Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms of clathrin-mediated endocytosis

Key Points

  • Clathrin-coated endocytic vesicles are produced by a complex modular protein machinery that transiently assembles on the plasma membrane. This machinery selects and concentrates cargo molecules and shapes the membrane into a vesicle.

  • Forces arising within the membrane during deformation counteract forces generated by the endocytic protein modules. Physical parameters such as membrane tension and rigidity control the dynamics of clathrin-mediated endocytosis.

  • Many endocytic proteins bind phosphoinositides, which are critical for organizing the sequence of protein assembly throughout endocytosis.

  • The endocytic machinery is evolutionarily ancient and highly conserved, but it has adapted to varying force requirements in different lineages.

Abstract

Clathrin-mediated endocytosis is a key process in vesicular trafficking that transports a wide range of cargo molecules from the cell surface to the interior. Clathrin-mediated endocytosis was first described over 5 decades ago. Since its discovery, over 50 proteins have been shown to be part of the molecular machinery that generates the clathrin-coated endocytic vesicles. These proteins and the different steps of the endocytic process that they mediate have been studied in detail. However, we still lack a good understanding of how all these different components work together in a highly coordinated manner to drive vesicle formation. Nevertheless, studies in recent years have provided several important insights into how endocytic vesicles are built, starting from initiation, cargo loading and the mechanisms governing membrane bending to membrane scission and the release of the vesicle into the cytoplasm.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stages of clathrin-mediated endocytosis and the associated modular machinery.
Figure 2: Initiation of membrane budding during endocytosis is mediated by the pioneer module.
Figure 3: Mechanism of clathrin coat-mediated and actin-mediated membrane bending.
Figure 4: Membrane fission by dynamin and BAR proteins followed by vesicle uncoating.

Similar content being viewed by others

References

  1. Bitsikas, V., Correa, I. R. Jr & Nichols, B. J. Clathrin-independent pathways do not contribute significantly to endocytic flux. eLife 3, e03970 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Wideman, J. G., Leung, K. F., Field, M. C. & Dacks, J. B. The cell biology of the endocytic system from an evolutionary perspective. Cold Spring Harb. Perspect. Biol. 6, a016998 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Traub, L. M. Regarding the amazing choreography of clathrin coats. PLoS Biol. 9, e1001037 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Weinberg, J. & Drubin, D. G. Clathrin-mediated endocytosis in budding yeast. Trends Cell Biol. 22, 1–13 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Kaksonen, M., Toret, C. P. & Drubin, D. G. A modular design for the clathrin- and actin-mediated endocytosis machinery. Cell 123, 305–320 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Merrifield, C. J., Feldman, M. E., Wan, L. & Almers, W. Imaging actin and dynamin recruitment during invagination of single clathrin-coated pits. Nat. Cell Biol. 4, 691–698 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Taylor, M. J., Perrais, D. & Merrifield, C. J. A high precision survey of the molecular dynamics of mammalian clathrin-mediated endocytosis. PLoS Biol. 9, e1000604 (2011). This is a systematic and quantitative live-cell imaging study of the assembly sequence of the endocytic protein machinery.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tonikian, R. et al. Bayesian modeling of the yeast SH3 domain interactome predicts spatiotemporal dynamics of endocytosis proteins. PLoS Biol. 7, e1000218 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Carroll, S. Y. et al. Analysis of yeast endocytic site formation and maturation through a regulatory transition point. Mol. Biol. Cell 23, 657–668 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schmid, E. M. & McMahon, H. T. Integrating molecular and network biology to decode endocytosis. Nature 448, 883–888 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Cocucci, E., Aguet, F., Boulant, S. & Kirchhausen, T. The first five seconds in the life of a clathrin-coated pit. Cell 150, 495–507 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ford, M. G. et al. Curvature of clathrin-coated pits driven by epsin. Nature 419, 361–366 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Kadlecova, Z. et al. Regulation of clathrin-mediated endocytosis by hierarchical allosteric activation of AP2. J. Cell Biol. 216, 167–179 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kelly, B. T. et al. AP2 controls clathrin polymerization with a membrane-activated switch. Science 345, 459–463 (2014). This article shows how the AP2 complex can integrate information from cargo and lipid binding to clathrin coat assembly.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Messa, M. et al. Epsin deficiency impairs endocytosis by stalling the actin-dependent invagination of endocytic clathrin-coated pits. eLife 3, e03311 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Miller, S. E. et al. CALM regulates clathrin-coated vesicle size and maturation by directly sensing and driving membrane curvature. Dev. Cell 33, 163–175 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Henne, W. M. et al. FCHo proteins are nucleators of clathrin-mediated endocytosis. Science 328, 1281–1284 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ma, L. et al. Transient Fcho1/2Eps15/RAP-2 nanoclusters prime the AP-2 clathrin adaptor for cargo binding. Dev. Cell 37, 428–443 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Umasankar, P. K. et al. Distinct and separable activities of the endocytic clathrin-coat components Fcho1/2 and AP-2 in developmental patterning. Nat. Cell Biol. 14, 488–501 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Stimpson, H. E., Toret, C. P., Cheng, A. T., Pauly, B. S. & Drubin, D. G. Early-arriving Syp1p and Ede1p function in endocytic site placement and formation in budding yeast. Mol. Biol. Cell 20, 4640–4651 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Brach, T., Godlee, C., Moeller-Hansen, I., Boeke, D. & Kaksonen, M. The initiation of clathrin-mediated endocytosis is mechanistically highly flexible. Curr. Biol. 24, 548–554 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Sun, Y., Martin, A. C. & Drubin, D. G. Endocytic internalization in budding yeast requires coordinated actin nucleation and myosin motor activity. Dev. Cell 11, 33–46 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Goode, B. L., Eskin, J. A. & Wendland, B. Actin and endocytosis in budding yeast. Genetics 199, 315–358 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Massol, R. H., Boll, W., Griffin, A. M. & Kirchhausen, T. A burst of auxilin recruitment determines the onset of clathrin-coated vesicle uncoating. Proc. Natl Acad. Sci. USA 103, 10265–10270 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nunez, D. et al. Hotspots organize clathrin-mediated endocytosis by efficient recruitment and retention of nucleating resources. Traffic 12, 1868–1878 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ehrlich, M. et al. Endocytosis by random initiation and stabilization of clathrin-coated pits. Cell 118, 591–605 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Loerke, D. et al. Cargo and dynamin regulate clathrin-coated pit maturation. PLoS Biol. 7, e1000057 (2009).

    Article  PubMed Central  CAS  Google Scholar 

  28. Merrifield, C. J., Perrais, D. & Zenisek, D. Coupling between clathrin-coated-pit invagination, cortactin recruitment, and membrane scission observed in live cells. Cell 121, 593–606 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Antonescu, C. N., Aguet, F., Danuser, G. & Schmid, S. L. Phosphatidylinositol-(4,5)-bisphosphate regulates clathrin-coated pit initiation, stabilization, and size. Mol. Biol. Cell 22, 2588–2600 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zoncu, R. et al. Loss of endocytic clathrin-coated pits upon acute depletion of phosphatidylinositol 4,5-bisphosphate. Proc. Natl Acad. Sci. USA 104, 3793–3798 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Layton, A. T. et al. Modeling vesicle traffic reveals unexpected consequences for Cdc42p-mediated polarity establishment. Curr. Biol. 21, 184–194 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liu, A. P., Aguet, F., Danuser, G. & Schmid, S. L. Local clustering of transferrin receptors promotes clathrin-coated pit initiation. J. Cell Biol. 191, 1381–1393 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Peng, Y. et al. Casein kinase 1 promotes initiation of clathrin-mediated endocytosis. Dev. Cell 32, 231–240 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. McMahon, H. T. & Boucrot, E. Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat. Rev. Mol. Cell Biol. 12, 517–533 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Sigismund, S. et al. Endocytosis and signaling: cell logistics shape the eukaryotic cell plan. Physiol. Rev. 92, 273–366 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Mercer, J., Schelhaas, M. & Helenius, A. Virus entry by endocytosis. Annu. Rev. Biochem. 79, 803–833 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Traub, L. M. Tickets to ride: selecting cargo for clathrin-regulated internalization. Nat. Rev. Mol. Cell Biol. 10, 583–596 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Mukhopadhyay, D. & Riezman, H. Proteasome-independent functions of ubiquitin in endocytosis and signaling. Science 315, 201–205 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Traub, L. M. & Bonifacino, J. S. Cargo recognition in clathrin-mediated endocytosis. Cold Spring Harb. Perspect. Biol. 5, a016790 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Mettlen, M., Loerke, D., Yarar, D., Danuser, G. & Schmid, S. L. Cargo- and adaptor-specific mechanisms regulate clathrin-mediated endocytosis. J. Cell Biol. 188, 919–933 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mettlen, M. et al. Endocytic accessory proteins are functionally distinguished by their differential effects on the maturation of clathrin-coated pits. Mol. Biol. Cell 20, 3251–3260 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Henry, A. G. et al. Regulation of endocytic clathrin dynamics by cargo ubiquitination. Dev. Cell 23, 519–532 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jackson, L. P. et al. A large-scale conformational change couples membrane recruitment to cargo binding in the AP2 clathrin adaptor complex. Cell 141, 1220–1229 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ritter, B. et al. NECAP 1 regulates AP-2 interactions to control vesicle size, number, and cargo during clathrin-mediated endocytosis. PLoS Biol. 11, e1001670 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Busch, D. J. et al. Intrinsically disordered proteins drive membrane curvature. Nat. Commun. 6, 7875 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. Stachowiak, J. C., Brodsky, F. M. & Miller, E. A. A cost-benefit analysis of the physical mechanisms of membrane curvature. Nat. Cell Biol. 15, 1019–1027 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Kirchhausen, T. & Harrison, S. C. Protein organization in clathrin trimers. Cell 23, 755–761 (1981).

    Article  CAS  PubMed  Google Scholar 

  48. Pearse, B. M. Coated vesicles from pig brain: purification and biochemical characterization. J. Mol. Biol. 97, 93–98 (1975).

    Article  CAS  PubMed  Google Scholar 

  49. Heuser, J. Three-dimensional visualization of coated vesicle formation in fibroblasts. J. Cell Biol. 84, 560–583 (1980).

    Article  CAS  PubMed  Google Scholar 

  50. Nossal, R. Energetics of clathrin basket assembly. Traffic 2, 138–147 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Kirchhausen, T. Coated pits and coated vesicles — sorting it all out. Curr. Opin. Struct. Biol. 3, 182–188 (1993).

    Article  CAS  Google Scholar 

  52. Boulant, S., Kural, C., Zeeh, J. C., Ubelmann, F. & Kirchhausen, T. Actin dynamics counteract membrane tension during clathrin-mediated endocytosis. Nat. Cell Biol. 13, 1124–1131 (2011). This study reveals that actin polymerization is critical for endocytosis under high membrane tension conditions in mammalian cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Saleem, M. et al. A balance between membrane elasticity and polymerization energy sets the shape of spherical clathrin coats. Nat. Commun. 6, 6249 (2015).

    Article  CAS  PubMed  Google Scholar 

  54. Thiam, A. R. & Pincet, F. The energy of COPI for budding membranes. PLoS ONE 10, e0133757 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Dannhauser, P. N. & Ungewickell, E. J. Reconstitution of clathrin-coated bud and vesicle formation with minimal components. Nat. Cell Biol. 14, 634–639 (2012). This article presents the first reconstitution of clathrin-coated vesicles from artificial membranes and proposes that amphipathic helices are not necessary for membrane bending.

    Article  CAS  PubMed  Google Scholar 

  56. Maupin, P. & Pollard, T. D. Improved preservation and staining of HeLa cell actin filaments, clathrin-coated membranes, and other cytoplasmic structures by tannic acid-glutaraldehyde-saponin fixation. J. Cell Biol. 96, 51–62 (1983).

    Article  CAS  PubMed  Google Scholar 

  57. Dannhauser, P. N. et al. Effect of clathrin light chains on the stiffness of clathrin lattices and membrane budding. Traffic 16, 519–533 (2015).

    Article  CAS  PubMed  Google Scholar 

  58. Avinoam, O., Schorb, M., Beese, C. J., Briggs, J. A. & Kaksonen, M. Endocytic sites mature by continuous bending and remodeling of the clathrin coat. Science 348, 1369–1372 (2015).

    Article  CAS  PubMed  Google Scholar 

  59. Kukulski, W., Schorb, M., Kaksonen, M. & Briggs, J. A. Plasma membrane reshaping during endocytosis is revealed by time-resolved electron tomography. Cell 150, 508–520 (2012).

    Article  CAS  PubMed  Google Scholar 

  60. Ford, M. G. et al. Simultaneous binding of PtdIns(4,5)P2 and clathrin by AP180 in the nucleation of clathrin lattices on membranes. Science 291, 1051–1055 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Copic, A., Latham, C. F., Horlbeck, M. A., D'Arcangelo, J. G. & Miller, E. A. ER cargo properties specify a requirement for COPII coat rigidity mediated by Sec13p. Science 335, 1359–1362 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Loerke, D., Wienisch, M., Kochubey, O. & Klingauf, J. Differential control of clathrin subunit dynamics measured with EW-FRAP microscopy. Traffic 6, 918–929 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Wu, X. et al. Clathrin exchange during clathrin-mediated endocytosis. J. Cell Biol. 155, 291–300 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Schlossman, D. M., Schmid, S. L., Braell, W. A. & Rothman, J. E. An enzyme that removes clathrin coats: purification of an uncoating ATPase. J. Cell Biol. 99, 723–733 (1984).

    Article  CAS  PubMed  Google Scholar 

  65. Barouch, W., Prasad, K., Greene, L. E. & Eisenberg, E. ATPase activity associated with the uncoating of clathrin baskets by Hsp70. J. Biol. Chem. 269, 28563–28568 (1994).

    Article  CAS  PubMed  Google Scholar 

  66. Ayscough, K. R. et al. High rates of actin filament turnover in budding yeast and roles for actin in establishment and maintenance of cell polarity revealed using the actin inhibitor latrunculin-A. J. Cell Biol. 137, 399–416 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Fujimoto, L. M., Roth, R., Heuser, J. E. & Schmid, S. L. Actin assembly plays a variable, but not obligatory role in receptor-mediated endocytosis in mammalian cells. Traffic 1, 161–171 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Gottlieb, T. A., Ivanov, I. E., Adesnik, M. & Sabatini, D. D. Actin microfilaments play a criticalrole in endocytosis at the apical but not the basolateral surface of polarized epithelial cells. J. Cell Biol. 120, 695–710 (1993).

    Article  CAS  PubMed  Google Scholar 

  69. Lamaze, C., Fujimoto, L. M., Yin, H. L. & Schmid, S. L. The actin cytoskeleton is required for receptor-mediated endocytosis in mammalian cells. J. Biol. Chem. 272, 20332–20335 (1997).

    Article  CAS  PubMed  Google Scholar 

  70. Salisbury, J. L., Condeelis, J. S. & Satir, P. Role of coated vesicles, microfilaments, and calmodulin in receptor-mediated endocytosis by cultured B lymphoblastoid cells. J. Cell Biol. 87, 132–141 (1980).

    Article  CAS  PubMed  Google Scholar 

  71. Grassart, A. et al. Actin and dynamin2 dynamics and interplay during clathrin-mediated endocytosis. J. Cell Biol. 205, 721–735 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Li, D. et al. ADVANCED IMAGING. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics. Science 349, aab3500 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Kaksonen, M., Sun, Y. & Drubin, D. G. A pathway for association of receptors, adaptors, and actin during endocytic internalization. Cell 115, 475–487 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Sirotkin, V., Beltzner, C. C., Marchand, J. B. & Pollard, T. D. Interactions of WASp, myosin-I, and verprolin with Arp2/3 complex during actin patch assembly in fission yeast. J. Cell Biol. 170, 637–648 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Idrissi, F. Z., Blasco, A., Espinal, A. & Geli, M. I. Ultrastructural dynamics of proteins involved in endocytic budding. Proc. Natl Acad. Sci. USA 109, E2587–E2594 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Yarar, D., Waterman-Storer, C. M. & Schmid, S. L. A dynamic actin cytoskeleton functions at multiple stages of clathrin-mediated endocytosis. Mol. Biol. Cell 16, 964–975 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Idrissi, F. Z. et al. Distinct acto/myosin-I structures associate with endocytic profiles at the plasma membrane. J. Cell Biol. 180, 1219–1232 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Mulholland, J. et al. Ultrastructure of the yeast actin cytoskeleton and its association with the plasma membrane. J. Cell Biol. 125, 381–391 (1994).

    Article  CAS  PubMed  Google Scholar 

  79. Collins, A., Warrington, A., Taylor, K. A. & Svitkina, T. Structural organization of the actin cytoskeleton at sites of clathrin-mediated endocytosis. Curr. Biol. 21, 1167–1175 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Picco, A., Mund, M., Ries, J., Nedelec, F. & Kaksonen, M. Visualizing the functional architecture of the endocytic machinery. eLife 4, e04535 (2015).

    Article  PubMed Central  Google Scholar 

  81. Merrifield, C. J., Qualmann, B., Kessels, M. M. & Almers, W. Neural Wiskott Aldrich Syndrome Protein (N-WASP) and the Arp2/3 complex are recruited to sites of clathrin-mediated endocytosis in cultured fibroblasts. Eur. J. Cell Biol. 83, 13–18 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Chen, Q. & Pollard, T. D. Actin filament severing by cofilin dismantles actin patches and produces mother filaments for new patches. Curr. Biol. 23, 1154–1162 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Galletta, B. J., Chuang, D. Y. & Cooper, J. A. Distinct roles for Arp2/3 regulators in actin assembly and endocytosis. PLoS Biol. 6, e1 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Bradford, M. K., Whitworth, K. & Wendland, B. Pan1 regulates transitions between stages of clathrin-mediated endocytosis. Mol. Biol. Cell 26, 1371–1385 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sun, Y., Leong, N. T., Wong, T. & Drubin, D. G. A. Pan1/End3/Sla1 complex links Arp2/3-mediated actin assembly to sites of clathrin-mediated endocytosis. Mol. Biol. Cell 26, 3841–3856 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Engqvist-Goldstein, A. E. et al. RNAi-mediated Hip1R silencing results in stable association between the endocytic machinery and the actin assembly machinery. Mol. Biol. Cell 15, 1666–1679 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Skruzny, M. et al. Molecular basis for coupling the plasma membrane to the actin cytoskeleton during clathrin-mediated endocytosis. Proc. Natl Acad. Sci. USA 109, E2533–E2542 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Skruzny, M. et al. An organized co-assembly of clathrin adaptors is essential for endocytosis. Dev. Cell 33, 150–162 (2015).

    Article  CAS  PubMed  Google Scholar 

  89. Pollard, T. D. & Borisy, G. G. Cellular motility driven by assembly and disassembly of actin filaments. Cell 112, 453–465 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. Carlsson, A. E. & Bayly, P. V. Force generation by endocytic actin patches in budding yeast. Biophys. J. 106, 1596–1606 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Dmitrieff, S. & Nedelec, F. Membrane mechanics of endocytosis in cells with turgor. PLoS Comput. Biol. 11, e1004538 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Geli, M. I. & Riezman, H. Role of type I myosins in receptor-mediated endocytosis in yeast. Science 272, 533–535 (1996).

    Article  CAS  PubMed  Google Scholar 

  93. Cheng, J., Grassart, A. & Drubin, D. G. Myosin 1E coordinates actin assembly and cargo trafficking during clathrin-mediated endocytosis. Mol. Biol. Cell 23, 2891–2904 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lewellyn, E. B. et al. An engineered minimal WASP-myosin fusion protein reveals essential functions for endocytosis. Dev. Cell 35, 281–294 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Antonny, B. et al. Membrane fission by dynamin: what we know and what we need to know. EMBO J. 35, 2270–2284 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Bashkirov, P. V. et al. GTPase cycle of dynamin is coupled to membrane squeeze and release, leading to spontaneous fission. Cell 135, 1276–1286 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Pucadyil, T. J. & Schmid, S. L. Real-time visualization of dynamin-catalyzed membrane fission and vesicle release. Cell 135, 1263–1275 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Roux, A., Uyhazi, K., Frost, A. & De Camilli, P. GTP-dependent twisting of dynamin implicates constriction and tension in membrane fission. Nature 441, 528–531 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Sweitzer, S. M. & Hinshaw, J. E. Dynamin undergoes a GTP-dependent conformational change causing vesiculation. Cell 93, 1021–1029 (1998).

    Article  CAS  PubMed  Google Scholar 

  100. Daumke, O., Roux, A. & Haucke, V. BAR domain scaffolds in dynamin-mediated membrane fission. Cell 156, 882–892 (2014).

    Article  CAS  PubMed  Google Scholar 

  101. Nothwehr, S. F., Conibear, E. & Stevens, T. H. Golgi and vacuolar membrane proteins reach the vacuole in vps1 mutant yeast cells via the plasma membrane. J. Cell Biol. 129, 35–46 (1995).

    Article  CAS  PubMed  Google Scholar 

  102. Palmer, S. E. et al. A dynamin-actin interaction is required for vesicle scission during endocytosis in yeast. Curr. Biol. 25, 868–878 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Smaczynska-de, R. II et al. A role for the dynamin-like protein Vps1 during endocytosis in yeast. J. Cell Sci. 123, 3496–3506 (2010).

    Article  Google Scholar 

  104. Ringstad, N. et al. Endophilin/SH3p4 is required for the transition from early to late stages in clathrin-mediated synaptic vesicle endocytosis. Neuron 24, 143–154 (1999).

    Article  CAS  PubMed  Google Scholar 

  105. Takei, K., Slepnev, V. I., Haucke, V. & De Camilli, P. Functional partnership between amphiphysin and dynamin in clathrin-mediated endocytosis. Nat. Cell Biol. 1, 33–39 (1999).

    Article  CAS  PubMed  Google Scholar 

  106. Farsad, K. et al. Generation of high curvature membranes mediated by direct endophilin bilayer interactions. J. Cell Biol. 155, 193–200 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Meinecke, M. et al. Cooperative recruitment of dynamin and BIN/amphiphysin/Rvs (BAR) domain-containing proteins leads to GTP-dependent membrane scission. J. Biol. Chem. 288, 6651–6661 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Neumann, S. & Schmid, S. L. Dual role of BAR domain-containing proteins in regulating vesicle release catalyzed by the GTPase, dynamin-2. J. Biol. Chem. 288, 25119–25128 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Yoshida, Y. et al. The stimulatory action of amphiphysin on dynamin function is dependent on lipid bilayer curvature. EMBO J. 23, 3483–3491 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Peter, B. J. et al. BAR domains as sensors of membrane curvature: the amphiphysin BAR structure. Science 303, 495–499 (2004).

    Article  CAS  PubMed  Google Scholar 

  111. Frost, A. et al. Structural basis of membrane invagination by F-BAR domains. Cell 132, 807–817 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Habermann, B. The BAR-domain family of proteins: a case of bending and binding? EMBO Rep. 5, 250–255 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Mim, C. et al. Structural basis of membrane bending by the N-BAR protein endophilin. Cell 149, 137–145 (2012). This study is a 3D cryo-electron microscopy reconstruction of the endophilin coat around a membrane tubule showing how amphipathic helices participate in lateral interactions between BAR domains.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Sorre, B. et al. Nature of curvature coupling of amphiphysin with membranes depends on its bound density. Proc. Natl Acad. Sci. USA 109, 173–178 (2012).

    Article  CAS  PubMed  Google Scholar 

  115. Hatzakis, N. S. et al. How curved membranes recruit amphipathic helices and protein anchoring motifs. Nat. Chem. Biol. 5, 835–841 (2009).

    Article  CAS  PubMed  Google Scholar 

  116. Boucrot, E. et al. Membrane fission is promoted by insertion of amphipathic helices and is restricted by crescent BAR domains. Cell 149, 124–136 (2012). This article shows how membrane shaping and fission can be driven by the insertion of amphipathic helices.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Itoh, T. et al. Dynamin and the actin cytoskeleton cooperatively regulate plasma membrane invagination by BAR and F-BAR proteins. Dev. Cell 9, 791–804 (2005).

    Article  CAS  PubMed  Google Scholar 

  118. Posor, Y. et al. Spatiotemporal control of endocytosis by phosphatidylinositol-3,4-bisphosphate. Nature 499, 233–237 (2013).

    Article  CAS  PubMed  Google Scholar 

  119. Schoneberg, J. et al. Lipid-mediated PX-BAR domain recruitment couples local membrane constriction to endocytic vesicle fission. Nat. Commun. 8, 15873 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Wu, M. et al. Coupling between clathrin-dependent endocytic budding and F-BAR-dependent tubulation in a cell-free system. Nat. Cell Biol. 12, 902–908 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Gallop, J. L. et al. Mechanism of endophilin N-BAR domain-mediated membrane curvature. EMBO J. 25, 2898–2910 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Hohendahl, A. et al. Structural inhibition of dynamin-mediated membrane fission by endophilin. eLife 6, e26856 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Shimada, A. et al. Curved EFC/F-BAR-domain dimers are joined end to end into a filament for membrane invagination in endocytosis. Cell 129, 761–772 (2007).

    Article  CAS  PubMed  Google Scholar 

  124. Simunovic, M. et al. How curvature-generating proteins build scaffolds on membrane nanotubes. Proc. Natl Acad. Sci. USA 113, 11226–11231 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Zhao, H. et al. Membrane-sculpting BAR domains generate stable lipid microdomains. Cell Rep. 4, 1213–1223 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Renard, H. F. et al. Endophilin-A2 functions in membrane scission in clathrin-independent endocytosis. Nature 517, 493–496 (2015).

    Article  CAS  PubMed  Google Scholar 

  127. Simunovic, M. et al. Friction mediates scission of tubular membranes scaffolded by BAR proteins. Cell 170, 172–184.e11 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Braell, W. A., Schlossman, D. M., Schmid, S. L. & Rothman, J. E. Dissociation of clathrin coats coupled to the hydrolysis of ATP: role of an uncoating ATPase. J. Cell Biol. 99, 734–741 (1984).

    Article  CAS  PubMed  Google Scholar 

  129. Ungewickell, E. The 70-kd mammalian heat shock proteins are structurally and functionally related to the uncoating protein that releases clathrin triskelia from coated vesicles. EMBO J. 4, 3385–3391 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Newmyer, S. L., Christensen, A. & Sever, S. Auxilin-dynamin interactions link the uncoating ATPase chaperone machinery with vesicle formation. Dev. Cell 4, 929–940 (2003).

    Article  CAS  PubMed  Google Scholar 

  131. Scheele, U. et al. Molecular and functional characterization of clathrin- and AP-2-binding determinants within a disordered domain of auxilin. J. Biol. Chem. 278, 25357–25368 (2003).

    Article  CAS  PubMed  Google Scholar 

  132. Scheele, U., Kalthoff, C. & Ungewickell, E. Multiple interactions of auxilin 1 with clathrin and the AP-2 adaptor complex. J. Biol. Chem. 276, 36131–36138 (2001).

    Article  CAS  PubMed  Google Scholar 

  133. Sousa, R. & Lafer, E. M. The role of molecular chaperones in clathrin mediated vesicular trafficking. Front. Mol. Biosci. 2, 26 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Fotin, A. et al. Structure of an auxilin-bound clathrin coat and its implications for the mechanism of uncoating. Nature 432, 649–653 (2004).

    Article  CAS  PubMed  Google Scholar 

  135. Goloubinoff, P. & Rios, P. D. L. The mechanism of Hsp70 chaperones: (entropic) pulling the models together. Trends Biochem. Sci. 32, 372–380 (2007).

    Article  CAS  PubMed  Google Scholar 

  136. Sousa, R. et al. Clathrin-coat disassembly illuminates the mechanisms of Hsp70 force generation. Nat. Struct. Mol. Biol. 23, 821–829 (2016). This article presents a computational modelling of the action of HSC70 on the clathrin coat and proposes that HSC70 acts as a wrecking ball on the 'wall' of the clathrin lattice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. McPherson, P. S. et al. A presynaptic inositol-5-phosphatase. Nature 379, 353–357 (1996).

    Article  CAS  PubMed  Google Scholar 

  138. Cremona, O. et al. Essential role of phosphoinositide metabolism in synaptic vesicle recycling. Cell 99, 179–188 (1999).

    Article  CAS  PubMed  Google Scholar 

  139. Posor, Y., Eichhorn-Grunig, M. & Haucke, V. Phosphoinositides in endocytosis. Biochim. Biophys. Acta 1851, 794–804 (2015).

    Article  CAS  PubMed  Google Scholar 

  140. Di Paolo, G. et al. Impaired PtdIns(4,5)P2 synthesis in nerve terminals produces defects in synaptic vesicle trafficking. Nature 431, 415–422 (2004).

    Article  CAS  PubMed  Google Scholar 

  141. Varnai, P., Thyagarajan, B., Rohacs, T. & Balla, T. Rapidly inducible changes in phosphatidylinositol 4,5-bisphosphate levels influence multiple regulatory functions of the lipid in intact living cells. J. Cell Biol. 175, 377–382 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Perera, R. M., Zoncu, R., Lucast, L., De Camilli, P. & Toomre, D. Two synaptojanin 1 isoforms are recruited to clathrin-coated pits at different stages. Proc. Natl Acad. Sci. USA 103, 19332–19337 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Schuske, K. R. et al. Endophilin is required for synaptic vesicle endocytosis by localizing synaptojanin. Neuron 40, 749–762 (2003).

    Article  CAS  PubMed  Google Scholar 

  144. Verstreken, P. et al. Synaptojanin is recruited by endophilin to promote synaptic vesicle uncoating. Neuron 40, 733–748 (2003).

    Article  CAS  PubMed  Google Scholar 

  145. Chang-Ileto, B. et al. Synaptojanin 1-mediated PI(4,5)P2 hydrolysis is modulated by membrane curvature and facilitates membrane fission. Dev. Cell 20, 206–218 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Erdmann, K. S. et al. A role of the Lowe syndrome protein OCRL in early steps of the endocytic pathway. Dev. Cell 13, 377–390 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Choudhury, R. et al. Lowe syndrome protein OCRL1 interacts with clathrin and regulates protein trafficking between endosomes and the trans-Golgi network. Mol. Biol. Cell 16, 3467–3479 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Ungewickell, A., Ward, M. E., Ungewickell, E. & Majerus, P. W. The inositol polyphosphate 5-phosphatase Ocrl associates with endosomes that are partially coated with clathrin. Proc. Natl Acad. Sci. USA 101, 13501–13506 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Nandez, R. et al. A role of OCRL in clathrin-coated pit dynamics and uncoating revealed by studies of Lowe≈syndrome cells. eLife 3, e02975 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Cauvin, C. et al. Rab35 GTPase triggers switch-like recruitment of the Lowe syndrome lipid phosphatase OCRL on newborn endosomes. Curr. Biol. 26, 120–128 (2016).

    Article  CAS  PubMed  Google Scholar 

  151. Zoncu, R. et al. A phosphoinositide switch controls the maturation and signaling properties of APPL endosomes. Cell 136, 1110–1121 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Roth, T. F. & Porter, K. R. Yolk protein uptake in the oocyte of the mosquito Aedes aegypti. L. J. Cell Biol. 20, 313–332 (1964).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Sirotkin, V., Berro, J., Macmillan, K., Zhao, L. & Pollard, T. D. Quantitative analysis of the mechanism of endocytic actin patch assembly and disassembly in fission yeast. Mol. Biol. Cell 21, 2894–2904 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Sochacki, K. A., Dickey, A. M., Strub, M. P. & Taraska, J. W. Endocytic proteins are partitioned at the edge of the clathrin lattice in mammalian cells. Nat. Cell Biol. 19, 352–361 (2017). This is a systematic super-resolution study of the organization of proteins in the clathrin coat.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Doyon, J. B. et al. Rapid and efficient clathrin-mediated endocytosis revealed in genome-edited mammalian cells. Nat. Cell Biol. 13, 331–337 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Umasankar, P. K. et al. A clathrin coat assembly role for the muniscin protein central linker revealed by TALEN-mediated gene editing. elife 3, e04137 (2014).

    Article  PubMed Central  Google Scholar 

  157. Aguet, F. et al. Membrane dynamics of dividing cells imaged by lattice light-sheet microscopy. Mol. Biol. Cell 27, 3418–3435 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Ferguson, J. P. et al. Deciphering dynamics of clathrin-mediated endocytosis in a living organism. J. Cell Biol. 214, 347–358 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Kukulski, W., Picco, A., Specht, T., Briggs, J. A. & Kaksonen, M. Clathrin modulates vesicle scission, but not invagination shape, in yeast endocytosis. eLife 5, e16036 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Payne, G. S., Baker, D., van Tuinen, E. & Schekman, R. Protein transport to the vacuole and receptor-mediated endocytosis by clathrin heavy chain-deficient yeast. J. Cell Biol. 106, 1453–1461 (1988).

    Article  CAS  PubMed  Google Scholar 

  161. Aghamohammadzadeh, S. & Ayscough, K. R. Differential requirements for actin during yeast and mammalian endocytosis. Nat. Cell Biol. 11, 1039–1042 (2009).

    Article  CAS  PubMed  Google Scholar 

  162. Kaur, S., Fielding, A. B., Gassner, G., Carter, N. J. & Royle, S. J. An unmet actin requirement explains the mitotic inhibition of clathrin-mediated endocytosis. eLife 3, e00829 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Lieber, A. D., Yehudai-Resheff, S., Barnhart, E. L., Theriot, J. A. & Keren, K. Membrane tension in rapidly moving cells is determined by cytoskeletal forces. Curr. Biol. 23, 1409–1417 (2013).

    Article  CAS  PubMed  Google Scholar 

  164. Kanaseki, T. & Kadota, K. The “vesicle in a basket”. A morphological study of the coated vesicle isolated from the nerve endings of the guinea pig brain, with special reference to the mechanism of membrane movements. J. Cell Biol. 42, 202–220 (1969).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Fotin, A. et al. Molecular model for a complete clathrin lattice from electron cryomicroscopy. Nature 432, 573–579 (2004).

    Article  CAS  PubMed  Google Scholar 

  166. Heuser, J. E. & Anderson, R. G. Hypertonic media inhibit receptor-mediated endocytosis by blocking clathrin-coated pit formation. J. Cell Biol. 108, 389–400 (1989).

    Article  CAS  PubMed  Google Scholar 

  167. Di Paolo, G. & De Camilli, P. Phosphoinositides in cell regulation and membrane dynamics. Nature 443, 651–657 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors dedicate this Review to the memory of C. Merrifield, who prematurely passed away on 29 November 2017. In many aspects, C. Merrifield's contribution to the understanding of clathrin-mediated endocytosis has been essential. He was, through his genuine scientific interest, kindness and passion, a true gentleman. The authors will remember him vividly. A.R. acknowledges funding from a Human Frontier Science Program Young Investigator Grant (RGY0076-2008), a European Research Council starting (consolidator) grant (311536-MEMFIS) and the Swiss National Science Foundation (grants 131003A_130520 and 131003A_149975). M.K. acknowledges funding from the Swiss National Science Foundation (grant 31003A_163267).

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to all aspects of the article (researching data for the article and substantial contribution to the discussion of content, writing, review and editing of the manuscript before submission).

Corresponding authors

Correspondence to Marko Kaksonen or Aurélien Roux.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Turgor pressure

Osmotic pressure within plant and fungal cells confined within a cell wall.

BAR domain

A crescent-shaped dimeric protein domain that binds membranes with its curved surface and thereby either senses membrane curvature or bends the membrane.

Membrane tension

In-plane force counteracting membrane surface expansion.

Elastic energy

Energy required to deform an elastic material. For lipid membranes, it contains a term for bending and a term for stretching, both taking the form of the energy associated with a harmonic spring: a constant called the modulus or rigidity, multiplied by the shape change to the square. Thus, bending energy is the bending rigidity multiplied by membrane curvature to the square, whereas stretching energy is the compressibility modulus multiplied by the area difference to the square. The elastic energy of the membrane is the sum of these two terms.

Amphipathic helix

A short polypeptide, typically between 10 and 20 amino acids in length, that contains hydrophobic and hydrophilic residues. This polypeptide spontaneously folds into an α-helix when binding to a lipid membrane. In this configuration, all hydrophobic residues are aligned on the cylindrical face of the helix that is buried in the bilayer whereas the hydrophilic moieties are aligned on the hydrated face.

Fluorescence recovery after photobleaching

(FRAP). Microscopy method for measuring local exchange of fluorescently labelled molecules.

Type I myosins

A highly conserved subfamily of monomeric myosin motors involved in cell motility and membrane traffic.

Entropic forces

Forces that arise while the system tries to maximize its entropy. These forces typically arise from frustrated thermal fluctuations, which will then counteract the constraints by applying forces onto them. The pressure of an ideal gas is an entropic force. In lipid membranes, repulsive forces between closely apposed bilayers (less than a few tens of nanometres) — known as Helfrich forces — are entropic forces. They arise from thermal undulations of the bilayer surface. In polymer physics, thermal fluctuations usually lead to the folding of the polymer molecule into globular conformations. If one pulls on both ends of the molecule, an entropic force is felt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaksonen, M., Roux, A. Mechanisms of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol 19, 313–326 (2018). https://doi.org/10.1038/nrm.2017.132

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm.2017.132

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing