Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Propagation of yeast prions

Key Points

  • Prions are alternative conformers of certain proteins that have the property of promoting the folding or re-folding of the normal form into the prion conformer.

  • This property renders them self-replicating, defined as an increase in numbers by self-copying.

  • In yeast, this property makes prion forms of proteins heritable. Very often, the presence of the prion is associated with a new phenotype, so the protein becomes a genetic determinant. In mammals, the same properties of self-replication and a new phenotype or associated symptoms make it a protein-only agent of infectious disease.

  • The sequences of amino acids in peptides that allow prion conformers to occur have been studied in three yeast proteins. Removal of the so-called prion-forming domain (PrD) removes the ability to form and propagate prions.

  • Like mammalian prions, yeast prions within a single protein family come in more than one self-perpetuating variety, implying that there are different prion conformers possible in any one protein and that each conformer is able to replicate its own structure when converting normal molecules to a prion form.

  • As occurs in mammals, there is a species barrier to prion transmission in yeast. Homologous proteins from different species form their own unique prion conformers, but are mostly unable to convert the homologous protein of a different species to its prion form. The species barrier subsists in a definable region of the prion-forming domains.

  • Yeast prions all depend on the chaperone protein Hsp104 for their propagation, but not for their de novo conversion or incorporation into pre-existing prion aggregates. Other proteins, some of them Hsp70 or Hsp40 chaperones, also affect the stability or creation of prions.

  • All yeast prion-forming proteins so far described contain regions that are rich in glutamine (Q) or asparagine (N) residues, or both. They have this in common with many amyloid-forming proteins that are responsible for, or associated with, a variety of human diseases.

Abstract

Prion proteins have been implicated in various human neurodegenerative disorders and form amyloid deposits in the diseased brain. Uniquely, prion proteins seem to be able to propagate this altered conformational state, generating more of the prion form of the protein and acting as infectious agents. The discovery in yeast of prion proteins that can be inherited stably through generations of cell division provides us with an experimental model that is allowing the mysteries of how prions are propagated to be unravelled.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The yeast prion-forming domain of Sup35.
Figure 2: The yeast prion-forming domain of Ure2.
Figure 3: Overview of yeast prion propagation: concept of propagons, their existence, replication and cell-to-cell transmission.
Figure 4: Model for yeast prion conversion and propagation?

Similar content being viewed by others

References

  1. Prusiner, S. B., Scott, M. R., DeArmond, S. J. & Cohen, F. E. Prion protein biology. Cell 93, 337–348 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Aguzzi, A., Montrasio, F. & Kaeser, P. S. Prions: health scare and biological challenge. Nature Rev. Mol. Cell Biol. 2, 118–126 (2001).

    Article  CAS  Google Scholar 

  3. Wickner, R. B. [URE3] as an altered URE2 protein: evidence for a prion analog in Saccharomyces cerevisiae. Science 264, 566–569 (1994). The authors of this paper suggest — for the first time — that the [ URE3 ] and the [ PSI+] determinants might be prions and provide genetic data that both support this hypothesis for [ URE3 ] and identify the underlying prion protein as Ure2.

    CAS  PubMed  Google Scholar 

  4. Coustou, V., Deleu, C., Saupe, S. & Begueret, J. The protein product of the het-s heterokaryon incompatibility gene of the fungus Podospora anserina behaves as a prion analog. Proc. Natl Acad. Sci. USA 94, 9773–9778 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Eaglestone, S. S., Cox, B. S. & Tuite, M. F. Translation termination efficiency can be regulated in Saccharomyces cerevisiae by environmental stress through a prion-mediated mechanism. EMBO J. 18, 1974–1981 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. True, H. L. & Lindquist, S. L. A yeast prion provides a mechanism for genetic variation and phenotypic diversity. Nature 407, 477–483 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Uptain, S. M. & Lindquist, S. Prions as protein-based genetic elements. Ann. Rev. Microbiol. 56, 703–741 (2002).

    Article  CAS  Google Scholar 

  8. Wickner, R. B. et al. Yeast prions act as genes composed of self-propagating protein amyloids. Adv. Protein Chem. 57, 313–334 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Prusiner, S. B. Novel proteinaceous infectious particles cause scrapie. Science 216, 136–144 (1982).

    Article  CAS  PubMed  Google Scholar 

  10. Cox, B. S. [PSI], a cytoplasmic suppressor of super-suppressors in yeast. Heredity 20, 505–521 (1965).

    Article  Google Scholar 

  11. Lacroute, F. Non-Mendelian mutation allowing ureidosuccinic acid uptake in yeast. J. Bacteriol. 106, 519–522 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Aigle, M. & Lacroute, F. Genetical aspects of [URE3], a non-Mendelian, cytoplasmically-inherited mutation in yeast. Mol. Gen. Genet. 136, 327–335 (1975).

    Article  CAS  PubMed  Google Scholar 

  13. Cox, K. H. et al. Saccharomyces cerevisiae GATA sequences function as TATA elements during nitrogen catabolite repression and when Gln3p is excluded from the nucleus by overproduction of Ure2p. J. Biol. Chem. 275, 17611–17618 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Kulkarni, A. A., Abul-Hamd, A. T., Rai, R., El Berry, H. & Cooper, T. G. Gln3p nuclear localization and interaction with Ure2p in Saccharomyces cerevisiae. J. Biol. Chem. 276, 32136–32144 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Cox, B. S. A recessive lethal super-suppressor mutation in yeast and other psi phenomena. Heredity 26, 211–232 (1971).

    Article  CAS  PubMed  Google Scholar 

  16. Patino, M. M., Liu, J. J., Glover, J. R. & Lindquist, S. Support for the prion hypothesis for inheritance of a phenotypic trait in yeast. Science 273, 622–626 (1996). In addition to showing that Sup35 undergoes an Hsp104-dependent change in state in [ PSI+] cells, the authors also show for the first time that the Sup35 prion-forming domain is modular and can transfer prion properties to another protein — in this case, green fluorescent protein (see also reference 17).

    Article  CAS  PubMed  Google Scholar 

  17. Paushkin, S. V., Kushnirov, V. V., Smirnov, V. N. & Ter-Avanesyan, M. D. Propagation of the yeast prion-like [psi+] determinant is mediated by oligomerization of the SUP35-encoded polypeptide chain release factor. EMBO J. 15, 3127–3134 (1996). The first demonstration that Sup35 aggregation occurs in a [ PSI+]-dependent manner. Also provides data to support the theory that Hsp104 disrupts these aggregates to ensure effective transmission of the prion form of Sup35 during cell division (see also reference 16).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Stansfield, I. et al. The products of the SUP45 (eRF1) and SUP35 genes interact to mediate translation termination in Saccharomyces cerevisiae. EMBO J. 14, 4365–4373 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sondheimer, N. & Lindquist, S. Rnq1: an epigenetic modifier of protein function in yeast. Mol. Cell 5, 163–172 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Osherovich, L. Z. & Weissman, J. S. Multiple Gln/Asn-rich prion domains confer susceptibility to induction of the yeast [PSI+] prion. Cell 106, 183–194 (2001). In demonstrating that the aggregation of the QN-rich regions of two proteins New1 and Rnq1 allow for high-level de novo formation of prion-like aggregates of Sup35, the authors provide an explanation for the molecular basis of the [ PIN+] effect (see also reference 73).

    Article  CAS  PubMed  Google Scholar 

  21. Prusiner, S. B. et al. Further purification and characterization of scrapie prions. Biochemistry 21, 6942–6950 (1982).

    Article  CAS  PubMed  Google Scholar 

  22. Prusiner, S. B. et al. Scrapie prions aggregate to form amyloid-like birefringent rods. Cell 35, 349–358 (1983).

    Article  CAS  PubMed  Google Scholar 

  23. Masison, D. C. & Wickner, R. B. Prion-inducing domain of yeast Ure2p and protease resistance of Ure2p in prion-containing cells. Science 270, 93–95 (1995). The authors show that the Ure2 protein has a 'prion-inducing domain' at its amino terminus that is functionally distinct from the remainder of the protein and show a role for this domain in the regulation of nitrogen assimilation.

    Article  CAS  PubMed  Google Scholar 

  24. Taylor, K. L., Cheng, N., Williams, R. W., Steven, A. C. & Wickner, R. B. Prion domain initiation of amyloid formation in vitro from native Ure2p. Science 283, 1339–1343 (1999).

    CAS  PubMed  Google Scholar 

  25. Schlumpberger, M. et al. The prion domain of yeast Ure2p induces autocatalytic formation of amyloid fibers by a recombinant fusion protein. Protein Sci. 9, 440–451 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Glover, J. R. et al. Self-seeded fibers formed by Sup35, the protein determinant of PSI+, a heritable prion-like factor of S. cerevisiae. Cell 89, 811–819 (1997). By showing that Sup35 in vitro forms protein fibres that have all the biophysical properties of an amyloid, the authors establish that the yeast prion shows remarkably similar properties to a number of proteins implicated in human amyloidoses including transmissible spongiform encephalopathies.

    Article  CAS  PubMed  Google Scholar 

  27. King, C. Y. et al. Prion-inducing domain 2-114 of yeast Sup35 protein transforms in vitro into amyloid-like filaments. Proc. Natl Acad. Sci. USA 94, 6618–6622 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Paushkin, S. V., Kushnirov, V. V., Smirnov, V. N. & Ter-Avanesyan, M. D. In vitro propagation of the prion-like state of yeast Sup35 protein. Science 277, 381–383 (1997). Provides evidence that the aggregated form of Sup35 can seed the polymerization of soluble Sup35 through several consecutive cycles, thereby providing support for the 'protein-only' hypothesis for prion propagation in yeast.

    Article  CAS  PubMed  Google Scholar 

  29. Sparrer, H. E., Santoso, A., Szoka, F. C. & Weissman, J. S. Evidence for the prion hypothesis: induction of the yeast [PSI+] factor by in vitro-converted Sup35 protein. Science 289, 595–599 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Maddelein, M. L., Dos Reis, S., Duvezin-Caubet, S., Coulary-Salin, B. & Saupe, S. J. Amyloid aggregates of the HET-s prion protein are infectious. Proc. Natl Acad. Sci. USA 99, 7402–7407 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Michelitsch, M. D. & Weissman, J. S. A census of glutamine/asparagine-rich regions: implications for their conserved function and the prediction of novel prions. Proc. Natl Acad. Sci. USA 97, 11910–11915 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nakayashiki, T., Ebihara, K., Bannai, H. & Nakamura, Y. Yeast [PSI+] 'prions' that are cross-transmissible and susceptible beyond a species barrier through a quasi-prion state. Mol. Cell 7, 1121–1130 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Ter-Avanesyan, M. D., Dagkesamanskaya, A. R., Kushnirov, V. V. & Smirnov, V. N. The SUP35 omnipotent suppressor gene is involved in the maintenance of the non-Mendelian determinant [psi+] in the yeast Saccharomyces cerevisiae. Genetics 137, 671–676 (1994). The first demonstration that the maintenance of the [ PSI+] prion requires the amino-terminal 114 amino acids of Sup35, thereby providing crucial evidence that Sup35 and the [ PSI+] prion are in some way linked (see also reference 53).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Masison, D. C., Maddelein, M. L. & Wickner, R. B. The prion model for [URE3] of yeast: spontaneous generation and requirements for propagation. Proc. Natl Acad. Sci. USA 94, 12503–12508 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tuite, M. F. Yeast prions and their prion-forming domain. Cell 100, 289–292 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Li, L. & Lindquist, S. Creating a protein-based element of inheritance. Science 287, 661–664 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Maddelein, M. L. & Wickner, R. B. Two prion-inducing regions of Ure2p are non-overlapping. Mol. Cell. Biol. 19, 4516–4524 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Baxa, U., Speransky, V., Steven, A. C. & Wickner, R. B. Mechanism of inactivation on prion conversion of the Saccharomyces cerevisiae Ure2 protein. Proc. Natl Acad. Sci. USA 99, 5253–5260 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lund, P. M. & Cox, B. S. Reversion analysis of [psi] mutations in Saccharomyces cerevisiae. Genet. Res. 37, 173–182 (1981).

    Article  CAS  PubMed  Google Scholar 

  40. Liu, J. J. & Lindquist, S. Oligopeptide-repeat expansions modulate 'protein-only' inheritance in yeast. Nature 400, 573–576 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Derkatch, I. L., Chernoff, Y. O., Kushnirov, V. V., Inge-Vechtomov, S. G. & Liebman, S. W. Genesis and variability of [PSI] prion factors in Saccharomyces cerevisiae. Genetics 144, 1375–1386 (1996). The authors show that overexpression of the amino-terminal region of Sup35 can induce de novo different, but stable, [ PSI+] prions and conclude that these different states might be analogous to the 'strains' reported for mammalian prions.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Derkatch, I. L., Bradley, M. E., Zhou, P., Chernoff, Y. O. & Liebman, S. W. Genetic and environmental factors affecting the de novo appearance of the PSI+ prion in Saccharomyces cerevisiae. Genetics 147, 507–519 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Fernandez-Bellot, E., Guillemet, E. & Cullin, C. The yeast prion [URE3] can be greatly induced by a functional mutated URE2 allele. EMBO J. 19, 3215–3222 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Parham, S. N., Resende, C. G. & Tuite, M. F. Oligopeptide repeats in the yeast protein Sup35p stabilize intermolecular prion interactions. EMBO J. 20, 2111–2119 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Liu, J. J., Sondheimer, N. & Lindquist, S. L. Changes in the middle region of Sup35 profoundly alter the nature of epigenetic inheritance for the yeast prion [PSI+]. Proc. Natl Acad. Sci. USA 99, 16446–16453 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. DePace, A. H., Santoso, A., Hillner, P. & Weissman, J. S. A critical role for amino-terminal glutamine/asparagine repeats in the formation and propagation of a yeast prion. Cell 93, 1241–1252 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Young, C. S. H. & Cox, B. S. Extrachromosomal elements in a super-suppression system of yeast. I. A nuclear gene controlling the inheritance of the extrachromosomal elements. Heredity 26, 413–422 (1971).

    Article  Google Scholar 

  48. Kochneva-Pervukhova, N. V. et al. Mechanism of inhibition of Psi(+) prion determinant propagation by a mutation of the N-terminus of the yeast Sup35 protein. EMBO J. 17, 5805–5810 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. McCready, S. J., Cox, B. S. & McLaughlin, C. S. The extrachromosomal control of nonsense suppression in yeast: an analysis of the elimination of [psi+] in the presence of a nuclear gene PNM. Mol. Gen. Genet. 150, 265–270 (1977).

    Article  CAS  PubMed  Google Scholar 

  50. Kushnirov, V. V. et al. Nucleotide sequence of the Sup2 (Sup35) Gene of Saccharomyces cerevisiae. Gene 66, 45–54 (1988).

    Article  CAS  PubMed  Google Scholar 

  51. Wilson, P. G. & Culbertson, M. R. SUF12 suppressor protein of yeast. A fusion protein related to the EF-1 family of elongation factors. J. Mol. Biol. 199, 559–573 (1988).

    Article  CAS  PubMed  Google Scholar 

  52. Weissmann, C. Molecular genetics of transmissible spongiform encephalopathies. J. Biol. Chem. 274, 3–6 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Doel, S. M., McCready, S. J., Nierras, C. R. & Cox, B. S. The dominant PNM2 mutation which eliminates the psi factor of Saccharomyces cerevisiae is the result of a missense mutation in the SUP35 gene. Genetics 137, 659–670 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Santoso, A., Chien, P., Osherovich, L. Z. & Weissman, J. S. Molecular basis of a yeast prion species barrier. Cell 100, 277–288 (2000). The authors show that Sup35 from related yeast species cannot be seeded by the Saccharomyces cerevisiae Sup35 prion, thereby showing that a 'species barrier' exists for yeast prion propagation.

    Article  CAS  PubMed  Google Scholar 

  55. Chien, P. & Weissman, J. S. Conformational diversity in a yeast prion dictates its seeding specificity. Nature 410, 223–227 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Prusiner, S. B. & Scott, M. R. Genetics of prions. Ann. Rev. Genet. 31, 139–175 (1997).

    Article  CAS  PubMed  Google Scholar 

  57. Chiesa, R., Piccardo, P., Ghetti, B. & Harris, D. A. Neurological illness in transgenic mice expressing a prion protein with an insertional mutation. Neuron 21, 1339–1351 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. Flechsig, E. et al. Prion protein devoid of the octapeptide repeat region restores susceptibility to scrapie in PrP knockout mice. Neuron 27, 399–408 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Pan, K. M. et al. Conversion of α-helices into β-sheets features in the formation of the scrapie prion proteins. Proc. Natl Acad. Sci. USA 90, 10962–10966 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Dobson, C. M. Protein misfolding, evolution and disease. Trends Biochem. Sci. 24, 329–332 (1999).

    Article  CAS  PubMed  Google Scholar 

  61. Kocisko, D. A. et al. Cell-free formation of protease-resistant prion protein. Nature 370, 471–474 (1994).

    Article  CAS  PubMed  Google Scholar 

  62. Come, J. H., Fraser, P. E. & Lansbury, P. T. A kinetic model for amyloid formation in the prion diseases: importance of seeding. Proc. Natl Acad. Sci. USA 90, 5959–5963 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Griffith, J. S. Self-replication and scrapie. Nature 215, 1043–1044 (1967).

    Article  CAS  PubMed  Google Scholar 

  64. Prusiner, S. B. Molecular biology of prion diseases. Science 252, 1515–1522 (1991).

    Article  CAS  PubMed  Google Scholar 

  65. Thual, C. et al. Structural characterization of Saccharomyces cerevisiae prion-like protein Ure2. J. Biol. Chem. 274, 13666–13674 (1999).

    Article  CAS  PubMed  Google Scholar 

  66. Serio, T. R. et al. Nucleated conformational conversion and the replication of conformational information by a prion determinant. Science 289, 1317–1321 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Xu, S., Bevis, B. & Arnsdorf, M. F. The assembly of amyloidogenic yeast sup35 as assessed by scanning (atomic) force microscopy: an analogy to linear colloidal aggregation? Biophys. J. 81, 446–454 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Perutz, M. F. Glutamine repeats and neurodegenerative diseases: molecular aspects. Trends Biochem. Sci. 24, 58–63 (1999).

    Article  CAS  PubMed  Google Scholar 

  69. Perutz, M. F., Johnson, T., Suzuki, M. & Finch, J. T. Glutamine repeats as polar zippers: their possible role in inherited neurodegenerative diseases. Proc. Natl Acad. Sci. USA 91, 5355–5358 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Perutz, M. F., Pope, B. J., Owen, D., Wanker, E. E. & Scherzinger, E. Aggregation of proteins with expanded glutamine and alanine repeats of the glutamine-rich and asparagine-rich domains of Sup35 and of the amyloid β-peptide of amyloid plaques. Proc. Natl Acad. Sci. USA 99, 5596–5600 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Balbirnie, M., Grothe, R. & Eisenberg, D. S. An amyloid-forming peptide from the yeast prion Sup35 reveals a dehydrated β-sheet structure for amyloid. Proc. Natl Acad. Sci. USA 98, 2375–2380 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Derkatch, I. L. et al. Dependence and independence of [PSI+] and [PIN+]: a two-prion system in yeast? EMBO J. 19, 1942–1952 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Derkatch, I. L., Bradley, M. E., Hong, J. Y. & Liebman, S. W. Prions affect the appearance of other prions: the story of [PIN+]. Cell 106, 171–182 (2001). The authors show that the [ PIN+] prion that greatly facilitates the de novo appearance of [ PSI+] reflects the presence of the prion form of either the Ure2 or Rnq1 proteins and suggest a mechanism of cross-seeding to explain the [ PIN+] effect.

    Article  CAS  PubMed  Google Scholar 

  74. Scheibel, T. & Lindquist, S. L. The role of conformational flexibility in prion propagation and maintenance for Sup35p. Nature Struct. Biol. 8, 958–962 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Gazit, E. Global analysis of tandem aromatic octapeptide repeats: the significance of the aromatic-glycine motif. Bioinformatics 18, 880–883 (2002).

    Article  CAS  PubMed  Google Scholar 

  76. Bousset, L., Thomson, N. H., Radford, S. E. & Melki, R. The yeast prion Ure2p retains its native α-helical conformation upon assembly into protein fibrils in vitro. EMBO J. 21, 2903–2911 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Speransky, V. V., Taylor, K. L., Edskes, H. K., Wickner, R. B. & Steven, A. C. Prion filament networks in [URE3] cells of Saccharomyces cerevisiae. J. Cell Biol. 153, 1327–1336 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Bruce, M. E. Scrapie strain variation and mutation. Brit. Med. Bull. 49, 822–838 (1993).

    Article  CAS  PubMed  Google Scholar 

  79. Prusiner, S. B. Prions. Proc. Natl. Acad. Sci. USA 95, 13363–13383 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Caughey, B., Raymond, G. J. & Bessen, R. A. Strain-dependent differences in β-sheet conformations of abnormal prion protein. J. Biol. Chem. 273, 32230–32235 (1998).

    Article  CAS  PubMed  Google Scholar 

  81. Bessen, R. A. & Marsh, R. F. Distinct PrP properties suggest the molecular basis of strain variation in transmissible mink encephalopathy. J. Virol. 68, 7859–7868 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Uptain, S. M., Sawicki, G. J., Caughey, B. & Lindquist, S. Strains of [PSI+] are distinguished by their efficiencies of prion-mediated conformational conversion. EMBO J. 20, 6236–6245 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kochneva-Pervukhova, N. V. et al. [PSI+] prion generation in yeast: characterization of the 'strain' difference. Yeast 18, 489–497 (2001).

    Article  CAS  PubMed  Google Scholar 

  84. Schlumpberger, M., Prusiner, S. B. & Herskowitz, I. Induction of distinct [URE3] yeast prion strains. Mol. Cell. Biol. 21, 7035–7046 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kushnirov, V. V., Kochneva-Pervukhova, N., Chechenova, M. B., Frolova, N. S. & Ter-Avanesyan, M. D. Prion properties of the Sup35 protein of yeast Pichia methanolica. EMBO J. 19, 324–331 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. DePace, A. H. & Weissman, J. S. Origins and kinetic consequences of diversity in Sup35 yeast prion fibers. Nature Struct. Biol. 9, 389–396 (2002).

    CAS  PubMed  Google Scholar 

  87. Tuite, M. F. & Cox, B. S. Ultraviolet mutagenesis studies of [psi], a cytoplasmic determinant of Saccharomyces cerevisiae. Genetics 95, 611–630 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Chernoff, Y. O., Lindquist, S. L., Ono, B., Ingevechtomov, S. G. & Liebman, S. W. Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor Psi(+). Science 268, 880–884 (1995). The first demonstration that changes in the levels of a cellular protein — the molecular chaperone Hsp104 — can profoundly influence the establishment and maintenance of the [ PSI+] prion.

    Article  CAS  PubMed  Google Scholar 

  89. Moriyama, H., Edskes, H. K. & Wickner, R. B. [URE3] prion propagation in Saccharomyces cerevisiae: requirement for chaperone Hsp104 and curing by overexpressed chaperone Ydj1p. Mol. Cell. Biol. 20, 8916–8922 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wegrzyn, R. D., Bapat, K., Newnam, G. P., Zink, A. D. & Chernoff, Y. O. Mechanism of prion loss after Hsp104 inactivation in yeast. Mol. Cell. Biol. 21, 4656–4669 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Parsell, D. A., Kowal, A. S., Singer, M. A. & Lindquist, S. Protein disaggregation mediated by heat-shock protein Hsp104. Nature 372, 475–478 (1994).

    Article  CAS  PubMed  Google Scholar 

  92. Glover, J. R. & Lindquist, S. Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell 94, 73–82 (1998).

    Article  CAS  PubMed  Google Scholar 

  93. Ogura, T. & Wilkinson, A. J. AAA+ superfamily ATPases: common structure — diverse function. Genes Cells 6, 575–597 (2001).

    Article  CAS  PubMed  Google Scholar 

  94. Parsell, D. A., Sanchez, Y., Stitzel, J. D. & Lindquist, S. Hsp104 is a highly conserved protein with two essential nucleotide-binding sites. Nature 353, 270–273 (1991).

    Article  CAS  PubMed  Google Scholar 

  95. Cashikar, A. G. et al. Defining a pathway of communication from the C-terminal peptide binding domain to the N-terminal ATPase domain in a AAA protein. Mol. Cell 9, 751–760 (2002).

    Article  CAS  PubMed  Google Scholar 

  96. Parsell, D. A., Kowal, A. S. & Lindquist, S. Saccharomyces cerevisiae Hsp104 protein. Purification and characterization of ATP-induced structural changes. J. Biol. Chem. 269, 4480–4487 (1994).

    CAS  PubMed  Google Scholar 

  97. Schirmer, E. C. & Lindquist, S. Interactions of the chaperone Hsp104 with yeast Sup35 and mammalian PrP. Proc. Natl Acad. Sci. USA 94, 13932–13937 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Zhou, P., Derkatch, I. L. & Liebman, S. W. The relationship between visible intracellular aggregates that appear after overexpression of Sup35 and the yeast prion-like elements [PSI+] and [PIN+]. Mol. Microbiol. 39, 37–46 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Cox, B. S., Ness, F. & Tuite, M. F. Analysis of the generation and segregation of propagons: entities that propagate the [PSI+] prion in yeast. Genetics 165, 23–33 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Kushnirov, V. V. & Ter-Avanesyan, M. D. Structure and replication of yeast prions. Cell 94, 13–16 (1998).

    Article  CAS  PubMed  Google Scholar 

  101. Newnam, G. P., Wegrzyn, R. D., Lindquist, S. L. & Chernoff, Y. O. Antagonistic interactions between yeast chaperones Hsp104 and Hsp70 in prion curing. Mol. Cell. Biol. 19, 1325–1333 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Jung, G., Jones, G., Wegrzyn, R. D. & Masison, D. C. A role for cytosolic Hsp70 in yeast [PSI+] prion propagation and PSI+ as a cellular stress. Genetics 156, 559–570 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Jones, G. W. & Masison, D. C. Saccharomyces cerevisiae Hsp70 mutations affect [PSI+] prion propagation and cell growth differently and implicate Hsp40 and tetratricopeptide repeat cochaperones in impairment of [PSI+]. Genetics 163, 495–506 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Ness, F., Ferreira, P., Cox, B. S. & Tuite, M. F. Guanidine hydrochloride inhibits the generation of prion 'seeds' but not prion protein aggregation in yeast. Mol. Cell. Biol. 22, 5593–5605 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Chernoff, Y. O., Newnam, G. P., Kumar, J., Allen, K. & Zink, A. D. Evidence for a protein mutator in yeast: Role of the Hsp70-related chaperone Ssb in formation, stability, and toxicity of the PSI prion. Mol. Cell. Biol. 19, 8103–8112 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Chacinska, A. et al. Ssb1 chaperone is a [PSI+] prion-curing factor. Curr. Genet. 39, 62–67 (2001).

    Article  CAS  PubMed  Google Scholar 

  107. Chernoff, Y. O. et al. Evolutionary conservation of prion-forming abilities of the yeast Sup35 protein. Mol. Microbiol. 35, 865–876 (2000).

    Article  CAS  PubMed  Google Scholar 

  108. Kryndushkin, D. S., Smirnov, V. N., Ter-Avanesyan, M. D. & Kushnirov, V. V. Increased expression of Hsp40 chaperones, transcriptional factors, and ribosomal protein Rpp0 can cure yeast prions. J. Biol. Chem. 277, 23702–23708 (2002).

    Article  CAS  PubMed  Google Scholar 

  109. Kushnirov, V. V., Kryndushkin, D. S., Boguta, M., Smirnov, V. N. & Ter-Avanesyan, M. D. Chaperones that cure yeast artificial [PSI+] and their prion-specific effects. Curr. Biol. 10, 1443–1446 (2000).

    Article  CAS  PubMed  Google Scholar 

  110. Bradley, M. E., Edskes, H. K., Hong, J. Y., Wickner, R. B. & Liebman, S. W. Interactions among prions and prion 'strains' in yeast. Proc. Natl Acad. Sci. USA 99, 16392–16399 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Sondheimer, N., Lopez, N., Craig, E. A. & Lindquist, S. The role of Sis1 in the maintenance of the [RNQ+] prion. EMBO J. 20, 2435–2442 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Bailleul, P. A., Newnam, G. P., Steenbergen, J. N. & Chernoff, Y. O. Genetic study of interactions between the cytoskeletal assembly protein sla1 and prion-forming domain of the release factor Sup35 (eRF3) in Saccharomyces cerevisiae. Genetics 153, 81–94 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Holtzman, D. A., Yang, S. & Drubin, D. G. Synthetic-lethal interactions identify two novel genes, SLA1 and SLA2, that control membrane cytoskeleton assembly in Saccharomyces cerevisiae. J. Cell Biol. 122, 635–644 (1993).

    Article  CAS  PubMed  Google Scholar 

  114. Oka, M. et al. Loss of Hsp70-Hsp40 chaperone activity causes abnormal nuclear distribution and aberrant microtubule formation in M-phase of Saccharomyces cerevisiae. J. Biol. Chem. 273, 29727–29737 (1998).

    Article  CAS  PubMed  Google Scholar 

  115. Singh, A., Helms, C. & Sherman, F. Mutation of the non-Mendelian suppressor, Psi+, in yeast by hypertonic media. Proc. Natl Acad. Sci. USA 76, 1952–1956 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Tuite, M. F., Mundy, C. R. & Cox, B. S. Agents that cause a high frequency of genetic change from [psi+] to [psi-] in Saccharomyces cerevisiae. Genetics 98, 691–711 (1981). A number of chemical agents, including the protein denaturant guanidine hydrochloride, are identified by the authors as eliminating [ PSI+] from growing cells, thereby raising the possibility that the [ PSI+] determinant is not nucleic-acid based.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Bailleul-Winslett, P. A., Newnam, G. P., Wegrzyn, R. D. & Chernoff, Y. O. An antiprion effect of the anticytoskeletal drug latrunculin A in yeast. Gene Expr. 9, 145–156 (2000).

    Article  CAS  PubMed  Google Scholar 

  118. Eaglestone, S. S., Ruddock, L. W., Cox, B. S. & Tuite, M. F. Guanidine hydrochloride blocks a critical step in the propagation of the prion-like determinant [PSI+] of Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 97, 240–244 (2000). By using guanidine hydrochloride to block the replication of the [ PSI+] prion, the authors provide evidence of the particulate nature and the random segregation of the prion seeds that are necessary for continued propagation of the [ PSI+] state.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Ferreira, P. C., Ness, F., Edwards, S. R., Cox, B. S. & Tuite, M. F. The elimination of the yeast [PSI+] prion by guanidine hydrochloride is the result of Hsp104 inactivation. Mol. Microbiol. 40, 1357–1369 (2001).

    Article  CAS  PubMed  Google Scholar 

  120. Jung, G. M. & Masison, D. C. Guanidine hydrochloride inhibits Hsp104 activity in vivo: A possible explanation for its effect in curing yeast prions. Curr. Microbiol. 43, 7–10 (2001).

    Article  CAS  PubMed  Google Scholar 

  121. Jung, G. M., Jones, G. & Masison, D. C. Amino acid residue 184 of yeast Hsp104 chaperone is critical for prion-curing by guanidine, prion propagation, and thermotolerance. Proc. Natl Acad. Sci. USA 99, 9936–9941 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Scheibel, T. et al. Conducting nanowires built by controlled self-assembly of amyloid fibers and selective metal deposition. Proc. Natl Acad. Sci. USA 100, 4527–4532 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Jarrett, J. T. & Lansbury, P. T. Seeding 'one-dimensional crystallization' of amyloid: a pathogenic mechanism in Alzheimer's disease and scrapie? Cell 73, 1055–1058 (1993).

    Article  CAS  PubMed  Google Scholar 

  124. Chernoff, Y. O., Derkach, I. L. & Ingevechtomov, S. G. Multicopy Sup35 gene induces de novo appearance of Psi-like factors in the yeast Saccharomyces cerevisiae. Curr. Genet. 24, 268–270 (1993).

    Article  CAS  PubMed  Google Scholar 

  125. Ter-Avanesyan, M. D. et al. Deletion analysis of the SUP35 gene of the yeast Saccharomyces cerevisiae reveals two non-overlapping functional regions in the encoded protein. Mol. Microbiol. 7, 683–692 (1993).

    Article  CAS  PubMed  Google Scholar 

  126. Bousset, L., Belrhali, H., Melki, R. & Morera, S. Crystal structures of the yeast prion Ure2p functional region in complex with glutathione and related compounds. Biochemistry 40, 13564–13573 (2001).

    Article  CAS  PubMed  Google Scholar 

  127. Coschigano, P. W. & Magasanik, B. The URE2 gene product of Saccharomyces cerevisiae plays an important role in the cellular response to the nitrogen source and has homology to glutathione S-transferases. Mol. Cell. Biol. 11, 822–832 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Perrett, S., Freeman, S. J., Butler, P. J. & Fersht, A. R. Equilibrium folding properties of the yeast prion protein determinant Ure2. J. Mol. Biol. 290, 331–345 (1999).

    Article  CAS  PubMed  Google Scholar 

  129. Thual, C. et al. Stability, folding, dimerization, and assembly properties of the yeast prion Ure2p. Biochemistry 40, 1764–1773 (2001).

    Article  CAS  PubMed  Google Scholar 

  130. Edskes, H. K., Gray, V. T. & Wickner, R. B. The [URE3] prion is an aggregated form of Ure2p that can be cured by overexpression of Ure2p fragments. Proc. Natl Acad. Sci. USA 96, 1498–1503 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Kryndushkin, D. S., Alexandrov, I. M., Ter-Avanesyan M. D. & Kushnirov, V. V. Yeast [PSI+] prion aggregates are formed by small Sup35 polymers fragmented by Hsp104. J. Biol. Chem. Sep 24 2003 (doi:10.1074).

Download references

Acknowledgements

The authors' work on yeast prions has received long-term support from the Wellcome Trust and the Biotechnology and Biological Sciences Research Council. We would like to thank members of the Tuite laboratory for their comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mick F. Tuite.

Related links

Related links

DATABASES

SwissProt

Het-s

PrP

Saccharomyces Genome Database

Hsp104

Rnq1

Sla1

SSA1

Ssb1

Ssb2

SUP4

SUP16

SUP35

URE2

FURTHER INFORMATION

Mick Tuite's laboratory

Glossary

EPIGENETIC

Any heritable influence (in the progeny of cells or of individuals) on chromosome or gene function that is not accompanied by a change in DNA sequence.

OCHRE SUPPRESSOR

Mutations usually in a transfer RNA gene that allow insertion of one of several alternative amino acids into a polypeptide chain at the site of a premature ochre (UAA) chain-termination codon.

AMYLOID FIBRES

Insoluble, relatively inert fibres that are resistant to proteolysis, made from proteins in a β-pleated structure.

BIOLISTIC TRANSFORMATION

A method for introducing DNA (or in this case prion proteins) into the cell by bombardment with DNA- (or protein)-coated gold or tungsten particles.

DOMINANT-NEGATIVE

A dominant mutant allele of a gene that confers the phenotype of a null mutation in that gene.

HOMOPOLYMER TRACT

A region of any polymer that is made up of only one type of constitutional repeating unit. Cellulose, for example, contains only glucose as the monomeric unit.

SONICATION

The process by which samples are exposed to ultrasonic pressure waves (20 kHz) to disperse material into smaller aggregates or assemblies.

CHAPERONE

A protein that facilitates protein folding or promotes assembly of multisubunit complexes. Chaperones can also prevent aggregation of unassembled protein subunits or of partially folded protein domains or they can disaggregate previously formed aggregates.

AAA+ SUPERFAMILY

A family of proteins that share a homologous ATPase module. Proteins from this family participate in diverse cellular processes, including membrane traffic, proteolysis, DNA replication and chaperone functions.

NANOTECHNOLOGY

Any technological development that exceeds standard lower size limits of modern microfabrication techniques (hundreds of nanometres or less).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tuite, M., Cox, B. Propagation of yeast prions. Nat Rev Mol Cell Biol 4, 878–890 (2003). https://doi.org/10.1038/nrm1247

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1247

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing