Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Tracking T cells with tetramers: new tales from new tools

Key Points

  • Tetrameric peptide–MHC-class-I complexes (tetramers) allow antigen-specific T cells to be tracked in time and space, as well as a detailed analysis of their surface phenotype.

  • Tetramers are best used in parallel with functional assays.

  • Very large, focused expansions of T-cell populations are seen early after infection.

  • The very large T-cell populations expand rapidly and can also contract rapidly.

  • After the acute phase of infection, substantial populations of antigen-specific T cells might persist long term, but the size of the population varies depending on the pathogen.

  • Various T-cell phenotypes exist following acute disease, which vary between infections and between individuals.

  • Antigen-specific T cells are found readily outside lymphoid organs during and after acute disease.

  • Tetramer-positive cells are antigen specific, but not uniformly antigen responsive.

  • Tumour-specific CD8+ T-cell responses do arise spontaneously, but differ from antiviral responses in magnitude and, potentially, duration.

  • Spontaneous tumour-specific CD8+ T-cell responses might often be 'too little, too late'.

  • The function of tumour-specific CD8+ T cells might vary, similar to virus-specific CD8+ T cells.

  • Tetramers have highlighted the overlap between tumour immunity and autoimmunity.

  • Tumour vaccination trials benefit from the use of tetramers.

  • Tetramers for CD4+ T cells and natural killer T cells exist but have yet to make the same impact as MHC class I tetramers. However, tetramers of non-classical MHC class I molecules (for example, HLA-E) have been important in identifying new pathways of natural-killer-cell regulation.

  • The future is bright for tetramer studies, but it is important to remember that they can only be interpreted in the context of the entire immune response.

Abstract

To understand the success or failure of immune responses against pathogens or tumours requires the direct measurement of specific lymphocytes. Recently, there has been an explosion of data in this field through the use of several new tools for measuring the number and function of T cells. This has allowed immunologists who study human disease and mouse models of infection and cancer to readily track specific T cells — in both time and space. Although there are common patterns, over time, each host–pathogen relationship seems to develop unique characteristics, as reflected in the quality of the T-cell response.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Patterns of tetramer staining over time.
Figure 2: Simplified phenotype of tetramer-positive cells in human infectious disease.
Figure 3: An example of CD8+ T-cell distribution associated with viral infection (vesicular stomatitis virus).
Figure 4: Dose-response curve for pathogen-specific T-cell populations.

Similar content being viewed by others

References

  1. Ogg, G. S. & McMichael, A. J. HLA–peptide tetrameric complexes. Curr. Opin. Immunol. 10, 393–396 (1998).

    CAS  PubMed  Google Scholar 

  2. McMichael, A. J. & O'Callaghan, C. A. A new look at T cells. J. Exp. Med. 187, 1367–1371 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Lechner, F., Cuero, A. L., Kantzanou, M. & Klenerman, P. Studies of human antiviral CD8+ lymphocytes using class I peptide tetramers. Rev. Med. Virol. 11, 11–22 (2001).

    CAS  PubMed  Google Scholar 

  4. Doherty, P. C., Christensen, J. P., Belz, G. T., Stevenson, P. G. & Sangster, M. Y. Dissecting the host response to a γ-herpesvirus. Philos Trans R Soc Lond B Biol Sci 356, 581–593 (2001).Describes the fundamental differences between a persistent and non-persistent mouse pathogen.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Altman, J. et al. Direct visualization and phenotypic analysis of virus-specific T lymphocytes in HIV-infected individuals. Science 274, 94–96 (1996).Now a classic paper, this was the first to describe the use of tetramers for ex vivo phenotyping.

    Article  CAS  PubMed  Google Scholar 

  6. Murali-Krishna, K. et al. Counting antigen-specific CD8 T cells: a reevaluation of bystander activation during viral infection. Immunity 8, 177–187 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Gallimore, A. et al. Induction and exhaustion of lymphocytic-choriomeningitis-virus-specific cytotoxic T lymphocytes visualized using soluble tetrameric major histocompatibility complex class-I–peptide complexes. J. Exp. Med. 187, 1383–1393 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Masopust, D., Vezys, V., Marzo, A. & Lefrancois, L. Preferential localisation of effector memory cells in nonlymphoid tissue. Science 291, 2413–2417 (2001).Reveals the unexpected finding that T-cell memory, even after very brief infections, can maintain readily activated T cells in non-lymphoid organs, such as lung and liver.

    Article  CAS  PubMed  Google Scholar 

  9. Flynn, K. J. et al. Virus-specific CD8+ T cells in primary and secondary influenza pneumonia. Immunity 8, 683–691 (1998).

    CAS  PubMed  Google Scholar 

  10. Marshall, D. R. et al. Measuring the diaspora for virus-specific CD8+ T cells. Proc. Natl Acad. Sci. USA 98, 6313–6318 (2001).Short paper describing the use of tetramers and IFN-γ assays to analyse the distribution of CD8+ T cells over time.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Callan, M. F. et al. CD8+ T-cell selection, function and death in the primary immune response in vivo. J. Clin. Invest. 106, 1251–1261 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Callan, M. F. et al. Direct visualization of antigen-specific CD8+ T cells during the primary immune response to Epstein–Barr virus in vivo. J. Exp. Med. 187, 1395–1402 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Wilson, J. D. et al. Direct visualization of HIV-1-specific cytotoxic T lymphocytes during primary infection. AIDS 14, 225–233 (2000).

    CAS  PubMed  Google Scholar 

  14. Lechner, F. et al. Analysis of successful immune responses in persons infected with hepatitis C virus. J. Exp. Med. 191, 1499–1512 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Lechner, F. et al. CTL responses are induced during acute HCV infection but are not sustained. Eur. J. Immunol. 30, 2479–2487 (2000).

    CAS  PubMed  Google Scholar 

  16. Maini, M. K. et al. Direct ex vivo analysis of hepatitis-B-virus-specific CD8+ T cells associated with the control of infection. Gastroenterology 117, 1386–1396 (1999).

    CAS  PubMed  Google Scholar 

  17. Allen, T. M. et al. CD8+ lymphocytes from simian-immunodeficiency-virus-infected rhesus macaques recognize 14 different epitopes bound by the major histocompatibility complex class I molecule mamu-A*01: implications for vaccine design and testing. J. Virol. 75, 738–749 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Kuroda, M. J. et al. Emergence of CTL coincides with clearance of virus during primary simian immunodeficiency virus infection in rhesus monkeys. J. Immunol. 162, 5127–5133 (1999).

    CAS  PubMed  Google Scholar 

  19. Crispe, I., Dao, T., Klugewitz, K., Mehal, W. & Metz, D. The liver as a site of T-cell apoptosis: graveyard or killing field? Immunol. Rev. 174, 47–62 (2000).

    CAS  PubMed  Google Scholar 

  20. Schmitz, J. E. et al. Simian immunodeficiency virus (SIV)-specific CTL are present in large numbers in livers of SIV-infected Rhesus monkeys. J. Immunol. 164, 6015–6019 (2000).

    CAS  PubMed  Google Scholar 

  21. Belz, G., Altman, J. & Doherty, P. Characteristics of virus-specific CD8+ T cells in the liver during control and resolution phases of influenza pneumonia. Proc Natl Acad Sci U S A 95, 13812–13817 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Zajac, A. et al. Viral immune evasion due to persistence of activated T cells without effector function. J. Exp. Med. 188, 2205–2213 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Ogg, G. S. et al. Decay kinetics of human-immunodeficiency-virus-specific effector cytotoxic T lymphocytes after combination antiretroviral therapy. J. Virol. 73, 797–800 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Andre, P. et al. An inhibitor of HIV-1 protease modulates proteasome activity, antigen presentation, and T cell responses. Proc Natl Acad Sci U S A 95, 13120–13124 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Gillespie, G. M. et al. Functional heterogeneity and high frequencies of cytomegalovirus-specific CD8+ T lymphocytes in healthy seropositive donors. J. Virol. 74, 8140–8150 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Tan, L. C. et al. A re-evaluation of the frequency of CD8+ T cells specific for EBV in healthy virus carriers. J. Immunol. 162, 1827–1835 (1999).Describes the phenotype of virus-specific cells during long-term suppression of virus in a truly persistent infection, Epstein–Barr virus. Also describes the reactivation of EBV-specific populations during viral recrudescence without overt symptoms.

    CAS  PubMed  Google Scholar 

  27. Tolfvenstam, T. et al. Direct ex vivo measurement of CD8+ T lymphocytes responses to human parvovirus B19. J. Virol. 75, 540–543 (2001).Also describes the reactivation of EBV-specific populations during viral recrudescence without overt symptoms.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Dunbar, P. R. et al. Direct isolation, phenotyping and cloning of low-frequency antigen-specific cytotoxic T lymphocytes from peripheral blood. Curr. Biol. 8, 413–416 (1998).

    CAS  PubMed  Google Scholar 

  29. Goulder, P. J., Lechner, F., Klenerman, P., McIntosh, K. & Walker, B. D. Characterization of a novel respiratory syncytial virus-specific human cytotoxic T-lymphocyte epitope. J. Virol. 74, 7694–7697 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Vargas, A. L., Lechner, F., Kantzanou, M., Phillips, R. E. & Klenerman, P. Ex vivo analysis of phenotype and TCR usage in relation to CD45 isoform expression on cytomegalovirus-specific CD8+ T lymphocytes. Clin. Exp. Immunol. 125, 432–439 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Hislop, A. D. et al. EBV-specific CD8+ T-cell memory: relationships between epitope specificity, cell phenotype and immediate effector function. J. Immunol. 167, 2019–2029 (2001).

    CAS  PubMed  Google Scholar 

  32. Champagne, P. et al. Skewed maturation of memory HIV-specific CD8 T lymphocytes. Nature 410, 106–111 (2001).

    CAS  PubMed  Google Scholar 

  33. Appay, V. et al. Memory CD8+ T cells vary in differentiation phenotype in different persistent virus infections. Nature Med. 8, 379–385.

  34. Lauvau, G. et al. Priming of memory but not effector CD8 T cells by a killed bacterial vaccine. Science 294, 1735–1739 (2001).In vivo study linking changes in T-cell phenotype with protective function.

    CAS  PubMed  Google Scholar 

  35. He, X.-S. et al. Quantitative analysis of HCV-specific CD8+ T cells in peripheral blood and liver using peptide–MHC tetramers. Proc. Natl Acad. Sci. USA 96, 5692–5697 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Grabowska, A. M. et al. Direct ex vivo comparison of the breadth and specificity of the T cells in the liver and peripheral blood of patients with chronic HCV infection. Eur. J. Immunol. 31, 2388–2394 (2001).

    CAS  PubMed  Google Scholar 

  37. Maini, M. K. et al. The role of virus-specific CD8+ cells in liver damage and viral control during persistent hepatitis B virus infection. J. Exp. Med. 191, 1269–1280 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Ou, R., Zhou, S., Huang, L. & Moskophidis, D. Critical role for α/β and γ interferons in persistence of LCMV by clonal exhaustion of CTL. J. Virol. 75, 8407–8423 (2001).Highly comprehensive dissection of tetramer staining versus functional assays in the mouse LCMV model. Reveals the time-course of response and resolves discrepancies between assays.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Thimme, R. et al. Determinants of acute viral clearance and persistence during acute HCV infection. J. Exp. Med. 194, 1395–1406 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. van Baarle, D. et al. Dysfunctional Epstein–Barr virus (EBV)-specific CD8+ T lymphocytes and increased EBV load in HIV-1-infected individuals progressing to AIDS-related non-Hodgkin lymphoma. Blood 98, 146–155 (2001).

    CAS  PubMed  Google Scholar 

  41. Kostense, S. et al. High viral burden in the presence of major HIV-specific CD8+ T-cell expansions: evidence for impaired CTL effector function. Eur. J. Immunol. 31, 677–686 (2001).

    CAS  PubMed  Google Scholar 

  42. Boni, C. et al. Lamivudine treatment can overcome cytotoxic T-cell hyporesponsiveness in chronic hepatitis B: new perspectives for immune therapy. Hepatology 33, 963–971 (2001).

    CAS  PubMed  Google Scholar 

  43. Boon, T. & Old, L. J. Cancer tumor antigens. Curr. Opin. Immunol. 9, 681–683 (1997).

    CAS  PubMed  Google Scholar 

  44. Molldrem, J. J. et al. Evidence that specific T lymphocytes may participate in the elimination of chronic myelogenous leukemia. Nature Med. 6, 1018–1023 (2000).Describes the first use of tetramers in analysis of CML, potentially opening the field in new directions with regards to malignancy.

    CAS  PubMed  Google Scholar 

  45. Romero, P. et al. Ex vivo staining of metastatic lymph nodes by class I major histocompatibility complex tetramers reveals high numbers of antigen-experienced tumor-specific cytolytic T lymphocytes. J. Exp. Med. 188, 1641–1650 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Dunbar, P. R. et al. A shift in the phenotype of melan-A-specific CTL identifies melanoma patients with an active tumor-specific immune response. J. Immunol. 165, 6644–6652 (2000).

    CAS  PubMed  Google Scholar 

  47. Anichini, A. et al. An expanded peripheral T-cell population to a cytotoxic T lymphocyte (CTL)-defined, melanocyte-specific antigen in metastatic melanoma patients impacts on generation of peptide-specific CTLs but does not overcome tumor escape from immune surveillance in metastatic lesions. J. Exp. Med. 190, 651–668 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Lee, P. P. et al. Characterization of circulating T cells specific for tumor-associated antigens in melanoma patients. Nature Med. 5, 677–685 (1999).

    CAS  PubMed  Google Scholar 

  49. Palermo, B. et al. Diverse expansion potential and heterogeneous avidity in tumor-associated antigen-specific T lymphocytes from primary melanoma patients. Eur. J. Immunol. 31, 412–420 (2001).

    CAS  PubMed  Google Scholar 

  50. Valmori, D. et al. Analysis of the cytolytic T lymphocyte response of melanoma patients to the naturally HLA-A*0201-associated tyrosinase peptide 368–376. Cancer Res. 59, 4050–4055 (1999).

    CAS  PubMed  Google Scholar 

  51. Coulie, P. G. et al. A monoclonal cytolytic T-lymphocyte response observed in a melanoma patient vaccinated with a tumor-specific antigenic peptide encoded by gene MAGE-3. Proc. Natl Acad. Sci. USA 98, 10290–10295 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Kawakami, Y. et al. Cloning of the gene coding for a shared human melanoma antigen recognized by autologous T cells infiltrating into tumor. Proc. Natl Acad. Sci. USA 91, 3515–3519 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Jager, E. et al. Monitoring CD8 T-cell responses to NY-ESO-1: correlation of humoral and cellular immune responses. Proc. Natl Acad. Sci. USA 97, 4760–4765 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Dutoit, V. et al. Heterogeneous T-cell response to MAGE-A10(254–262): high-avidity-specific cytolytic T lymphocytes show superior antitumor activity. Cancer Res. 61, 5850–5856 (2001).

    CAS  PubMed  Google Scholar 

  55. Speiser, D. E. et al. Self antigens expressed by solid tumors do not efficiently stimulate naive or activated T cells: implications for immunotherapy. J. Exp. Med. 186, 645–653 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Ochsenbein, A. F. et al. Roles of tumour localization, second signals and cross priming in cytotoxic T-cell induction. Nature 411, 1058–1064 (2001).

    CAS  PubMed  Google Scholar 

  57. Marincola, F. M., Jaffee, E. M., Hicklin, D. J. & Ferrone, S. Escape of human solid tumors from T-cell recognition: molecular mechanisms and functional significance. Adv. Immunol. 74, 181–273 (2000).

    CAS  PubMed  Google Scholar 

  58. Dunbar, P. R. et al. Cutting edge: rapid cloning of tumour-specific CTL suitable for adoptive immunotherapy of melanoma. J. Immunol. 162, 6959–6962 (1999).

    CAS  PubMed  Google Scholar 

  59. Pittet, M. J. et al. High frequencies of naive Melan-A/MART-1-specific CD8+ T cells in a large proportion of human histocompatibility leukocyte antigen (HLA)-A2 individuals. J. Exp. Med. 190, 705–715 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Speiser, D. E. et al. In vivo expression of natural killer cell inhibitory receptors by human melanoma-specific cytolytic T lymphocytes. J. Exp. Med. 190, 775–782 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Salio, M. et al. Mature dendritic cells prime functionally superior Melan-A-specific CD8+ lymphocytes as compared with nonprofessional APC. J. Immunol. 167, 1188–1197 (2001).

    CAS  PubMed  Google Scholar 

  62. Yee, C. et al. Melanocyte destruction after antigen-specific immunotherapy of melanoma: direct evidence of T-cell-mediated vitiligo. J. Exp. Med. 192, 1637–1644 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Ogg, G. S., Rod Dunbar, P., Romero, P., Chen, J. L. & Cerundolo, V. High frequency of skin-homing melanocyte-specific cytotoxic T lymphocytes in autoimmune vitiligo. J. Exp. Med. 188, 1203–1208 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Palermo, B. et al. Specific cytotoxic T-lymphocyte responses against Melan-A/MART1, tyrosinase and gp100 in vitiligo by the use of major histocompatibility complex/peptide tetramers: the role of cellular immunity in the etiopathogenesis of vitiligo. J. Invest. Dermatol. 117, 326–332 (2001).

    CAS  PubMed  Google Scholar 

  65. Lang, K. S. et al. HLA-A2-restricted, melanocyte-specific CD8+ T lymphocytes detected in vitiligo patients are related to disease activity and are predominantly directed against MelanA/MART1. J. Invest. Dermatol. 116, 891–897 (2001).

    CAS  PubMed  Google Scholar 

  66. Albert, M. L. et al. Tumor-specific killer cells in paraneoplastic cerebellar degeneration. Nature Med. 4, 1321–1324 (1998).

    CAS  PubMed  Google Scholar 

  67. Jager, E. et al. Clonal expansion of Melan-A-specific cytotoxic T lymphocytes in a melanoma patient responding to continued immunization with melanoma-associated peptides. Int. J. Cancer 86, 538–547 (2000).

    CAS  PubMed  Google Scholar 

  68. Mackensen, A. et al. Phase I study in melanoma patients of a vaccine with peptide-pulsed dendritic cells generated in vitro from CD34(+) hematopoietic progenitor cells. Int. J. Cancer 86, 385–392 (2000).

    CAS  PubMed  Google Scholar 

  69. Marchand, M. et al. Tumor regressions observed in patients with metastatic melanoma treated with an antigenic peptide encoded by gene MAGE-3 and presented by HLA-A1. Int. J. Cancer 80, 219–230 (1999).

    CAS  PubMed  Google Scholar 

  70. Rosenberg, S. A. et al. Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma. Nature Med. 4, 321–327 (1998).

    CAS  PubMed  Google Scholar 

  71. Rosenberg, S. A. et al. Impact of cytokine administration on the generation of antitumor reactivity in patients with metastatic melanoma receiving a peptide vaccine. J. Immunol. 163, 1690–1695 (1999).

    CAS  PubMed  Google Scholar 

  72. Scheibenbogen, C. et al. Phase II trial of vaccination with tyrosinase peptides and granulocyte–macrophage colony-stimulating factor in patients with metastatic melanoma. J. Immunother. 23, 275–281 (2000).

    CAS  PubMed  Google Scholar 

  73. Nestle, F. O. et al. Vaccination of melanoma patients with peptide- or tumor-lysate-pulsed dendritic cells. Nature Med. 4, 328–332 (1998).

    CAS  PubMed  Google Scholar 

  74. Dhodapkar, M. V. et al. Rapid generation of broad T-cell immunity in humans after a single injection of mature dendritic cells. J. Clin. Invest. 104, 173–180 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Schuler-Thurner, B. et al. MAGE-3 and influenza-matrix peptide-specific cytotoxic T cells are inducible in terminal stage HLA-A2.1+ melanoma patients by mature monocyte-derived dendritic cells. J. Immunol. 165, 3492–3496 (2000).

    CAS  PubMed  Google Scholar 

  76. Nielsen, M. B. et al. Status of activation of circulating vaccine-elicited CD8+ T cells. J. Immunol. 165, 2287–2296 (2000).

    CAS  PubMed  Google Scholar 

  77. Lee, K. H. et al. Increased vaccine-specific T-cell frequency after peptide-based vaccination correlates with increased susceptibility to in vitro stimulation but does not lead to tumor regression. J. Immunol. 163, 6292–6300 (1999).

    CAS  PubMed  Google Scholar 

  78. Pittet, M. J. et al. Expansion and functional maturation of human tumor-antigen-specific CD8+ T cells after vaccination with antigenic peptide. Clin. Cancer Res. 7, 796s–803s (2001).

    CAS  PubMed  Google Scholar 

  79. Hanke, T. et al. Effective induction of simian-immunodeficiency-virus-specific cytotoxic T lymphocytes in macaques by using a multiepitope gene and DNA prime-modified vaccinia virus Ankara boost vaccination regimen. J. Virol. 73, 7524–7532 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Crawford, F., Konzono, H., White, J., Marrack, P. & Kappler, J. Detection of antigen-specific T cells with multivalent soluble class II MHC covalent peptide complexes. Immunity 8, 675–682 (1998).

    CAS  PubMed  Google Scholar 

  81. Matsuda, J. et al. Tracking the response of natural killer T cells to a glycolipid antigen using CD1d tetramers. J. Exp. Med. 192, 741–754 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Benlagha, K., Weiss, A., Beavis, A., Teyton, L. & Bendelac, A. In vivo identification of glycolipid antigen-specific T cells using fluorescent CD1d tetramers. J. Exp. Med. 191, 1895–1903 (2000).The first paper to describe the use of tetramers specific for mouse NKT cells. These cross-react with human NKT cells and vice versa.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Homann, D., Teyton, L. & Oldstone, M. Differential regulation of antiviral T-cell immunity results in stable CD8+ but declining CD4+ memory. Nature Med. 7, 913–919 (2001).The first use of CD4 tetramers in an infection, which provides data on the dynamics of antiviral responses.

    CAS  PubMed  Google Scholar 

  84. Ciurea, A., Hunziker, L., Klenerman, P., Hengartner, H. & Zinkernagel, R. M. Impairment of CD4+ T-cell responses during chronic virus infection. J. Exp. Med. 193, 297–305 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Kwok, W. W. et al. HLA-DQ tetramers identify epitope-specific T cells in peripheral blood of herpes simplex virus type-2-infected individuals: direct detection of immunodominant antigen-responsive cells. J. Immunol. 164, 4244–4249 (2000).

    CAS  PubMed  Google Scholar 

  86. Meyer, A. et al. Direct enumeration of Borrelia-reactive CD4 T cells ex vivo using MHC class II tetramers. Proc. Natl Acad. Sci. 97, 11433–11438 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Novak, E. J., Liu, A. W., Nepom, G. T. & Kwok, W. W. MHC class II tetramers identify peptide-specific human CD4+ T cells proliferating in response to influenza A antigen. J. Clin. Invest. 104, R63–R67 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Cameron, T., Cochran, J., Diab, B. Y., Sekaly, R. & Stern, L. Detection of antigen-specific CD4+ T cells by HLA-DR1 oligomers is dependent on the T-cell activation state. J. Immunol. 166, 741–746 (2001).

    CAS  PubMed  Google Scholar 

  89. Karadimitris, A. et al. Human CD1d–glycolipid tetramers generated by in vitro oxidative refolding chromatography. Proc. Natl Acad. Sci. USA 98, 3294–3298 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Gadola, S., Dulphy, N., Salio, M. & Cerundolo, V. Vα24–JαQ-independent CD1d-restricted recognition of α-galactosylceramide by human CD4+ and CD8αβ+ T lymphocytes. J. Immunol. (in the press).

  91. Zinkernagel, R. M. Immunology taught by viruses. Science 271, 173–178 (1996).

    CAS  PubMed  Google Scholar 

  92. Rosenberg, E. S. et al. Immune control of HIV-1 after early treatment of acute infection. Nature 407, 523–526 (2000).Successful therapy for HIV revealed by new techniques in T-cell immunology.

    CAS  PubMed  Google Scholar 

  93. Oxenius, A. et al. Early highly active antiretroviral therapy for acute HIV-1 infection preserves immune function of CD8+ and CD4+ T lymphocytes. Proc. Natl Acad. Sci. USA 97, 3382–3387 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Drake, D. & Braciale, T. Lipid-raft integrity affects the efficiency of MHC class I tetramer binding and cell-surface rearrangement on CD8+ T cells. J. Immunol. 166, 7009–7013 (2001).

    CAS  PubMed  Google Scholar 

  95. Denkberg, G., Cohen, C. J. & Reiter, Y. Critical role for CD8 in binding of MHC tetramers to TCR: CD8 antibodies block specific binding of human tumor-specific MHC–peptide tetramers to TCR. J. Immunol. 167, 270–276 (2001).

    CAS  PubMed  Google Scholar 

  96. Whelan, J. A. et al. Specificity of CTL interactions with peptide–MHC class I tetrameric complexes is temperature dependent. J. Immunol. 163, 4342–4348 (1999).

    CAS  PubMed  Google Scholar 

  97. Skinner, P., Daniels, M., Schmidt, C., Jameson, S. & Haase, A. In situ tetramer staining of antigen-specific T cells in tissues. J. Immunol. 165, 613–617 (2000).

    CAS  PubMed  Google Scholar 

  98. Rubio-Godoy, V. et al. Discrepancy between ELISPOT IFN-γ secretion and binding of A2/peptide multimers to TCR reveals interclonal dissociation of CTL effector function from TCR-peptide/MHC complexes half-life. Proc. Natl Acad. Sci. USA 98, 10302–10307 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Lalvani, A. et al. Rapid effector function in CD8+ memory T cells. J. Exp. Med. 186, 859–865 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Appay, V. et al. HIV-specific CD8+ T cells produce antiviral cytokines but are impaired in cytolytic function. J. Exp. Med. 192, 63–75 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Goulder, P. J. et al. Functionally inert HIV-specific cytotoxic T lymphocytes do not play a major role in chronically infected adults and children. J. Exp. Med. 192, 1819–1832 (2000).Comprehensive analysis of tetramer staining versus functional staining in HIV. Other authors have described greater differences between the two.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Callan, M. F. et al. T-cell selection during the evolution of CD8+ T-cell memory in vivo. Eur. J. Immunol. 28, 4382–4390 (1998).

    CAS  PubMed  Google Scholar 

  103. Ciurea, A. et al. Persistence of lymphocytic choriomeningitis virus at very low levels in immune mice. Proc. Natl Acad. Sci. USA 96, 11964–11969 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Price, G. E., Ou, R., Jiang, H., Huang, L. & Moskophidis, D. Viral escape by selection of cytotoxic T-cell-resistant variants in influenza A virus pneumonia. J. Exp. Med. 191, 1853–1867 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Belz, G. T. & Doherty, P. C. Virus-specific and bystander CD8+ T-cell proliferation in the acute and persistent phases of a γ-herpesvirus infection. J. Virol. 75, 4435–4438 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Busch, D., Pilip, I., Vijh, S. & Pamer, E. Coordinate regulation of complex T-cell populations responding to bacterial infection. Immunity 8, 353–362 (1998).

    CAS  PubMed  Google Scholar 

  107. Bieganowska, K. et al. Direct analysis of viral-specific CD8+ T cells with soluble HLA-A2/Tax11-19 tetramer complexes in patients with human T-cell lymphotropic virus-associated myelopathy. J. Immunol. 162, 1765–1771 (1999).

    CAS  PubMed  Google Scholar 

  108. Hassan-Walker, A. F. et al. CD8+ cytotoxic lymphocyte responses against cytomegalovirus after liver transplantation: correlation with time from transplant to receipt of tacrolimus. J. Infect. Dis. 183, 835–843 (2001).

    CAS  PubMed  Google Scholar 

  109. Engstrand, M. et al. Characterization of CMVpp65-specific CD8+ T lymphocytes using MHC tetramers in kidney transplant patients and healthy participants. Transplantation 69, 2243–2250 (2000).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was sponsored by the Wellcome Trust, the European Union, the British Medical Association (Roscoe Fellowship), Cancer Research UK and the Medical Research Council (UK). We thank C. Norbury for his critical reading of the manuscript and T. Klenerman for assistance in its preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Klenerman.

Related links

Related links

DATABASES

CancerNet

CML

melanoma

Entrez

CMV

EBV

HBV

HCV

HIV

HTLV-1

parvovirus B19

RSV

SIV

vaccinia virus

VSV

LocusLink

CCR7

CD1

CD1D

CD1d

CD94

CD11b

CD27

CD28

CD38

CD43

CD44

CD45

CD62L

HLA-A

HLA-DR

HLA-DQ

IFN-γ

MART1

NKG2A

OMIM

vitiligo

LINKS

CD69

MART1

Glossary

ELISPOT ASSAY

An antibody-capture-based method for enumerating specific T cells (CD4 or CD8) that can secrete a cytokine (usually interferon-γ). After development with a colour reagent, each single spot represents one antigen-specific T cell.

BYSTANDER ACTIVATION

The activation of T cells without encounter with their specific antigen — that is, without triggering by their T-cell receptor.

INTRACELLULAR CYTOKINE STAIN

(ICS). Analysis of the ability of T cells to produce a cytokine in response to a specific stimulus. In this assay, the usual cytokine-secretion pathway is paralyzed, and intracellular accumulation of the cytokine is monitored by antibody staining and fluorescence-activated cell sorting analysis.

EXHAUSTION

An 'operational' definition that refers to the loss of antigen-specific T-cell responses in vivo after prolonged or repetitive stimulation with antigen. This has been best observed in a model of infection with lymphocytic choriomeningitis virus Docile strain, for which the exact mechanism is still not understood.

STUNNING

A term for T cells in a state of 'pre-exhaustion'; they can be detected by tetramers but seem to be refractory to further stimulation.

IGNORANCE

Failure to initiate a T-cell response by lack of encounter with antigen. Might be due to compartmentalization of antigen or suboptimal antigen presentation.

CROSS-PRIMING

Initiation of a CD8+ T-cell response against an antigen that is not present within antigen-presenting cells. The antigen must be taken up by APCs and then re-routed to the MHC class I presentation pathway.

NKT CELL

A T cell that bears a specific αβ T-cell receptor that is able to recognize lipid–CD1d complexes. NKT cells express a set of natural-killer-cell markers, notably CD161 in humans and NK1.1 in some mouse strains.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klenerman, P., Cerundolo, V. & Dunbar, P. Tracking T cells with tetramers: new tales from new tools. Nat Rev Immunol 2, 263–272 (2002). https://doi.org/10.1038/nri777

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri777

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing