Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Diverse cellular and molecular mechanisms contribute to epithelial plasticity and metastasis

Abstract

In contrast to the aberrant control of proliferation, apoptosis, angiogenesis and lifespan, the cellular mechanisms that cause local invasion and metastasis of tumour cells are still poorly understood. New experimental approaches have identified different types of epithelial-plasticity changes in tumour cells towards fibroblastoid phenotypes as crucial events that occur during metastasis, and many molecules and signalling pathways cooperate to trigger these processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Diversity of epithelial phenotypes.
Figure 2: Multiparameter analysis of epithelial-plasticity phenotypes in 3D collagen gel cultures.
Figure 3: Different Ras downstream signalling pathways contribute to distinct tumour phenotypes in vivo.
Figure 4: Signalling networks regulating carcinoma progression.

Similar content being viewed by others

References

  1. Hunter, T. Oncoprotein networks. Cell 88, 333–346 (1997).

    Article  CAS  Google Scholar 

  2. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  Google Scholar 

  3. Elenbaas, B. & Weinberg, R. A. Heterotypic signaling between epithelial tumor cells and fibroblasts in carcinoma formation. Exp. Cell Res. 264, 169–184 (2001).

    Article  CAS  Google Scholar 

  4. Thiery, J. P. Epithelial–mesenchymal transitions in tumour progression. Nature Rev. Cancer 2, 442–454 (2002).

    Article  CAS  Google Scholar 

  5. Cordon-Cardo, C. & Prives, C. At the crossroads of inflammation and tumorigenesis. J. Exp. Med. 190, 1367–1370 (1999).

    Article  CAS  Google Scholar 

  6. Hay, E. D. An overview of epithelio–mesenchymal transition. Acta Anat. 154, 8–20 (1995).

    Article  CAS  Google Scholar 

  7. Viebahn, C. Epithelio–mesenchymal transformation during formation of the mesoderm in the mammalian embryo. Acta Anat. 154, 79–97 (1995).

    Article  CAS  Google Scholar 

  8. Sun, D., Baur, S. & Hay, E. D. Epithelial–mesenchymal transformation is the mechanism for fusion of the craniofacial primordia involved in morphogenesis of the chicken lip. Dev. Biol. 228, 337–349 (2000).

    Article  CAS  Google Scholar 

  9. Martinez-Alvarez, C. et al. Medial edge epithelial cell fate during palatal fusion. Dev. Biol. 220, 343–357 (2000).

    Article  CAS  Google Scholar 

  10. Duband, J. L., Monier, F., Delannet, M. & Newgreen, D. Epithelium–mesenchyme transition during neural crest development. Acta Anat. 154, 63–78 (1995).

    Article  CAS  Google Scholar 

  11. Knight, D. Epithelium–fibroblast interactions in response to airway inflammation. Immunol. Cell Biol. 79, 160–164 (2001).

    Article  CAS  Google Scholar 

  12. Alpers, C. E. et al. Localization of SPARC in developing, mature, and chronically injured human allograft kidneys. Kidney Int. 62, 2073–2086 (2002).

    Article  CAS  Google Scholar 

  13. Yang, J. & Liu, Y. Blockage of tubular epithelial to myofibroblast transition by hepatocyte growth factor prevents renal interstitial fibrosis. J. Am. Soc. Nephrol. 13, 96–107 (2002).

    CAS  PubMed  Google Scholar 

  14. Petersen, O. W. et al. Epithelial to mesenchymal transition in human breast cancer can provide a nonmalignant stroma. Am. J. Pathol. 162, 391–402 (2003).

    Article  CAS  Google Scholar 

  15. Putz, E. et al. Phenotypic characteristics of cell lines derived from disseminated cancer cells in bone marrow of patients with solid epithelial tumors: establishment of working models for human micrometastases. Cancer Res. 59, 241–248 (1999).

    CAS  Google Scholar 

  16. Brabletz, T. et al. Variable β-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proc. Natl Acad. Sci. USA 98, 10356–10361 (2001).

    Article  CAS  Google Scholar 

  17. Oft, M., Heider, K. H. & Beug, H. TGFβ signalling is essential for carcinoma cell invasiveness and metastasis. Curr. Biol. 8, 1243–1252 (1998).

    Article  CAS  Google Scholar 

  18. Janda, E. et al. Ras and TGFβ cooperatively regulate epithelial cell plasticity and metastasis: dissection of Ras signaling pathways. J. Cell Biol. 156, 299–313 (2002).

    Article  CAS  Google Scholar 

  19. Fialka, I. et al. The estrogen-dependent c-JunER protein causes a reversible loss of mammary epithelial cell polarity involving a destabilization of adherens junctions. J. Cell Biol. 132, 1115–1132 (1996).

    Article  CAS  Google Scholar 

  20. Oft, M. et al. TGFβ1 and Ha-Ras collaborate in modulating the phenotypic plasticity and invasiveness of epithelial tumor cells. Genes Dev. 10, 2462–2477 (1996).

    Article  CAS  Google Scholar 

  21. Janda, E., Litos, G., Grunert, S., Downward, J. & Beug, H. Oncogenic Ras/Her-2 mediate hyperproliferation of polarized epithelial cells in 3D cultures and rapid tumor growth via the PI3K pathway. Oncogene 21, 5148–5159 (2002).

    Article  CAS  Google Scholar 

  22. Lehmann, K. et al. Raf induces TGFβ production while blocking its apoptotic but not invasive responses: a mechanism leading to increased malignancy in epithelial cells. Genes Dev. 14, 2610–2622 (2000).

    Article  CAS  Google Scholar 

  23. Gotzmann, J. et al. Hepatocytes convert to a fibroblastoid phenotype through the cooperation of TGF-β1 and Ha-Ras: steps towards invasiveness. J. Cell Sci. 115, 1189–1202 (2002).

    CAS  PubMed  Google Scholar 

  24. Miettinen, P. J., Ebner, R., Lopez, A. R. & Derynck, R. TGF-β induced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type I receptors. J. Cell Biol. 127, 2021–2036 (1994).

    Article  CAS  Google Scholar 

  25. Piek, E., Moustakas, A., Kurisaki, A., Heldin, C. H. & ten Dijke, P. TGF-β type I receptor/ALK-5 and Smad proteins mediate epithelial to mesenchymal transdifferentiation in NMuMG breast epithelial cells. J. Cell Sci. 112, 4557–4568 (1999).

    CAS  PubMed  Google Scholar 

  26. Bakin, A. V., Tomlinson, A. K., Bhowmick, N. A., Moses, H. A. & Arteaga, C. L. Phosphatidylinositol 3-kinase function is required for transforming growth factor β-mediated epithelial to mesenchymal transition and cell migration. J. Biol. Chem. 275, 36803–36810 (2000).

    Article  CAS  Google Scholar 

  27. Bhowmick, N. A. et al. Transforming growth factor-β1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism. Mol. Biol. Cell 12, 27–36 (2001).

    Article  CAS  Google Scholar 

  28. Sun, D., Vanderburg, C. R., Odierna, G. S. & Hay, E. D. TGFβ3 promotes transformation of chicken palate medial edge epithelium to mesenchyme in vitro. Development 125, 95–105 (1998).

    CAS  PubMed  Google Scholar 

  29. Cui, W. et al. TGFβ1 inhibits the formation of benign skin tumors, but enhances progression to invasive spindle carcinomas in transgenic mice. Cell 86, 531–542 (1996).

    Article  CAS  Google Scholar 

  30. Derynck, R., Akhurst, R. J. & Balmain, A. TGF-β signaling in tumor suppression and cancer progression. Nature Genet. 29, 117–129 (2001).

    Article  CAS  Google Scholar 

  31. Ten Dijke, P., Goumans, M. J., Itoh, F. & Itoh, S. Regulation of cell proliferation by Smad proteins. J. Cell. Physiol. 191, 1–16 (2002).

    Article  CAS  Google Scholar 

  32. Attisano, L. & Wrana, J. L. Signal transduction by the TGF-β superfamily. Science 296, 1646–1647 (2002).

    Article  CAS  Google Scholar 

  33. Heldin, C. H. & Westermark, B. Mechanism of action and in vivo role of platelet-derived growth factor. Physiol. Rev. 79, 1283–1316 (1999).

    Article  CAS  Google Scholar 

  34. Schulze, A., Lehmann, K., Jefferies, H. B., McMahon, M. & Downward, J. Analysis of the transcriptional program induced by Raf in epithelial cells. Genes Dev. 15, 981–994 (2001).

    Article  CAS  Google Scholar 

  35. Beddington, R. S. & Robertson, E. J. Axis development and early asymmetry in mammals. Cell 96, 195–209 (1999).

    Article  CAS  Google Scholar 

  36. Ciruna, B. & Rossant, J. FGF signaling regulates mesoderm cell fate specification and morphogenetic movement at the primitive streak. Dev. Cell 1, 37–49 (2001).

    Article  CAS  Google Scholar 

  37. Vicovac, L. & Aplin, J. D. Epithelial–mesenchymal transition during trophoblast differentiation. Acta Anat. 156, 202–216 (1996).

    Article  CAS  Google Scholar 

  38. Muller, W. J., Sinn, E., Pattengale, P. K., Wallace, R. & Leder, P. Single-step induction of mammary adenocarcinoma in transgenic mice bearing the activated c-neu oncogene. Cell 54, 105–115 (1988).

    Article  CAS  Google Scholar 

  39. Muraoka, R. S. et al. Blockade of TGF-β inhibits mammary tumor cell viability, migration, and metastases. J. Clin. Invest. 109, 1551–1559 (2002).

    Article  CAS  Google Scholar 

  40. Downward, J. Mechanisms and consequences of activation of protein kinase B/Akt. Curr. Opin. Cell Biol. 10, 262–267 (1998).

    Article  CAS  Google Scholar 

  41. Eger, A., Stockinger, A., Schaffhauser, B., Beug, H. & Foisner, R. Epithelial mesenchymal transition by c-Fos estrogen receptor activation involves nuclear translocation of β-catenin and upregulation of β-catenin/lymphoid enhancer binding factor-1 transcriptional activity. J. Cell Biol. 148, 173–188 (2000).

    Article  CAS  Google Scholar 

  42. Stockinger, A., Eger, A., Wolf, J., Beug, H. & Foisner, R. E-cadherin regulates cell growth by modulating proliferation-dependent β-catenin transcriptional activity. J. Cell Biol. 154, 1185–1196 (2001).

    Article  CAS  Google Scholar 

  43. Labbe, E., Letamendia, A. & Attisano, L. Association of Smads with lymphoid enhancer binding factor 1/T cell-specific factor mediates cooperative signaling by the transforming growth factor-β and wnt pathways. Proc. Natl Acad. Sci. USA 97, 8358–8363 (2000).

    Article  CAS  Google Scholar 

  44. Pradet-Balade, B., Boulme, F., Beug, H., Mullner, E. W. & Garcia-Sanz, J. A. Translation control: bridging the gap between genomics and proteomics? Trends Biochem. Sci. 26, 225–229 (2001).

    Article  CAS  Google Scholar 

  45. Vecsey-Semjen, B. et al. Novel colon cancer cell lines leading to better understanding of the diversity of respective primary cancers. Oncogene 21, 4646–4662 (2002).

    Article  CAS  Google Scholar 

  46. Andrechek, E. R. et al. Amplification of the neu/erbB-2 oncogene in a mouse model of mammary tumorigenesis. Proc. Natl Acad. Sci. USA 97, 3444–3449 (2000).

    Article  CAS  Google Scholar 

  47. Webster, M. A. et al. Requirement for both Shc and phosphatidylinositol 3′ kinase signaling pathways in polyomavirus middle T-mediated mammary tumorigenesis. Mol. Cell Biol. 18, 2344–2359 (1998).

    Article  CAS  Google Scholar 

  48. Weeks, B. H., He, W., Olson, K. L. & Wang, X. J. Inducible expression of transforming growth factor β1 in papillomas causes rapid metastasis. Cancer Res. 61, 7435–7443 (2001).

    CAS  PubMed  Google Scholar 

  49. Oft, M., Akhurst, R. J. & Balmain, A. Metastasis is driven by sequential elevation of H-ras and Smad2 levels. Nature Cell Biol. 4, 487–494 (2002).

    Article  CAS  Google Scholar 

  50. Jacob, S. & Praz, F. DNA mismatch repair defects: role in colorectal carcinogenesis. Biochimie 84, 27–47 (2002).

    Article  CAS  Google Scholar 

  51. Takaku, K. et al. Intestinal tumorigenesis in compound mutant mice of both Dpc4 (Smad4) and Apc genes. Cell 92, 645–656 (1998).

    Article  CAS  Google Scholar 

  52. McEarchern, J. A. et al. Invasion and metastasis of a mammary tumor involves TGF-β signaling. Int. J. Cancer 91, 76–82 (2001).

    Article  CAS  Google Scholar 

  53. Yang, Y. A. et al. Lifetime exposure to a soluble TGF-β antagonist protects mice against metastasis without adverse side effects. J. Clin. Invest. 109, 1607–1615 (2002).

    Article  CAS  Google Scholar 

  54. Jechlinger, M. et al. Expression profiling of epithelial plasticity in tumour progression. Oncogene (in the press).

Download references

Acknowledgements

The authors would like to thank N. Kraut and R. Foisner for critically reading the manuscript and G. Litos and A. Sommer for expert technical assistance. This work was supported by grants from the Fonds zur Förderung der Wissenschaftlichen Forschung and the Forschunapförderungsfonds der gewerblichen Wirtschaft.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Stefan Grünert, Martin Jechlinger or Hartmut Beug.

Supplementary information

Related links

Related links

DATABASES

Locus Link

α5 integrin

β4 integrin

BMPs

FGF

H-Ras

MAPK

MEK

PDGF

PI3K

Rac

Ras

Rho

Smads

TGF-β

Swiss-Prot

Bcl2

E-cadherin

EGF

ErbB2

HGF

Lef1

N-cadherin

PKB

Raf1

Smad2

Smad4

Smad6

Smad7

TNF-α

transforming growth factor α

vimentin

ZO-1

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grünert, S., Jechlinger, M. & Beug, H. Diverse cellular and molecular mechanisms contribute to epithelial plasticity and metastasis. Nat Rev Mol Cell Biol 4, 657–665 (2003). https://doi.org/10.1038/nrm1175

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1175

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing