that have been used in some studies, they show that error rates can be very high.

    Article  CAS  Google Scholar 

  34. Keller, A., Nesvizhskii, A. I., Kolker, E. & Aebersold, R. Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal. Chem. 74, 5383–5392 (2002).

    Article  CAS  Google Scholar 

  35. Nesvizhskii, A. I., Keller, A., Kolker, E. & Aebersold, R. A statistical model for identifying proteins by tandem mass spectrometry. Anal. Chem. 75, 4646–4658 (2003).

    Article  CAS  Google Scholar 

  36. Nesvizhskii, A. I. & Aebersold, R. Analysis, statistical validation and dissemination of large-scale proteomics datasets generated by tandem MS. Drug Discov. Today 9, 173–181 (2004). References 34–36 establish an objective and powerful statistical framework to assess the probability of correct protein identification in proteomics experiments. The procedures can be used on any data set independent of the type of mass spectrometer used and could be the basis of a common identification standard in proteomics.

    Article  CAS  Google Scholar 

  37. Barr, J. R. et al. Isotope dilution — mass spectrometric quantification of specific proteins: model application with apolipoprotein A-I. Clin. Chem. 42, 1676–1682 (1996).

    CAS  PubMed  Google Scholar 

  38. Stemmann, O., Zou, H., Gerber, S. A., Gygi, S. P. & Kirschner, M. W. Dual inhibition of sister chromatid separation at metaphase. Cell 107, 715–726 (2001).

    Article  CAS  Google Scholar 

  39. Gerber, S. A., Rush, J., Stemman, O., Kirschner, M. W. & Gygi, S. P. Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc. Natl Acad. Sci. USA 100, 6940–6945 (2003). References 37–39 introduce the so-called 'AQUA' (absolute quantification) technology for absolute peptide quantification, which involves mixing stable-isotope-labelled peptide analogues into the peptide mixture.

    Article  CAS  Google Scholar 

  40. Aebersold, R. Constellations in a cellular universe. Nature 422, 115–116 (2003).

    Article  CAS  Google Scholar 

  41. Lahm, H. W. & Langen, H. Mass spectrometry: a tool for the identification of proteins separated by gels. Electrophoresis 21, 2105–2114 (2000).

    Article  CAS  Google Scholar 

  42. Oda, Y., Huang, K., Cross, F. R., Cowburn, D. & Chait, B. T. Accurate quantitation of protein expression and site-specific phosphorylation. Proc. Natl Acad. Sci. USA 96, 6591–6596 (1999).

    Article  CAS  Google Scholar 

  43. Ong, S. E. et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteomics 1, 376–386 (2002).

    Article  CAS  Google Scholar 

  44. Ong, S. E., Kratchmarova, I. & Mann, M. Properties of 13C-substituted arginine in stable isotope labeling by amino acids in cell culture (SILAC). J. Proteome Res. 2, 173–181 (2003).

    Article  CAS  Google Scholar 

  45. Sechi, S. & Chait, B. T. Modification of cysteine residues by alkylation. A tool in peptide mapping and protein identification. Anal. Chem. 70, 5150–5158 (1998).

    Article  CAS  Google Scholar 

  46. Munchbach, M., Quadroni, M., Miotto, G. & James, P. Quantitation and facilitated de novo sequencing of proteins by isotopic N-terminal labeling of peptides with a fragmentation-directing moiety. Anal. Chem. 72, 4047–4057 (2000).

    Article  CAS  Google Scholar 

  47. Gygi, S. P. et al. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nature Biotechnol. 17, 994–999 (1999). Introduces the ICAT technology — the first demonstration of a global, quantifiable MS technique that is applicable to mammalian samples.

    Article  CAS  Google Scholar 

  48. Tao, W. A. & Aebersold, R. Advances in quantitative proteomics via stable isotope tagging and mass spectrometry. Curr. Opin. Biotechnol. 14, 110–118 (2003).

    Article  CAS  Google Scholar 

  49. Lamond, A. I. & Mann, M. Cell biology and the genome projects — a concerted strategy for characterizing multi-protein complexes using mass spectrometry. Trends Cell Biol. 7, 139–142 (1997).

    Article  CAS  Google Scholar 

  50. Neubauer, G. et al. Identification of the proteins of the yeast U1 small nuclear ribonucleoprotein complex by mass spectrometry. Proc. Natl Acad. Sci. USA 94, 385–390 (1997).

    Article  CAS  Google Scholar 

  51. Ho, Y. et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415, 180–183 (2002).

    Article  CAS  Google Scholar 

  52. Gavin, A. C. et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415, 141–147 (2002). Large-scale immunoprecipitations in references 51 and 52 show that protein–protein interaction maps can be obtained by MS and that much of the yeast cell is organized into protein complexes.

    Article  CAS  Google Scholar 

  53. Dreger, M. Subcellular proteomics. Mass Spectrom. Rev. 22, 27–56 (2003).

    Article  CAS  Google Scholar 

  54. Taylor, S. W., Fahy, E. & Ghosh, S. S. Global organellar proteomics. Trends Biotechnol. 21, 82–88 (2003).

    Article  CAS  Google Scholar 

  55. Brunet, S. et al. Organelle proteomics: looking at less to see more. Trends Cell Biol. 13, 629–638 (2003).

    Article  CAS  Google Scholar 

  56. Blagoev, B. et al. A proteomics strategy to elucidate functional protein–protein interactions applied to EGF signaling. Nature Biotechnol. 21, 315–318 (2003).

    Article  CAS  Google Scholar 

  57. Ranish, J. A. et al. The study of macromolecular complexes by quantitative proteomics. Nature Genet. 33, 349–355 (2003).

    Article  CAS  Google Scholar 

  58. Schulze, W. X. & Mann, M. A novel proteomic screen for peptide–protein interactions. J. Biol. Chem. 279, 10756–10764 (2004). References 56–58 show that quantitative methods can identify functionally important protein interactions in the presence of a large excess of background proteins.

    Article  CAS  Google Scholar 

  59. Andersen, J. S. et al. Proteomic characterization of the human centrosome by protein correlation profiling. Nature 426, 570–574 (2003). Protein-correlation profiling is introduced as a technology to distinguish true members of complexes and organelles from co-purifying background proteins on the basis of their fractionation profiles.

    Article  CAS  Google Scholar 

  60. Gygi, S. P., Rochon, Y., Franza, B. R. & Aebersold, R. Correlation between protein and mRNA abundance in yeast. Mol. Cell. Biol. 19, 1720–1730 (1999).

    Article  CAS  Google Scholar 

  61. Lipton, M. S. et al. Global analysis of the Deinococcus radiodurans proteome by using accurate mass tags. Proc. Natl Acad. Sci. USA 99, 11049–11054 (2002).

    Article  CAS  Google Scholar 

  62. Ideker, T. et al. Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 292, 929–934 (2001).

    Article  CAS  Google Scholar 

  63. Bader, G. D. et al. Functional genomics and proteomics: charting a multidimensional map of the yeast cell. Trends Cell Biol. 13, 344–356 (2003).

    Article  CAS  Google Scholar 

  64. Ghaemmaghami, S. et al. Global analysis of protein expression in yeast. Nature 425, 737–741 (2003).

    Article  CAS  Google Scholar 

  65. Huh, W. K. et al. Global analysis of protein localization in budding yeast. Nature 425, 686–691 (2003).

    Article  CAS  Google Scholar 

  66. Mootha, V. K. et al. Identification of a gene causing human cytochrome c oxidase deficiency by integrative genomics. Proc. Natl Acad. Sci. USA 100, 605–610 (2003).

    Article  CAS  Google Scholar 

  67. Mootha, V. K. et al. Integrated analysis of protein composition, tissue diversity, and gene regulation in mouse mitochondria. Cell 115, 629–640 (2003). References 66 and 67 illustrate the power of combined organelle proteomics and mRNA co-regulation data.

    Article  CAS  Google Scholar 

  68. Karas, M. & Hillenkamp, F. Laser desorption ionization of proteins with molecular mass exceeding 10,000 daltons. Anal. Chem. 60, 2299–2301 (1988).

    Article  CAS  Google Scholar 

  69. Roepstorff, P. & Fohlman, J. Proposal for a common nomenclature for sequence ions in mass spectra of peptides. Biomed. Mass Spectrom. 11, 601 (1984).

    Article  CAS  Google Scholar 

  70. Biemann, K. Mass spectrometry of peptides and proteins. Annu. Rev. Biochem. 61, 977–1010 (1992).

    Article  CAS  Google Scholar 

  71. Zhang, Z. Prediction of low-energy collision-induced dissociation spectra of peptides. Anal. Chem. 76, 3908–3922 (2004).

    Article  CAS  Google Scholar 

  72. Schlosser, A. & Lehmann, W. D. Five-membered ring formation in unimolecular reactions of peptides: a key structural element controlling low-energy collision-induced dissociation of peptides. J. Mass Spectrom. 35, 1382–1390 (2000).

    Article  CAS  Google Scholar 

  73. Steen, H., Kuster, B., Fernandez, M., Pandey, A. & Mann, M. Detection of tyrosine phosphorylated peptides by precursor ion scanning quadrupole TOF mass spectrometry in positive ion mode. Anal. Chem. 73, 1440–1448 (2001).

    Article  CAS  Google Scholar 

  74. Mann, M. & Wilm, M. S. Error tolerant identification of peptides in sequence databases by peptide sequence tags. Anal. Chem. 66, 4390–4399 (1994).

    Article  CAS  Google Scholar 

  75. Eng, J. K., McCormack, A. I. & Yates, J. R. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom. 5, 976–989 (1994).

    Article  CAS  Google Scholar 

  76. Tang, N., Tornatore, P. & Weinberger, S. R. Current developments in SELDI affinity technology. Mass Spectrom. Rev. 23, 34–44 (2004).

    Article  CAS  Google Scholar 

  77. Wulfkuhle, J. D., Liotta, L. A. & Petricoin, E. F. Proteomic applications for the early detection of cancer. Nature Rev. Cancer 3, 267–275 (2003).

    Article  CAS  Google Scholar 

  78. Sorace, J. M. & Zhan, M. A data review and re-assessment of ovarian cancer serum proteomic profiling. BMC Bioinformatics 4, 24 (2003).

    Article  Google Scholar 

  79. Baggerly, K. A., Morris, J. S. & Coombes, K. R. Reproducibility of SELDI–TOF protein patterns in serum: comparing datasets from different experiments. Bioinformatics 20, 777–785 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank our colleagues at the Center for Experimental BioInformatics (CEBI) and Harvard Medical School for fruitful discussions and for critically reading the manuscript. Work at the CEBI is supported by generous grants from the Danish National Research Foundation (Grundforskningsfond) and the European Union sixth framework programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Mann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Related links

Related links

FURTHER INFORMATION

American Society for Mass Spectrometry (ASMS)

Center for Experimental BioInformatics (CEBI)

Human Proteome Organisation (HUPO)

Institute for Systems Biology

SpectroscopyNOW.com, Proteomics

Supplementary material on peptide validation

The Nobel Prize in Chemistry 2002 (for mass spectrometry)

Glossary

MICROSCALE CAPILLARY HPLC COLUMN

High-performance liquid chromatography (HPLC) columns have inner diameters of 50–150 μm and a reversed-phase stationary phase. Reversed phase means that the surface is made using long hydrophobic alkyl chains, so they retain hydrophobic compounds better than hydrophilic ones.

m/z RATIO

(mass-to-charge ratio). Mass spectrometry does not measure the mass of molecules, but instead measures their m/z value. Electrospray ionization, in particular, generates ions with multiple charges, such that the observed m/z value has to be multiplied by z and corrected for the number of attached protons (which equals z) to calculate the molecular weight of a particular peptide.

QUADRUPOLE MASS SPECTROMETER

A mass-selective 'quadrupole section' only allows the passage of ions that have a specific mass to charge (m/z) value by applying a particular sinusoidal potential. Stepping through the m/z range by applying different potentials and detecting the ions that pass through at each m/z value generates the mass spectrum.

TIME OF FLIGHT (TOF) MASS SPECTROMETER

This mass analyser is based on the time it takes ions to travel through an electric-field-free flight tube. In the ion source, all the ions are accelerated to the same kinetic energy. As kinetic energy is a function of mass, the lighter ions fly faster than the heavier ones and therefore reach the detector sooner.

QUADRUPOLE 'ION TRAPS'

In ion traps, the ions are first caught (trapped) in a dynamic electric field and are then sequentially — according to their mass to charge (m/z) value — ejected onto the detector with the help of another electric field. Trapped ions can also be isolated and fragmented within the trap.

DALTON

(Da). The unit of the mass scale, which is defined as one twelfth of the mass of the mono-isotopic form of carbon, 12C (1 Da = 1.6605 × 10−27 kg). Other commonly, but not necessarily correctly, used units of relevance to mass spectrometry are the amu (an atomic mass unit that is based on 16O), the Thomson (the proposed unit for the mass to charge (m/z) scale) and the u ('unit', which is the same as Da).

DE NOVO SEQUENCING

Deriving the amino-acid sequence (primary structure) of a peptide solely from the mass-spectrometry, peptide-fragmentation data (that is, without using databases).

TOTAL ION CURRENT

The sum of all the ion signals in a mass spectrum as a function of elution time.

EXTRACTED ION CURRENT

The sum of the ion signal for a particular mass to charge (m/z) value — that is, for a particular peptide-ion species.

IONIZATION EFFICIENCY

The fraction of peptides in solution that is converted to peptide ions in the gas phase.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steen, H., Mann, M. The abc's (and xyz's) of peptide sequencing. Nat Rev Mol Cell Biol 5, 699–711 (2004). https://doi.org/10.1038/nrm1468

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1468

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing