Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mitochondrial import and the twin-pore translocase

Key Points

  • The membrane-embedded multiprotein complexes of mitochondria mediate the transport of nuclear-encoded proteins across and into the outer or inner mitochondrial membranes.

  • The TOM (translocase of the outer mitochondrial membrane) complex consists of cytosol-exposed receptors and a pore-forming core, and it mediates the transport of proteins from the cytosol across and into the outer mitochondrial membrane. A novel protein complex in the outer membrane of mitochondria, called the SAM complex (sorting and assembly machinery), is involved in the biogenesis of β-barrel proteins of the outer membrane.

  • Two translocases of the inner mitochondrial membrane (TIM complexes) mediate protein transport at the inner membrane. The TIM23 complex (a presequence translocase) mediates the transport of presequence-containing proteins across and into the inner membrane. The TIM22 complex (a twin-pore carrier translocase) catalyses the insertion of multispanning proteins that have internal targeting signals into the inner membrane.

  • The TIM23 complex requires the PAM complex (presequence-translocase-associated motor complex) and a membrane potential

    (Δψ) for the complete transport of proteins into the mitochondrial matrix. The insertion of presequence-containing inner-membrane proteins can be mediated by the TIM23 complex alone or also requires PAM in cases in which the protein enters the matrix space first and is exported into the inner membrane.

  • The TIM22 complex mediates the membrane insertion of multispanning inner-membrane proteins that have internal targeting signals, and it uses a Δψ as an external driving force. Membrane insertion by the TIM22 complex is a multistep process, in which the preprotein initially tethers to the translocase in a step that is independent of Δψ. Subsequently, in steps that require a Δψ, positive charges in the matrix-exposed loops of the precursor protein allow docking in the twin-pore translocase and, eventually, the precursor inserts into the inner membrane.

Abstract

The mitochondrial inner membrane is rich in multispanning integral membrane proteins, most of which mediate the vital transport of molecules between the matrix and the intermembrane space. The correct transport and membrane insertion of such proteins is essential for maintaining the correct exchange of molecules between mitochondria and the rest of the cell. Mitochondria contain several specific complexes — known as translocases — that translocate precursor proteins. Recent analysis of the inner-membrane, twin-pore protein translocase (TIM22 complex) allows a glimpse of the molecular mechanisms by which this machinery triggers protein insertion using the membrane potential as an external driving force.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Protein-import pathways for mitochondrial proteins.
Figure 2: A hypothetical model for membrane insertion by the twin-pore translocase.
Figure 3: The transport of multispanning, inner-membrane proteins that have a presequence.

Similar content being viewed by others

References

  1. Sickmann, A. et al. The proteome of Saccharomyces cerevisiae mitochondria. Proc. Natl Acad. Sci. USA 100, 13207–13212 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Taylor, S. W. et al. Characterization of the human heart mitochondrial proteome. Nature Biotechnol. 21, 281–286 (2003). References 1 and 2 report the most comprehensive analyses so far of the mitochondrial proteome. These studies covered about 90% and 45% of the predicted mitochondrial proteomes of budding yeast and human heart, respectively.

    Article  CAS  Google Scholar 

  3. Westermann, B. & Neupert, W. 'Omics' of the mitochondrion. Nature Biotechnol. 21, 239–240 (2003).

    Article  CAS  Google Scholar 

  4. Truscott, K. N., Brandner, K. & Pfanner, N. Mechanisms of protein import into mitochondria. Curr. Biol. 13, R326–R337 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Schnell, D. J. & Hebert, D. N. Protein translocons. Multifunctional mediators of protein translocation across membranes. Cell 112, 491–505 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Holroyd, C. & Erdmann, R. Protein translocation machineries of peroxisomes. FEBS Lett. 501, 6–10 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Robinson, C., Thompson, S. J. & Woolhead, C. Multiple pathways used for the targeting of thylakoid proteins in chloroplasts. Traffic 2, 245–251 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Soll, J. & Schleiff, E. Protein import into chloroplasts. Nature Rev. Mol. Cell Biol. 5, 198–208 (2004).

    Article  CAS  Google Scholar 

  9. Pfanner, N. & Geissler, A. Versatility of the mitochondrial protein import machinery. Nature Rev. Mol. Cell Biol. 2, 339–349 (2001).

    Article  CAS  Google Scholar 

  10. Neupert, W. Protein import into mitochondria. Annu. Rev. Biochem. 66, 863–917 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Jensen, R. E. & Dunn, C. D. Protein import into and across the mitochondrial inner membrane: role of the TIM23 and TIM22 translocons. Biochim. Biophys. Acta 1592, 25–34 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Koehler, C. M., Merchant, S. & Schatz, G. How membrane proteins travel across the mitochondrial intermembrane space. Trends Biochem. Sci. 24, 428–432 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Endo, T. & Kohda, D. Functions of outer membrane receptors in mitochondrial protein import. Biochim. Biophys. Acta 1592, 3–14 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Abe, Y. et al. Structural basis of presequence recognition by the mitochondrial protein import receptor Tom20. Cell 100, 551–560 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Künkele, K. P. et al. The preprotein translocation channel of the outer membrane of mitochondria. Cell 93, 1009–1019 (1998).

    Article  PubMed  Google Scholar 

  16. Athing, U. et al. The TOM core complex: the general protein import pore of the outer membrane of mitochondria. J. Cell. Biol. 147, 959–968 (1999).

    Article  Google Scholar 

  17. Model, K. et al. Protein translocase of the outer mitochondrial membrane: role of import receptors in the structural organization of the TOM complex. J. Mol. Biol. 316, 657–666 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Hill, K. et al. Tom40 forms the hydrophilic channel of the mitochondrial import pore for preproteins. Nature 395, 516–521 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Esaki, M. et al. Tom40 protein import channel binds to non-native proteins and prevents their aggregation. Nature Struct. Biol. 10, 988–994 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Horwich, A., Kalousek, F., Mellman, I. & Rosenberg, L. E. A leader peptide is sufficent to direct import of a chimeric protein. EMBO J. 4, 1129–1135 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hurt, E. C., Pesold-Hurt, B. & Schatz, G. The cleavable prepiece of an imported mitochondrial protein is sufficient to direct cytosolic dihydrofolate reductase into the mitochondrial matrix. FEBS Lett. 178, 306–310 (1984).

    Article  CAS  PubMed  Google Scholar 

  22. Rehling, P., Pfanner, N. & Meisinger, C. Insertion of hydrophobic membrane proteins into the inner mitochondrial membrane — a guided tour. J. Mol. Biol. 326, 639–657 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Brix, J., Rüdiger, S., Bukau, B., Schneider-Mergener, J. & Pfanner, N. Distribution of binding sequences for the mitochondrial import receptors Tom20, Tom22, Tom70 in a presequence-carrying and a non-cleavable protein. J. Biol. Chem. 274, 16522–16530 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Wiedemann, N., Pfanner, N. & Ryan, M. T. The three modules of ADP/ATP carrier cooperate in receptor recruitment and translocation into mitochondria. EMBO J. 20, 951–960 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Brix, J. et al. The mitochondrial import receptor Tom 70: identification of a 25 kDa core domain with a specific binding site for preproteins. J. Mol. Biol. 303, 479–488 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Bolliger, L., Junne, T., Schatz, G. & Lithgow, T. Acidic receptor domains on both sides of the outer membrane mediate translocation of precursor proteins into yeast mitochondria. EMBO J. 14, 6318–6326 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Moczko, M. et al. The intermembrane space domain of mitochondrial Tom22 functions as a trans binding site for preproteins with N-terminal targeting sequences. Mol. Cell. Biol. 17, 6574–6584 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Emtage, J. L. T. & Jensen, R. E. MAS6 encodes an essential inner membrane component of the yeast mitochondrial protein import pathway. J. Biol. Chem. 122, 1003–1012 (1993).

    CAS  Google Scholar 

  29. Kübrich, M. et al. The polytopic mitochondrial inner membrane proteins MIM17 and MIM23 operate at the same preprotein import site. FEBS Lett. 349, 222–228 (1994).

    Article  PubMed  Google Scholar 

  30. Geissler, A. et al. The mitochondrial presequence translocase: an essential role of Tim50 in directing preproteins to the import channel. Cell 111, 507–518 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Yamamoto, H. et al. Tim50 is a subunit of the TIM23 complex that links protein translocation across the outer and inner mitochondrial membranes. Cell 111, 519–528 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Mokranjac, D. et al. Tim50, a novel component of the TIM23 preprotein translocase of mitochondria. EMBO J. 22, 816–825 (2003). References 30–32 show that Tim50 is a new component of the presequence translocase and that it directs proteins from the outer membrane to the Tim23 pore in the inner membrane.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bauer, M. F., Sirrenberg, C., Neupert, W. & Brunner, M. Role of Tim23 as voltage sensor and presequence receptor in protein import into mitochondria. Cell 87, 33–41 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Komiya, T. et al. Interaction of mitochondrial targeting signals with acidic receptor domains along the protein import pathway: evidence for the 'acid chain' hypothesis. EMBO J. 17, 3886–3898 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Truscott, K. N. et al. A presequence- and voltage-sensitive channel of the mitochondrial preprotein translocase formed by Tim23. Nature Struct. Biol. 8, 1074–1082 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Donzeau, M. et al. Tim23 links the inner and outer mitochondrial membranes. Cell 101, 401–412 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Chacinska, A. et al. Mitochondrial translocation contact sites: separation of dynamic and stabilizing elements in formation of a TOM–TIM–preprotein supercomplex. EMBO J. 22, 5370–5381 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Martin, J., Mahlke, K. & Pfanner, N. Role of an energized inner membrane in mitochondrial protein import: ΔΨ drives the movement of presequences. J. Biol. Chem. 266, 18051–18057 (1991).

    Article  CAS  PubMed  Google Scholar 

  39. Huang, S., Ratliff, K. S. & Matouschek, A. Protein unfolding by the mitochondrial membrane potential. Nature Struct. Biol. 9, 301–307 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Gakh, O., Cavadini, P. & Isaya, G. Mitochondrial processing peptidases. Biochim. Biophys. Acta 1592, 63–77 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Taylor, A. B. et al. Crystal structures of mitochondrial processing peptidase reveal the mode for specific cleavage of import signal sequences. Structure 9, 615–625 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Pfanner, N. & Neupert, W. Distinct steps in the import of ADP/ATP carrier into mitochondria. J. Biol. Chem. 262, 7528–7536 (1987).

    Article  CAS  PubMed  Google Scholar 

  43. Pfanner, N., Tropschug, M. & Neupert, W. Mitochondrial protein import: nucleoside triphosphates are involved in conferring import-competence to precursors. Cell 49, 815–823 (1987). References 42 and 43 show that the import of hydrophobic carrier proteins into mitochondria follows a different mechanism than the import of presequence-containing proteins. Five consecutive carrier transport stages from the cytosol to the inner mitochondrial membrane and their energetic requirements are defined.

    Article  CAS  PubMed  Google Scholar 

  44. Young, J. C., Hoogenraad, N. J. & Hartl, F. U. Molecular chaperones Hsp90 and Hsp70 deliver preproteins to the mitochondrial import receptor Tom70. Cell 112, 41–50 (2003). Shows that Hsp70 and Hsp90 are involved in the transport of carrier proteins from the cytosol to the mitochondrial surface. The outer-membrane receptor Tom70 has a specific binding site for these chaperones.

    Article  CAS  PubMed  Google Scholar 

  45. Söllner, T., Pfaller, R., Griffiths, G., Pfanner, N. & Neupert, W. A mitochondrial import receptor for the ADP/ATP carrier. Cell 62, 107–115 (1990).

    Article  PubMed  Google Scholar 

  46. Ryan, M. T., Müller, H. & Pfanner, N. Functional staging of ADP/ATP carrier translocation across the outer mitochondrial membrane. J. Biol. Chem. 274, 20619–20627 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Curran, S. P., Leuenberger, D., Schmidt, E. & Koehler, C. M. The role of the Tim8p–Tim13p complex in a conserved import pathway for mitochondrial polytopic inner membrane proteins. J. Cell Biol. 158, 1017–1027 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sirrenberg, C. et al. Carrier protein import into mitochondria mediated by the intermembrane proteins Tim10/Mars11 and Tim 12/Mrs5. Nature 391, 912–915 (1998).

    Article  CAS  PubMed  Google Scholar 

  49. Koehler, C. M. et al. Import of mitochondrial carriers mediated by essential proteins of the intermembrane space. Science 279, 369–373 (1998). References 48 and 49 show that the essential mitochondrial proteins Tim10 and Tim12 mediate the transport of carrier proteins across the intermembrane space.

    Article  CAS  PubMed  Google Scholar 

  50. Adam, A. et al. Tim9, a new component of the TIM22.54 translocase. EMBO J. 18, 313–319 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Koehler, C. M. et al. Tim9p, an essential partner subunit of Tim10p for the import of mitochondrial carrier proteins. EMBO J. 17, 6477–6486 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Vasiljev, A. et al. Reconstituted TOM core complex and Tim9/Tim10 complex of mitochondria are sufficient for translocation of the ADP/ATP carrier across membranes. Mol. Biol. Cell 15, 1445–1458 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Curran, S. P., Leuenberger, D., Oppliger, W. & Koehler, C. M. The Tim9p–Tim10p complex binds to the transmembrane domains of the ADP/ATP carrier. EMBO J. 21, 942–953 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Koehler, C. M., Leuenberger, D., Merchant, S., Renold, A. & Junne, T. Human deafness dystonia syndrome is a mitochondrial disease. Proc. Natl Acad. Sci. USA 96, 2141–2146 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Paschen, S. A. et al. The role of the TIM8–13 complex in the import of Tim23 into mitochondria. EMBO J. 19, 6392–6400 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Davis, A. J., Sepuri, N. B., Holder, J., Johnson, A. E. & Jensen, R. E. Two intermembrane space TIM complexes interact with different domains of Tim23p during its import into mitochondria. J. Cell Biol. 150, 1271–1282 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wiedemann, N. et al. Biogenesis of the protein import channel Tom40 of the mitochondrial outer membrane: intermembrane space components are involved in an early stage of the assembly pathway. J. Biol. Chem. 279, 18188–18194 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Hoppins, S. C. & Nargang, F. E. The Tim8–Tim13 complex in Neurospora crassa functions in the assembly of proteins into both mitochondrial membranes. J. Biol. Chem. 279, 12396–12405 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Lutz, T., Neupert, W. & Herrmann, J. M. Import of small Tim proteins into the mitochondrial intermembrane space. EMBO J. 22, 4400–4408 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Allen, S., Lu, H., Thornton, D. & Tokatlidis, K. Juxtaposition of the two distal CX3C motifs via intrachain disulfide bonding is essential for the folding of Tim10. J. Biol. Chem. 278, 38505–38513 (2003).

    Article  CAS  PubMed  Google Scholar 

  61. Koehler, C. M. The small Tim proteins and the twin Cx(3)C motif. Trends Biochem. Sci. 29, 1–4 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Pfanner, N. & Neupert, W. Transport of proteins into mitochondria: a potassium diffusion potential is able to drive the import of ADP/ATP carrier. EMBO J. 4, 2819–2825 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Koehler, C. M. et al. Tim18p, a new subunit of the Tim22 complex that mediates insertion of imported proteins into the yeast mitochondrial inner membrane. Mol. Cell. Biol. 20, 1187–1193 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kerscher, O., Sepuri, N. B. & Jensen, R. E. Tim18p is a new component of the Tim54p–Tim22p translocon in the mitochondrial inner membrane. Mol. Biol. Cell. 11, 103–116 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kerscher, O., Holder, J., Srinivasan, M., Leung, R. S. & Jensen, R. The Tim54p–Tim22p complex mediates insertion of proteins into the mitochondrial inner membrane. J. Cell Biol. 139, 1663–1675 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sirrenberg, C., Bauer, M. F., Guiard, B., Neupert, W. & Brunner, M. Import of carrier proteins into the mitochondrial inner membrane mediated by Tim22. Nature 384, 582–585 (1996). References 65 and 66 identify Tim22 and Tim54 as two inner mitochondrial membrane proteins that are involved in carrier-protein insertion into the inner membrane.

    Article  CAS  PubMed  Google Scholar 

  67. Kovermann, P. et al. Tim22, the essential core of the mitochondrial protein insertion complex, forms a voltage-activated and signal-gated channel. Mol. Cell 9, 363–373 (2002). This work shows that the Tim22 subunit of the carrier translocase (TIM22 complex) forms a voltage-activated pore in the inner mitochondrial membrane.

    Article  CAS  PubMed  Google Scholar 

  68. Rehling, P. et al. Protein insertion into the mitochondria inner membrane by a twin-pore translocase. Science 299, 1747–1751 (2003). This study shows that the carrier translocase (TIM22 complex) forms a twin-pore translocase that uses the membrane potential and three consecutive steps to insert multispanning proteins into the inner membrane.

    Article  CAS  PubMed  Google Scholar 

  69. Endres, M., Neupert, W. & Brunner, B. Transport of the ADP/ATP carrier of mitochondria from the TOM complex to the TIM22.54 complex. EMBO J. 18, 3214–3221 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Truscott, K. N. et al. Mitochondrial import of the ADP/ATP carrier: the essential TIM complex of the intermembrane space is required for precursor release from the TOM complex. Mol. Cell. Biol. 22, 7780–7789 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Káldi, K., Bauer, M. F., Sirrenberg, C., Neupert, W. & Brunner, M. Biogenesis of Tim23 and Tim17, integral components of the TIM machinery for matrix-targeted preproteins. EMBO J. 17, 1569–1576 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Davis, A. J., Ryan, K. R. & Jensen, R. E. Tim23p contains separate and distinct signals for targeting to mitochondria and insertion into the inner membrane. Mol. Biol. Cell. 9, 2577–2593 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Nelson, D. R., Felix, C. M. & Swanson, J. M. Highly conserved charge-pair networks in the mitochondrial carrier family. J. Mol. Biol. 277, 285–308 (1998).

    Article  CAS  PubMed  Google Scholar 

  74. Palmieri, L. et al. Identification and functions of new transporters in yeast mitochondria. Biochim. Biophys. Acta 1459, 363–369 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Pebay-Peyroula, E. et al. Structure of mitochondrial ADP/ATP carrier in complex with carboxyatractyloside. Nature 426, 39–44 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Pfanner, N., Hoeben, P., Tropschug, M. & Neupert, W. The carboxyl-terminal two-thirds of the ADP/ATP carrier polypeptide contains sufficient information to direct translocation into mitochondria. J. Biol. Chem. 262, 14851–14854 (1987).

    Article  CAS  PubMed  Google Scholar 

  77. Smagula, C. & Douglas, M. G. Mitochondrial import of the ADP/ATP carrier protein in Saccharomyces cerevisiae. Sequences required for receptor binding and membrane translocation. J. Biol. Chem. 263, 6783–6790 (1988).

    Article  CAS  PubMed  Google Scholar 

  78. Frazier, A. E. et al. Mitochondria use different mechanisms for transport of multispanning membrane proteins through the intermembrane space. Mol. Cell. Biol. 23, 7818–7828 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Mootha, V. K. et al. Integrated analysis of protein composition, tissue diversity, and gene regulation in mouse mitochondria. Cell 115, 629–640 (2003).

    Article  CAS  PubMed  Google Scholar 

  80. Wiedemann, N. et al. Machinery for protein sorting and assembly in the mitochondrial outer membrane. Nature 424, 565–571 (2003). Reports the identification of a new complex in the mitochondrial outer membrane that is required for the sorting and assembly of β-barrel proteins. Mas37 is shown to be a subunit of this SAM complex.

    Article  CAS  PubMed  Google Scholar 

  81. Kozjak, V. et al. An essential role of Sam50 in the protein sorting and assembly machinery of the mitochondrial outer membrane. J. Biol. Chem. 278, 48520–48523 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Paschen, S. A. et al. Evolutionary conservation of biogenesis of β-barrel membrane proteins. Nature 426, 862–866 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Gentle, I., Gabriel, K., Beech, P., Waller, R. & Lithgow, T. The Omp85 family of proteins is essential for outer membrane biogenesis in mitochondria and bacteria. J. Cell Biol. 164, 19–24 (2004). References 81–83 identify the second subunit of the SAM complex, Sam50 (Tob55/Omp85). The conservation of this subunit indicates that the insertion of β-barrel proteins into the outer membrane of bacteria and mitochondria occurs by a similar mechanism.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Milenkovic, D. et al. Sam35 of the mitochondrial protein sorting and assembly machinery is a peripheral outer membrane protein essential for cell viability. J. Biol. Chem. 279, 22781–22785 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Voulhoux, R., Bos, M. P., Geurtsen, J., Mols, M. & Tommassen, J. Role of a highly conserved bacterial protein in outer membrane protein assembly. Science 299, 262–265 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Model, K. et al. Multistep assembly of the protein import channel of the mitochondrial outer membrane. Nature Struct. Biol. 8, 361–370 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Kang, P. et al. Requirement for Hsp70 in the mitochondrial matrix for translocation and folding of precursor proteins. Nature 348, 137–143 (1990).

    Article  CAS  PubMed  Google Scholar 

  88. Scherer, P. E., Krieg, U. C., Hwang, S. T., Vestweber, D. & Schatz, G. A precursor protein partly translocated into yeast mitochondria is bound to a 70 kd mitochondrial stress protein. EMBO J. 9, 4315–4322 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Schneider, H. C. et al. Mitochondrial Hsp70/MIM44 complex facilitates protein import. Nature 371, 768–774 (1994).

    Article  CAS  PubMed  Google Scholar 

  90. Rassow, J. et al. Mitochondrial protein import: biochemical and genetic evidence for interaction of matrix Hsp70 and the inner membrane protein MIM44. J. Cell Biol. 127, 1547–1556 (1994).

    Article  CAS  PubMed  Google Scholar 

  91. Kronidou, N. G. et al. Dynamic interaction between Isp45 and mitochondrial Hsp70 in the protein import system of the yeast mitochondrial inner membrane. Proc. Natl Acad. Sci. USA 91, 12818–12822 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Voisine, C. et al. The protein import motor of mitochondria: unfolding and trapping of preproteins are distinct and separable functions of matrix Hsp70. Cell 97, 565–574 (1999).

    Article  CAS  PubMed  Google Scholar 

  93. Liu, Q., D'Silva, P., Walter, W., Marszalek, J. & Craig, E. A. Regulated cycling of mitochondrial Hsp70 at the protein import channel. Science 300, 139–141 (2003).

    Article  CAS  PubMed  Google Scholar 

  94. Truscott, K. N. et al. A J-protein is an essential subunit of the presequence translocase-associated protein import motor of mitochondria. J. Cell. Biol. 163, 707–713 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. D'Silva, P. D., Schilke, B., Walter, W., Andrew, A. & Craig, E. A. J protein cochaperone of the mitochondrial inner membrane required for protein import into the mitochondrial matrix. Proc. Natl Acad. Sci. USA 100, 13839–13844 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Mokranjac, D., Sichting, M., Neupert, W. & Hell, K. Tim14, a novel key component of the import motor of the TIM23 protein translocase of mitochondria. EMBO J. 22, 4945–4956 (2003). References 94–96 identify Pam18 (Tim14), a DnaJ-like protein, as a novel constituent of the PAM complex. Pam18 cooperates with mtHsp70 in matrix-protein import and is required for the reaction cycle of mtHsp70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Frazier, A. E. et al. Pam16 has an essential role in the mitochondrial protein import motor. Nature Struct. Mol. Biol. 11, 226–233 (2004).

    Article  CAS  Google Scholar 

  98. Kozany, C., Mokranjac, D., Sichting, M., Neupert, W. & Hell, K. The J-domain related co-chaperone Tim16 is a constituent of the mitochondrial TIM23 preprotein translocase. Nature Struct. Mol. Biol. 11, 234–241 (2004). References 97 and 98 show that Pam16 (Tim16) is part of the PAM complex and is necessary for matrix-protein import. Pam16 is crucial for the association of Pam18 with the presequence translocase.

    Article  CAS  Google Scholar 

  99. Zimmermann, R. & Neupert, W. Transport of proteins into mitochondria. Posttranslational transfer of ADP/ATP carrier into mitochondria in vitro. Eur. J. Biochem. 109, 217–229 (1980).

    Article  CAS  PubMed  Google Scholar 

  100. Zwizinski, C., Schleyer, M. & Neupert, W. Transfer of proteins into mitochondria. Precursor to the ADP/ATP carrier binds to receptor sites on isolated mitochondria. J. Biol. Chem. 258, 4071–4074 (1983).

    Article  CAS  PubMed  Google Scholar 

  101. Rassow, J. & Pfanner, N. Mitochondrial preproteins en route from the outer membrane to the inner membrane are exposed to the intermembrane space. FEBS Lett. 293, 85–88 (1991).

    Article  CAS  PubMed  Google Scholar 

  102. Schägger, H. & von Jagow, G. Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal. Biochem. 199, 223–231 (1991).

    Article  PubMed  Google Scholar 

  103. Dekker, P. J., Müller, H., Rassow, J. & Pfanner, N. Characterization of the preprotein translocase of the outer mitochondrial membrane by blue native electrophoresis. Biol. Chem. 377, 535–538 (1996).

    CAS  PubMed  Google Scholar 

  104. Dekker, P. J. T. et al. The Tim core complex defines the number of mitochondrial translocation contact sites and can hold arrested preproteins in the absence of matrix Hsp70–Tim44. EMBO J. 16, 5408–5419 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Johnston, A. J. et al. Insertion and assembly of human Tom7 into the preprotein translocase complex of the outer mitochondrial membrane. J. Biol. Chem. 277, 42197–42204 (2002).

    Article  CAS  PubMed  Google Scholar 

  106. Yang, T. et al. Crucial step in cholesterol homeostasis: sterols promote binding of SCAP to INSIG-1, a membrane protein that facilitates retention of SREBPs in ER. Cell 110, 489–500 (2002).

    Article  CAS  PubMed  Google Scholar 

  107. Stuart, R. Insertion of proteins into the inner membrane of mitochondria: the role of the Oxa1 complex. Biochim. Biophys. Acta 1592, 79–87 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to A. E. Frazier for critical comments on the manuscript. Work from the authors' laboratory is supported by the Deutsche Forschungsgemeinschaft, the Sonderforschungsbereich 388 Freiburg, Max Planck Research Award, Alexander von Humboldt Foundation, Bundesministerium für Bildung und Forschung and the Fonds der Chemischen Industrie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Rehling.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Saccharomyces genome database

mtHsp70

Pam16

Pam18

Sam35

Sam50

Tim8

Tim9

Tim10

Tim12

Tim13

Tim17

Tim18

Tim22

Tim23

Tim50

Tim54

Tom20

Tom22

Tom40

Tom70

Glossary

MEMBRANE POTENTIAL

The mitochondrial respiratory chain generates a proton gradient across the inner mitochondrial membrane that leads to the formation of an electrochemical potential. This potential is comprised of two components — a chemical potential (ΔpH) and an electrical membrane potential (Δψ). Δψ is the part of the electrochemical potential that functions as a driving force in protein translocation.

HSP90 CHAPERONES

Homodimer-forming chaperones that are composed of subunits that have a molecular mass of 90 kDa. Each subunit has an ATPase domain. Hsp90 proteins recognize specific substrate proteins and stabilize intermediate folding states of the protein.

HSP70 CHAPERONES

Molecular chaperones of about 70 kDa that are composed of a substrate-binding domain and an ATPase domain. Hsp70 molecules interact with hydrophobic segments in unfolded proteins in an ATP-dependent manner and assist in protein folding through consecutive rounds of substrate binding and release.

ZINC-FINGER MOTIF

A motif in proteins that contains conserved cysteine residues. The sulphydryl groups of the cysteines coordinate a Zn2+ ion.

DNAJ-LIKE PROTEINS

Proteins that show similarity to a portion of the Escherichia coli DnaJ protein (the so-called J-domain) and that activate the ATPase activity of Hsp70 chaperones. The tripeptide His-Pro-Asp (HPD motif) is crucial for the ATPase-stimulating activity of the J-domain.

IONOPHORES

Molecules that bind ions and that allow their passage across a membrane barrier by surrounding the charges during the passage of the ion across the lipophilic phase. Ionophores are usually specific for a defined set of ions — for example, protonophores are ionophores that are specific for H+.

ELECTROPHORETIC FORCE

Movement of a protein across the inner mitochondrial membrane can be driven by the electric field that is generated by the membrane potential (Δψ). Positive charges in the protein move towards the negatively charged side of the membrane due to the driving force of the field.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rehling, P., Brandner, K. & Pfanner, N. Mitochondrial import and the twin-pore translocase. Nat Rev Mol Cell Biol 5, 519–530 (2004). https://doi.org/10.1038/nrm1426

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1426

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing