Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Understanding nucleosome dynamics and their links to gene expression and DNA replication

Key Points

  • Nucleosomes are highly dynamic nucleoprotein complexes involved in almost every genomic process across all eukaryotic organisms.

  • Both individual histone and full nucleosome turnover is under tight regulation that is mediated by a diverse set of chaperones and remodellers.

  • Subnucleosomal structures are dynamically generated as intermediaries during transcription and replication and are predicted to exist throughout the genome at specific loci.

  • The precise positioning of a nucleosome is a highly regulated process owing to numerous chaperones and remodeller complexes. Perturbations of nucleosome positioning have been linked to changes in gene expression levels.

  • Nucleosome disassembly and inheritance is carefully regulated during DNA replication with the restoration of the pre-replication positioning linked to transcription.

Abstract

Advances in genomics technology have provided the means to probe myriad chromatin interactions at unprecedented spatial and temporal resolution. This has led to a profound understanding of nucleosome organization within the genome, revealing that nucleosomes are highly dynamic. Nucleosome dynamics are governed by a complex interplay of histone composition, histone post-translational modifications, nucleosome occupancy and positioning within chromatin, which are influenced by numerous regulatory factors, including general regulatory factors, chromatin remodellers, chaperones and polymerases. It is now known that these dynamics regulate diverse cellular processes ranging from gene transcription to DNA replication and repair.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nucleosome organization as a combination of nucleosome occupancy and positioning.
Figure 2: Nucleosome occupancy as a function of histone turnover.
Figure 3: Determinants of nucleosome positioning.
Figure 4: Examination of nucleosome substructures and methods to detect them.
Figure 5: Nucleosome dynamics of transcription at ribosomal protein genes.
Figure 6: Nucleosome dynamics of DNA replication.

Similar content being viewed by others

References

  1. Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F. & Richmond, T. J. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389, 251–260 (1997).

    CAS  PubMed  Google Scholar 

  2. Kornberg, R. D. & Lorch, Y. Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 98, 285–294 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Richmond, T. J. & Davey, C. A. The structure of DNA in the nucleosome core. Nature 423, 145–150 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Narlikar, G. J., Sundaramoorthy, R. & Owen-Hughes, T. Mechanisms and functions of ATP-dependent chromatin-remodeling enzymes. Cell 154, 490–503 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhou, C. Y., Johnson, S. L., Gamarra, N. I. & Narlikar, G. J. Mechanisms of ATP-dependent chromatin remodeling motors. Annu. Rev. Biophys. 45, 153–181 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Rhee, H. S., Bataille, A. R., Zhang, L. & Pugh, B. F. Subnucleosomal structures and nucleosome asymmetry across a genome. Cell 159, 1377–1388 (2014). Non-canonical nucleosomal structures are identified in vivo at specific genomic regions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Strahl, B. D. & Allis, C. D. The language of covalent histone modifications. Nature 403, 41–45 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Pokholok, D. K. et al. Genome-wide map of nucleosome acetylation and methylation in yeast. Cell 122, 517–527 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Weber, C. M. & Henikoff, S. Histone variants: dynamic punctuation in transcription. Genes Dev. 28, 672–682 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Rando, O. J. & Ahmad, K. Rules and regulation in the primary structure of chromatin. Curr. Opin. Cell Biol. 19, 250–256 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Jiang, C. & Pugh, B. F. Nucleosome positioning and gene regulation: advances through genomics. Nat. Rev. Genet. 10, 161–172 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jiang, C. & Pugh, B. F. A compiled and systematic reference map of nucleosome positions across the Saccharomyces cerevisiae genome. Genome Biol. 10, R109 (2009).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Cui, F., Cole, H. A., Clark, D. J. & Zhurkin, V. B. Transcriptional activation of yeast genes disrupts intragenic nucleosome phasing. Nucleic Acids Res. 40, 10753–10764 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shivaswamy, S. et al. Dynamic remodeling of individual nucleosomes across a eukaryotic genome in response to transcriptional perturbation. PLoS Biol. 6, e65 (2008). Nucleosomes are dynamically regulated in response to stress.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Kulaeva, O. I., Hsieh, F. K., Chang, H. W., Luse, D. S. & Studitsky, V. M. Mechanism of transcription through a nucleosome by RNA polymerase II. Biochim. Biophys. Acta 1829, 76–83 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Weber, C. M., Ramachandran, S. & Henikoff, S. Nucleosomes are context-specific, H2A.Z-modulated barriers to RNA polymerase. Mol. Cell 53, 819–830 (2014). The +1 nucleosome serves as a barrier to RNA polymerase II transcription.

    Article  CAS  PubMed  Google Scholar 

  17. Reja, R., Vinayachandran, V., Ghosh, S. & Pugh, B. F. Molecular mechanisms of ribosomal protein gene coregulation. Genes Dev. 29, 1942–1954 (2015). Nucleosome positioning gates the TSS at ribosomal protein genes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Krietenstein, N. et al. Genomic nucleosome organization reconstituted with pure proteins. Cell 167, 709–721.e12 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Clark, D. J. Nucleosome positioning, nucleosome spacing and the nucleosome code. J. Biomol. Struct. Dyn. 27, 781–793 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Whitehouse, I., Rando, O. J., Delrow, J. & Tsukiyama, T. Chromatin remodelling at promoters suppresses antisense transcription. Nature 450, 1031–1035 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Zhang, L., Ma, H. & Pugh, B. F. Stable and dynamic nucleosome states during a meiotic developmental process. Genome Res. 21, 875–884 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Henikoff, S. Nucleosome destabilization in the epigenetic regulation of gene expression. Nat. Rev. Genet. 9, 15–26 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Cairns, B. R. Chromatin remodeling complexes: strength in diversity, precision through specialization. Curr. Opin. Genet. Dev. 15, 185–190 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Gkikopoulos, T. et al. A role for Snf2-related nucleosome-spacing enzymes in genome-wide nucleosome organization. Science 333, 1758–1760 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yen, K., Vinayachandran, V., Batta, K., Koerber, R. T. & Pugh, B. F. Genome-wide nucleosome specificity and directionality of chromatin remodelers. Cell 149, 1461–1473 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yen, K., Vinayachandran, V. & Pugh, B. F. SWR-C and INO80 chromatin remodelers recognize nucleosome-free regions near +1 nucleosomes. Cell 154, 1246–1256 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gurard-Levin, Z. A., Quivy, J. P. & Almouzni, G. Histone chaperones: assisting histone traffic and nucleosome dynamics. Annu. Rev. Biochem. 83, 487–517 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Lipford, J. R. & Bell, S. P. Nucleosomes positioned by ORC facilitate the initiation of DNA replication. Mol. Cell 7, 21–30 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Eaton, M. L., Galani, K., Kang, S., Bell, S. P. & MacAlpine, D. M. Conserved nucleosome positioning defines replication origins. Genes Dev. 24, 748–753 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang, G. G., Allis, C. D. & Chi, P. Chromatin remodeling and cancer, part II: ATP-dependent chromatin remodeling. Trends Mol. Med. 13, 373–380 (2007).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Burgess, R. J. & Zhang, Z. Histone chaperones in nucleosome assembly and human disease. Nat. Struct. Mol. Biol. 20, 14–22 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Skene, P. J. & Henikoff, S. Histone variants in pluripotency and disease. Development 140, 2513–2524 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Tessarz, P. & Kouzarides, T. Histone core modifications regulating nucleosome structure and dynamics. Nat. Rev. Mol. Cell Biol. 15, 703–708 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Talbert, P. B. & Henikoff, S. Histone variants on the move: substrates for chromatin dynamics. Nat. Rev. Mol. Cell Biol. 18, 115–126 (2017).

    Article  CAS  PubMed  Google Scholar 

  35. Buschbeck, M. & Hake, S. B. Variants of core histones and their roles in cell fate decisions, development and cancer. Nat. Rev. Mol. Cell Biol. http://dx.doi.org/10.1038/nrm.2016.166 (2017).

  36. Segal, E. et al. A genomic code for nucleosome positioning. Nature 442, 772–778 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kaplan, N. et al. Nucleosome sequence preferences influence in vivo nucleosome organization. Nat. Struct. Mol. Biol. 17, 918–920 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Struhl, K. & Segal, E. Determinants of nucleosome positioning. Nat. Struct. Mol. Biol. 20, 267–273 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hughes, A. L. & Rando, O. J. Mechanisms underlying nucleosome positioning in vivo. Annu. Rev. Biophys. 43, 41–63 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. Mardis, E. R. ChIP-seq: welcome to the new frontier. Nat. Methods 4, 613–614 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. O'Geen, H., Echipare, L. & Farnham, P. J. Using ChIP-seq technology to generate high-resolution profiles of histone modifications. Methods Mol. Biol. 791, 265–286 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

  43. Meyer, C. A. & Liu, X. S. Identifying and mitigating bias in next-generation sequencing methods for chromatin biology. Nat. Rev. Genet. 15, 709–721 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tsompana, M. & Buck, M. J. Chromatin accessibility: a window into the genome. Epigenetics Chromatin 7, 33 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Zhou, X., Blocker, A. W., Airoldi, E. M. & O'Shea, E. K. A computational approach to map nucleosome positions and alternative chromatin states with base pair resolution. eLife 5, e16970 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Annunziato, A. T. Split decision: what happens to nucleosomes during DNA replication? J. Biol. Chem. 280, 12065–12068 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Zhang, Z. et al. A packing mechanism for nucleosome organization reconstituted across a eukaryotic genome. Science 332, 977–980 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Venkatesh, S. & Workman, J. L. Histone exchange, chromatin structure and the regulation of transcription. Nat. Rev. Mol. Cell Biol. 16, 178–189 (2015).

    Article  CAS  PubMed  Google Scholar 

  49. Wade, J. T., Hall, D. B. & Struhl, K. The transcription factor Ifh1 is a key regulator of yeast ribosomal protein genes. Nature 432, 1054–1058 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Ioshikhes, I. P., Albert, I., Zanton, S. J. & Pugh, B. F. Nucleosome positions predicted through comparative genomics. Nat. Genet. 38, 1210–1215 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Segal, E. & Widom, J. From DNA sequence to transcriptional behaviour: a quantitative approach. Nat. Rev. Genet. 10, 443–456 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kaplan, N. et al. The DNA-encoded nucleosome organization of a eukaryotic genome. Nature 458, 362–366 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Zhang, Y. et al. Intrinsic histone-DNA interactions are not the major determinant of nucleosome positions in vivo. Nat. Struct. Mol. Biol. 16, 847–852 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Albert, I. et al. Translational and rotational settings of H2A.Z nucleosomes across the Saccharomyces cerevisiae genome. Nature 446, 572–576 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Tosi, A. et al. Structure and subunit topology of the INO80 chromatin remodeler and its nucleosome complex. Cell 154, 1207–1219 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. Watanabe, S., Radman-Livaja, M., Rando, O. J. & Peterson, C. L. A histone acetylation switch regulates H2A.Z deposition by the SWR-C remodeling enzyme. Science 340, 195–199 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wang, F., Ranjan, A., Wei, D. & Wu, C. Comment on “A histone acetylation switch regulates H2A.Z deposition by the SWR-C remodeling enzyme”. Science 353, 358 (2016).

    Article  CAS  PubMed  Google Scholar 

  58. Vassileva, I., Yanakieva, I., Peycheva, M., Gospodinov, A. & Anachkova, B. The mammalian INO80 chromatin remodeling complex is required for replication stress recovery. Nucleic Acids Res. 42, 9074–9086 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Peterson, C. L. & Almouzni, G. Nucleosome dynamics as modular systems that integrate DNA damage and repair. Cold Spring Harb. Perspect. Biol. 5, a012658 (2013).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  60. Green, C. M. & Almouzni, G. When repair meets chromatin. First in series on chromatin dynamics. EMBO Rep. 3, 28–33 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Dion, M. F. et al. Dynamics of replication-independent histone turnover in budding yeast. Science 315, 1405–1408 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Deal, R. B., Henikoff, J. G. & Henikoff, S. Genome-wide kinetics of nucleosome turnover determined by metabolic labeling of histones. Science 328, 1161–1164 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ray-Gallet, D. et al. Dynamics of histone H3 deposition in vivo reveal a nucleosome gap-filling mechanism for H3.3 to maintain chromatin integrity. Mol. Cell 44, 928–941 (2011).

    Article  CAS  PubMed  Google Scholar 

  64. Kraushaar, D. C. et al. Genome-wide incorporation dynamics reveal distinct categories of turnover for the histone variant H3.3. Genome Biol. 14, R121 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Yildirim, O. et al. A system for genome-wide histone variant dynamics in ES cells reveals dynamic MacroH2A2 replacement at promoters. PLoS Genet. 10, e1004515 (2014).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  66. Svensson, J. P. et al. A nucleosome turnover map reveals that the stability of histone H4 Lys20 methylation depends on histone recycling in transcribed chromatin. Genome Res. 25, 872–883 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Keppler, A. et al. A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat. Biotechnol. 21, 86–89 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Deaton, A. M. et al. Enhancer regions show high histone H3.3 turnover that changes during differentiation. eLife 5, e15316 (2016). Demonstration of a role for histone turnover in enhancers during differentiation.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  69. Belotserkovskaya, R. et al. FACT facilitates transcription-dependent nucleosome alteration. Science 301, 1090–1093 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Jansen, A. & Verstrepen, K. J. Nucleosome positioning in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 75, 301–320 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Goldmark, J. P., Fazzio, T. G., Estep, P. W., Church, G. M. & Tsukiyama, T. The Isw2 chromatin remodeling complex represses early meiotic genes upon recruitment by Ume6p. Cell 103, 423–433 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Hughes, A. L., Jin, Y., Rando, O. J. & Struhl, K. A functional evolutionary approach to identify determinants of nucleosome positioning: a unifying model for establishing the genome-wide pattern. Mol. Cell 48, 5–15 (2012). By placing DNA from one yeast species into another, nucleosome organization and TSS are found to track together, indicating their mutual influence.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhang, Y. et al. Evidence against a genomic code for nucleosome positioning. Reply to “Nucleosome sequence preferences influence in vivo nucleosome organization”. Nat. Struct. Mol. Biol. 17, 920–923 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ioshikhes, I., Hosid, S. & Pugh, B. F. Variety of genomic DNA patterns for nucleosome positioning. Genome Res. 21, 1863–1871 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Fenouil, R. et al. CpG islands and GC content dictate nucleosome depletion in a transcription-independent manner at mammalian promoters. Genome Res. 22, 2399–2408 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. de Dieuleveult, M. et al. Genome-wide nucleosome specificity and function of chromatin remodellers in ES cells. Nature 530, 113–116 (2016). Genomic analysis of chromatin remodeller interactions with specific nucleosome positions involved in regulating transcription programmes in embryonic stem cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Radman-Livaja, M. & Rando, O. J. Nucleosome positioning: how is it established, and why does it matter? Dev. Biol. 339, 258–266 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. Hartley, P. D. & Madhani, H. D. Mechanisms that specify promoter nucleosome location and identity. Cell 137, 445–458 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zentner, G. E. & Henikoff, S. Regulation of nucleosome dynamics by histone modifications. Nat. Struct. Mol. Biol. 20, 259–266 (2013).

    Article  CAS  PubMed  Google Scholar 

  80. de la Serna, I. L., Ohkawa, Y. & Imbalzano, A. N. Chromatin remodelling in mammalian differentiation: lessons from ATP-dependent remodellers. Nat. Rev. Genet. 7, 461–473 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Mitra, D., Parnell, E. J., Landon, J. W., Yu, Y. & Stillman, D. J. SWI/SNF binding to the HO promoter requires histone acetylation and stimulates TATA-binding protein recruitment. Mol. Cell. Biol. 26, 4095–4110 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Roberts, C. W. & Orkin, S. H. The SWI/SNF complex — chromatin and cancer. Nat. Rev. Cancer 4, 133–142 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Ryan, M. P., Jones, R. & Morse, R. H. SWI-SNF complex participation in transcriptional activation at a step subsequent to activator binding. Mol. Cell. Biol. 18, 1774–1782 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Dutta, A. et al. Swi/Snf dynamics on stress-responsive genes is governed by competitive bromodomain interactions. Genes Dev. 28, 2314–2330 (2014).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  85. de La Serna, I. L. et al. Mammalian SWI-SNF complexes contribute to activation of the hsp70 gene. Mol. Cell. Biol. 20, 2839–2851 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kadoch, C. & Crabtree, G. R. Mammalian SWI/SNF chromatin remodeling complexes and cancer: mechanistic insights gained from human genomics. Sci. Adv. 1, e1500447 (2015).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  87. Tolstorukov, M. Y. et al. Swi/Snf chromatin remodeling/tumor suppressor complex establishes nucleosome occupancy at target promoters. Proc. Natl Acad. Sci. USA 110, 10165–10170 (2013). SWI/SNF remodelling at promoters is crucial for proper gene expression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Cairns, B. R. et al. RSC, an essential, abundant chromatin-remodeling complex. Cell 87, 1249–1260 (1996).

    Article  CAS  PubMed  Google Scholar 

  89. Parnell, T. J., Huff, J. T. & Cairns, B. R. RSC regulates nucleosome positioning at Pol II genes and density at Pol III genes. EMBO J. 27, 100–110 (2008).

    Article  CAS  PubMed  Google Scholar 

  90. Kubik, S. et al. Nucleosome stability distinguishes two different promoter types at all protein-coding genes in yeast. Mol. Cell 60, 422–434 (2015).

    Article  CAS  PubMed  Google Scholar 

  91. Lorch, Y., Maier-Davis, B. & Kornberg, R. D. Role of DNA sequence in chromatin remodeling and the formation of nucleosome-free regions. Genes Dev. 28, 2492–2497 (2014).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  92. de Boer, C. G. & Hughes, T. R. Poly-dA:dT tracts form an in vivo nucleosomal turnstile. PLoS ONE 9, e110479 (2014).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  93. Marfella, C. G. & Imbalzano, A. N. The Chd family of chromatin remodelers. Mutat. Res. 618, 30–40 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kari, V. et al. Loss of CHD1 causes DNA repair defects and enhances prostate cancer therapeutic responsiveness. EMBO Rep. 17, 1609–1623 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Torigoe, S. E., Patel, A., Khuong, M. T., Bowman, G. D. & Kadonaga, J. T. ATP-dependent chromatin assembly is functionally distinct from chromatin remodeling. eLife 2, e00863 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Nodelman, I. M. et al. The Chd1 chromatin remodeler can sense both entry and exit sides of the nucleosome. Nucleic Acids Res. 44, 7580–7591 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  97. McKnight, J. N., Tsukiyama, T. & Bowman, G. D. Sequence-targeted nucleosome sliding in vivo by a hybrid Chd1 chromatin remodeler. Genome Res. 26, 693–704 (2016). Provides evidence for nucleosome positioning against a fixed barrier.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Lee, J. S. et al. Codependency of H2B monoubiquitination and nucleosome reassembly on Chd1. Genes Dev. 26, 914–919 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Park, D., Shivram, H. & Iyer, V. R. Chd1 co-localizes with early transcription elongation factors independently of H3K36 methylation and releases stalled RNA polymerase II at introns. Epigenetics Chromatin 7, 32 (2014).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  100. Zofall, M., Persinger, J., Kassabov, S. R. & Bartholomew, B. Chromatin remodeling by ISW2 and SWI/SNF requires DNA translocation inside the nucleosome. Nat. Struct. Mol. Biol. 13, 339–346 (2006).

    Article  CAS  PubMed  Google Scholar 

  101. Dang, W. & Bartholomew, B. Domain architecture of the catalytic subunit in the ISW2-nucleosome complex. Mol. Cell. Biol. 27, 8306–8317 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Hota, S. K. et al. Nucleosome mobilization by ISW2 requires the concerted action of the ATPase and SLIDE domains. Nat. Struct. Mol. Biol. 20, 222–229 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Corona, D. F. & Tamkun, J. W. Multiple roles for ISWI in transcription, chromosome organization and DNA replication. Biochim. Biophys. Acta 1677, 113–119 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. Aydin, O. Z., Vermeulen, W. & Lans, H. ISWI chromatin remodeling complexes in the DNA damage response. Cell Cycle 13, 3016–3025 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Cairns, B. R. Chromatin remodeling: insights and intrigue from single-molecule studies. Nat. Struct. Mol. Biol. 14, 989–996 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Langst, G. & Becker, P. B. Nucleosome mobilization and positioning by ISWI-containing chromatin-remodeling factors. J. Cell Sci. 114, 2561–2568 (2001).

    CAS  PubMed  Google Scholar 

  107. Hopfner, K. P., Gerhold, C. B., Lakomek, K. & Wollmann, P. Swi2/Snf2 remodelers: hybrid views on hybrid molecular machines. Curr. Opin. Struct. Biol. 22, 225–233 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Deuring, R. et al. The ISWI chromatin-remodeling protein is required for gene expression and the maintenance of higher order chromatin structure in vivo. Mol. Cell 5, 355–365 (2000).

    Article  CAS  PubMed  Google Scholar 

  109. Strohner, R. et al. NoRC — a novel member of mammalian ISWI-containing chromatin remodeling machines. EMBO J. 20, 4892–4900 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Mellor, J. & Morillon, A. ISWI complexes in Saccharomyces cerevisiae. Biochim. Biophys. Acta 1677, 100–112 (2004).

    Article  CAS  PubMed  Google Scholar 

  111. Stockdale, C., Flaus, A., Ferreira, H. & Owen-Hughes, T. Analysis of nucleosome repositioning by yeast ISWI and Chd1 chromatin remodeling complexes. J. Biol. Chem. 281, 16279–16288 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. Li, M. et al. Dynamic regulation of transcription factors by nucleosome remodeling. eLife 4, e06249 (2015).

    Article  CAS  PubMed Central  Google Scholar 

  113. Kornberg, R. D. Chromatin structure: a repeating unit of histones and DNA. Science 184, 868–871 (1974).

    Article  CAS  PubMed  Google Scholar 

  114. Weintraub, H., Palter, K. & Van Lente, F. Histones H2a, H2b, H3, and H4 form a tetrameric complex in solutions of high salt. Cell 6, 85–110 (1975).

    Article  CAS  PubMed  Google Scholar 

  115. Weintraub, H., Worcel, A. & Alberts, B. A model for chromatin based upon two symmetrically paired half-nucleosomes. Cell 9, 409–417 (1976).

    Article  CAS  PubMed  Google Scholar 

  116. Zlatanova, J., Bishop, T. C., Victor, J. M., Jackson, V. & van Holde, K. The nucleosome family: dynamic and growing. Structure 17, 160–171 (2009).

    Article  CAS  PubMed  Google Scholar 

  117. Black, B. E. & Cleveland, D. W. Epigenetic centromere propagation and the nature of CENP-A nucleosomes. Cell 144, 471–479 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Anderson, J. D. & Widom, J. Sequence and position-dependence of the equilibrium accessibility of nucleosomal DNA target sites. J. Mol. Biol. 296, 979–987 (2000).

    Article  CAS  PubMed  Google Scholar 

  119. Hondele, M. et al. Structural basis of histone H2A-H2B recognition by the essential chaperone FACT. Nature 499, 111–114 (2013).

    Article  CAS  PubMed  Google Scholar 

  120. Aguilar-Gurrieri, C. et al. Structural evidence for Nap1-dependent H2A-H2B deposition and nucleosome assembly. EMBO J. 35, 1465–1482 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Adams, C. C. & Workman, J. L. Binding of disparate transcriptional activators to nucleosomal DNA is inherently cooperative. Mol. Cell. Biol. 15, 1405–1421 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Polach, K. J. & Widom, J. A model for the cooperative binding of eukaryotic regulatory proteins to nucleosomal target sites. J. Mol. Biol. 258, 800–812 (1996).

    Article  CAS  PubMed  Google Scholar 

  123. Koerber, R. T., Rhee, H. S., Jiang, C. & Pugh, B. F. Interaction of transcriptional regulators with specific nucleosomes across the Saccharomyces genome. Mol. Cell 35, 889–902 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Harada, B. T. et al. Stepwise nucleosome translocation by RSC remodeling complexes. eLife 5, e10051 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Dalal, Y., Furuyama, T., Vermaak, D. & Henikoff, S. Structure, dynamics, and evolution of centromeric nucleosomes. Proc. Natl Acad. Sci. USA 104, 15974–15981 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Ramachandran, S. & Henikoff, S. Nucleosome dynamics during chromatin remodeling in vivo. Nucleus 7, 20–26 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Xi, Y., Yao, J., Chen, R., Li, W. & He, X. Nucleosome fragility reveals novel functional states of chromatin and poises genes for activation. Genome Res. 21, 718–724 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Knight, B. et al. Two distinct promoter architectures centered on dynamic nucleosomes control ribosomal protein gene transcription. Genes Dev. 28, 1695–1709 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Chereji, R. V., Ocampo, J. & Clark, D. J. MNase-sensitive complexes in yeast: nucleosomes and non-histone barriers. Mol. Cell 65, 565–577.e3 (2017). MNase-sensitive regions of the genome do not necessarily contain histones.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Fei, J. et al. The prenucleosome, a stable conformational isomer of the nucleosome. Genes Dev. 29, 2563–2575 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Henikoff, S. et al. The budding yeast centromere DNA element II wraps a stable Cse4 hemisome in either orientation in vivo. eLife 3, e01861 (2014).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  132. Krassovsky, K., Henikoff, J. G. & Henikoff, S. Tripartite organization of centromeric chromatin in budding yeast. Proc. Natl Acad. Sci. USA 109, 243–248 (2012).

    Article  CAS  PubMed  Google Scholar 

  133. Hasson, D. et al. The octamer is the major form of CENP-A nucleosomes at human centromeres. Nat. Struct. Mol. Biol. 20, 687–695 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Furuyama, T., Codomo, C. A. & Henikoff, S. Reconstitution of hemisomes on budding yeast centromeric DNA. Nucleic Acids Res. 41, 5769–5783 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Rhee, H. S. & Pugh, B. F. ChIP-exo method for identifying genomic location of DNA-binding proteins with near-single-nucleotide accuracy. Curr. Protoc. Mol. Biol. http://dx.doi.org/10.1002/0471142727.mb2124s100 (2012).

  136. Ramachandran, S., Zentner, G. E. & Henikoff, S. Asymmetric nucleosomes flank promoters in the budding yeast genome. Genome Res. 25, 381–390 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Arimura, Y., Tachiwana, H., Oda, T., Sato, M. & Kurumizaka, H. Structural analysis of the hexasome, lacking one histone H2A/H2B dimer from the conventional nucleosome. Biochemistry 51, 3302–3309 (2012).

    Article  CAS  PubMed  Google Scholar 

  138. Workman, J. L. Nucleosome displacement in transcription. Genes Dev. 20, 2009–2017 (2006).

    Article  CAS  PubMed  Google Scholar 

  139. Studitsky, V. M., Nizovtseva, E. V., Shaytan, A. K. & Luse, D. S. Nucleosomal barrier to transcription: structural determinants and changes in chromatin structure. Biochem. Mol. Biol. J. 2, 8 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Eaton, M. L. et al. Chromatin signatures of the Drosophila replication program. Genome Res. 21, 164–174 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. MacAlpine, D. M. & Almouzni, G. Chromatin and DNA replication. Cold Spring Harb. Perspect. Biol. 5, a010207 (2013).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  142. Rhee, H. S. & Pugh, B. F. Genome-wide structure and organization of eukaryotic pre-initiation complexes. Nature 483, 295–301 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Jonkers, I. & Lis, J. T. Getting up to speed with transcription elongation by RNA polymerase II. Nat. Rev. Mol. Cell Biol. 16, 167–177 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Stunkel, W., Kober, I. & Seifart, K. H. A nucleosome positioned in the distal promoter region activates transcription of the human U6 gene. Mol. Cell. Biol. 17, 4397–4405 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Zhao, X., Pendergrast, P. S. & Hernandez, N. A positioned nucleosome on the human U6 promoter allows recruitment of SNAPc by the Oct-1 POU domain. Mol. Cell 7, 539–549 (2001).

    Article  CAS  PubMed  Google Scholar 

  146. Tramantano, M. et al. Constitutive turnover of histone H2A.Z at yeast promoters requires the preinitiation complex. eLife 5, e14243 (2016).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  147. Brickner, D. G. et al. H2A.Z-mediated localization of genes at the nuclear periphery confers epigenetic memory of previous transcriptional state. PLoS Biol. 5, e81 (2007).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  148. Grimaldi, Y., Ferrari, P. & Strubin, M. Independent RNA polymerase II preinitiation complex dynamics and nucleosome turnover at promoter sites in vivo. Genome Res. 24, 117–124 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Sclafani, R. A. & Holzen, T. M. Cell cycle regulation of DNA replication. Annu. Rev. Genet. 41, 237–280 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Duzdevich, D. et al. The dynamics of eukaryotic replication initiation: origin specificity, licensing, and firing at the single-molecule level. Mol. Cell 58, 483–494 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Bell, S. P. & Labib, K. Chromosome duplication in Saccharomyces cerevisiae. Genetics 203, 1027–1067 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Franco, A. A., Lam, W. M., Burgers, P. M. & Kaufman, P. D. Histone deposition protein Asf1 maintains DNA replisome integrity and interacts with replication factor C. Genes Dev. 19, 1365–1375 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Huang, H. et al. A unique binding mode enables MCM2 to chaperone histones H3-H4 at replication forks. Nat. Struct. Mol. Biol. 22, 618–626 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Yang, J. et al. The histone chaperone FACT contributes to DNA replication-coupled nucleosome assembly. Cell Rep. 14, 1128–1141 (2016).

    Article  CAS  PubMed  Google Scholar 

  155. Deniz, O., Flores, O., Aldea, M., Soler-Lopez, M. & Orozco, M. Nucleosome architecture throughout the cell cycle. Sci. Rep. 6, 19729 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Bar-Ziv, R., Voichek, Y. & Barkai, N. Chromatin dynamics during DNA replication. Genome Res. 26, 1245–1256 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Annunziato, A. T. The fork in the road: histone partitioning during DNA replication. Genes (Basel) 6, 353–371 (2015).

    Article  CAS  Google Scholar 

  158. Katan-Khaykovich, Y. & Struhl, K. Splitting of H3-H4 tetramers at transcriptionally active genes undergoing dynamic histone exchange. Proc. Natl Acad. Sci. USA 108, 1296–1301 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Xu, M. et al. Partitioning of histone H3-H4 tetramers during DNA replication-dependent chromatin assembly. Science 328, 94–98 (2010).

    Article  CAS  PubMed  Google Scholar 

  160. Tran, V., Lim, C., Xie, J. & Chen, X. Asymmetric division of Drosophila male germline stem cell shows asymmetric histone distribution. Science 338, 679–682 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Nekrasov, M. et al. Histone H2A.Z inheritance during the cell cycle and its impact on promoter organization and dynamics. Nat. Struct. Mol. Biol. 19, 1076–1083 (2012).

    Article  CAS  PubMed  Google Scholar 

  162. Greaves, I. K., Rangasamy, D., Ridgway, P. & Tremethick, D. J. H2A.Z contributes to the unique 3D structure of the centromere. Proc. Natl Acad. Sci. USA 104, 525–530 (2007).

    Article  CAS  PubMed  Google Scholar 

  163. Margueron, R. et al. Role of the polycomb protein EED in the propagation of repressive histone marks. Nature 461, 762–767 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Dumesic, P. A. et al. Product binding enforces the genomic specificity of a yeast polycomb repressive complex. Cell 160, 204–218 (2015).

    Article  CAS  PubMed  Google Scholar 

  165. Sirbu, B. M., Couch, F. B. & Cortez, D. Monitoring the spatiotemporal dynamics of proteins at replication forks and in assembled chromatin using isolation of proteins on nascent DNA. Nat. Protoc. 7, 594–605 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Vasseur, P. et al. Dynamics of nucleosome positioning maturation following genomic replication. Cell Rep. 16, 2651–2665 (2016). Nucleosomes return to their pre-replication positions in a transcriptionally linked manner after DNA replication.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Ramachandran, S. & Henikoff, S. Transcriptional regulators compete with nucleosomes post-replication. Cell 165, 580–592 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Aird, D. et al. Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries. Genome Biol. 12, R18 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Landt, S. G. et al. ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res. 22, 1813–1831 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Rizzo, J. M., Bard, J. E. & Buck, M. J. Standardized collection of MNase-seq experiments enables unbiased dataset comparisons. BMC Mol. Biol. 13, 15 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Mieczkowski, J. et al. MNase titration reveals differences between nucleosome occupancy and chromatin accessibility. Nat. Commun. 7, 11485 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Wal, M. & Pugh, B. F. Genome-wide mapping of nucleosome positions in yeast using high-resolution MNase ChIP-Seq. Methods Enzymol. 513, 233–250 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Kelly, T. K. et al. Genome-wide mapping of nucleosome positioning and DNA methylation within individual DNA molecules. Genome Res. 22, 2497–2506 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Ishii, H., Kadonaga, J. T. & Ren, B. MPE-seq, a new method for the genome-wide analysis of chromatin structure. Proc. Natl Acad. Sci. USA 112, E3457–E3465 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013). Description of a rapid and facile method (assay for transposable-accessible chromatin (ATAC)–seq) for measuring chromatin accessibility on a genomic scale.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Schep, A. N. et al. Structured nucleosome fingerprints enable high-resolution mapping of chromatin architecture within regulatory regions. Genome Res. 25, 1757–1770 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Brogaard, K., Xi, L., Wang, J. P. & Widom, J. A map of nucleosome positions in yeast at base-pair resolution. Nature 486, 496–501 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Hsieh, T. H. et al. Mapping nucleosome resolution chromosome folding in yeast by Micro-C. Cell 162, 108–119 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the members of B. F. Pugh's laboratory and the Center for Eukaryotic Gene Regulation for their helpful comments and feedback. This work was supported by the US National Institutes of Health (NIH) grant GM059055.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Franklin Pugh.

Ethics declarations

Competing interests

B.F.P. has a financial interest in Peconic, LLC, which utilizes the ChIP–exo technology discussed in this Review.

PowerPoint slides

Glossary

Nucleosome-free region

(NFR). A region of DNA that is constitutively nucleosome-free, such as promoter regions.

Nucleosome-depleted region

(NDR). A region of DNA that has regulated nucleosome occupancy.

Dyad

The midpoint of a canonical nucleosome, which creates mirrored pseudosymmetry.

SNAP-tag

An artificially engineered enzyme capable of covalently adding any compatible epitope on demand.

Super enhancers

Regions of the genome where clusters of enhancers are located.

CpG-rich islands

A dinucleotide combination of 5′-CG-3′. Prevalent and often methylated in mammalian promoter regions.

General regulatory factors

(GRFs). DNA-binding proteins known to regulate and assist directly and indirectly in the positioning of nucleosomes.

HAND-SANT-SLIDE domain

The protein domain of the imitation SWI (ISWI) family involved in DNA translocation around a nucleosome.

Fluorescence resonance energy transfer

(FRET). A biophysical assay able to determine close (that is, nanometre scale) proximity of molecules in vivo or in vitro.

Pre-initiation complex

The complex of general transcription factor proteins assembled at transcription start sites.

MCM helicase

(Mini-chromosome maintenance helicase). A DNA helicase protein complex responsible for unwinding of the DNA helix during replication.

Autonomous replicating sequence

(ARS). A DNA sequence that allows a plasmid to replicate in Saccharomyces cerevisiae. It is often bound by origin of replication complex proteins.

ARS consensus sequences

(ACSs). Consensus DNA motifs found in ARS.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, W., Pugh, B. Understanding nucleosome dynamics and their links to gene expression and DNA replication. Nat Rev Mol Cell Biol 18, 548–562 (2017). https://doi.org/10.1038/nrm.2017.47

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm.2017.47

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing