Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Tracking STAT nuclear traffic

Key Points

  • The signal transducer and activator of transcription (STAT) transcription factors are activated by direct tyrosine phosphorylation in response to cytokines, growth factors and other hormones. Tyrosine phosphorylation promotes the formation of STAT dimers that can bind specific DNA targets.

  • Passage of large proteins between cytoplasmic and nuclear compartments occurs through nuclear pore complexes and is regulated by interaction with transporter proteins of the karyopherin-β family.

  • Individual STAT proteins have diversified with distinct nuclear trafficking regulation. Cellular localization of a particular STAT is dependent or independent of tyrosine phosphorylation.

  • Cellular localization of STAT1 is integrated with its ability to bind DNA. The nuclear localization and nuclear-export signals of STAT1 have co-evolved with the DNA-binding domain.

  • The regulation of STAT1 nuclear trafficking is conditional based on its state of tyrosine phosphorylation. A specific member of the importin-α family of adaptor molecules, importin-α5, recognizes a conditional nuclear-localization signal of the STAT1 phosphorylated dimer.

  • STAT2 is distinct among the STATs in that it constitutively interacts with the transcription factor interferon-regulatory factor 9 (IRF9). The constitutive nuclear-localization signal of IRF9 is responsible for nuclear localization of the unphosphorylated STAT2–IRF9 complex.

  • STAT2 has a nuclear-export signal located in its carboxyl terminus that is responsible for export of the unphosphorylated or phosphorylated STAT2 protein.

  • STAT3 is imported to the nucleus independent of tyrosine phosphorylation and dependent on recognition by the importin-α3 adaptor. The constitutive nuclear-localization signal of STAT3 is located in the coiled-coil domain, a distance from the DNA-binding domain.

  • Individual STATs have evolved distinct nuclear trafficking properties, and these distinguishing features may reflect their physiological roles. Understanding the molecular aspects that regulate their nuclear trafficking may provide an avenue to promote or inhibit STAT function.

Abstract

Accurate cellular localization is crucial for the effective function of most signalling molecules and nuclear translocation is central to the function of transcription factors. The passage of large molecules between the cytoplasm and nucleus is restricted, and this restriction affords a mechanism to regulate transcription by controlling the access of transcription factors to the nucleus. In this Review, we focus on the signal transducer and activator of transcription (STAT) family of transcription factors. The regulation of the nuclear trafficking of STAT-family members is diverse. Some STAT proteins constitutively shuttle between the nucleus and cytoplasm, whereas others require tyrosine phosphorylation for nuclear localization. In either case, the regulation of nuclear trafficking can provide a target for therapeutic intervention.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: STAT tyrosine phosphorylation by receptor and non-receptor kinases.
Figure 2: Schematic of karyopherin-mediated nuclear trafficking.
Figure 3: STAT1 trafficking signals are integral to its DNA-binding domain.
Figure 4: STAT2 cellular localization is influenced by IRF9 or tyrosine phosphorylated STAT1.
Figure 5: Constitutive nuclear import of STAT3 is mediated by importin-α3.

Similar content being viewed by others

References

  1. Darnell, J. E., Jr. STATs and gene regulation. Science 277, 1630–1635 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Ihle, J. N. Ë in cytokine signaling. Curr. Opin. Cell Biol. 13, 211–217 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Kisseleva, T., Bhattacharya, S., Braunstein, J. & Schindler, C. W. Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene 285, 1–24 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Levy, D. E. & Darnell, J. E. J. Stats: transcriptional control and biological impact. Nature Rev. Mol. Cell Biol. 3, 651–662 (2002). An excellent review of basic mechanisms of STAT activation and function.

    Article  CAS  Google Scholar 

  5. Stark, G. R., Kerr, I. M., Williams, B. R., Silverman, R. H. & Schreiber, R. D. How cells respond to interferons. Annu. Rev. Biochem. 67, 227–264 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Becker, S., Groner, B. & Muller, C. W. Three-dimensional structure of the Stat3β homodimer bound to DNA. Nature 394, 145–151 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Chen, X. et al. Crystal structure of a tyrosine phosphorylated STAT-1 dimer bound to DNA. Cell 93, 827–839 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Mao, X. et al. Structural bases of unphosphorylated STAT1 association and receptor binding. Mol. Cell 17, 761–771 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Neculai, D. et al. Structure of the unphosphorylated STAT5a dimer. J. Biol. Chem. 280, 40782–40787 (2005). References 6–9 solved the crystal structures of tyrosine phosphorylated STAT dimers bound to DNA, and unphosphorylated STAT oligomers.

    Article  CAS  PubMed  Google Scholar 

  10. Stancato, L. F., David, M., Carter-Su, C., Larner, A. C. & Pratt, W. B. Preassociation of STAT1 with STAT2 and STAT3 in separate signalling complexes prior to cytokine stimulation. J. Biol. Chem. 271, 4134–4137 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Yamaoka, K. et al. The Janus kinases (Jaks). Genome Biol. 5, 253 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Yeh, T. C. & Pellegrini, S. The Janus kinase family of protein tyrosine kinases and their role in signaling. Cell. Mol. Life Sci. 55, 1523–1534 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Greenlund, A. C. et al. Stat recruitment by tyrosine-phosphorylated cytokine receptors: an ordered reversible affinity-driven process. Immunity 2, 677–687 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Marrero, M. B. et al. Direct stimulation of Jak/STAT pathway by the angiotensin II AT1 receptor. Nature 375, 247–250 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. McWhinney, C. D., Dostal, D. & Baker, K. Angiotensin II activates Stat5 through Jak2 kinase in cardiac myocytes. J. Mol. Cell. Cardiol. 30, 751–761 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Mellado, M., Rodriguez-Frade, J. M., Manes, S. & Martinez, A. C. Chemokine signaling and functional responses: the role of receptor dimerization and TK pathway activation. Annu. Rev. Immunol. 19, 397–421 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Wong, M. & Fish, E. N. RANTES and MIP-1α activate stats in T cells. J. Biol. Chem. 273, 309–314 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. David, M. et al. STAT activation by epidermal growth factor (EGF) and amphiregulin. Requirement for the EGF receptor kinase but not for tyrosine phosphorylation sites or JAK1. J. Biol. Chem. 271, 9185–9188 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Olayioye, M. A., Beuvink, I., Horsch, K., Daly, J. M. & Hynes, N. E. ErbB receptor-induced activation of stat transcription factors is mediated by Src tyrosine kinases. J. Biol. Chem. 274, 17209–17218 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Park, O. K., Schaefer, T. S. & Nathans, D. In vitro activation of Stat3 by epidermal growth factor receptor kinase. Proc. Natl Acad. Sci. USA 93, 13704–13708 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Vignais, M. L., Sadowski, H. B., Watling, D., Rogers, N. C. & Gilman, M. Platelet-derived growth factor induces phosphorylation of multiple JAK family kinases and STAT proteins. Mol. Cell. Biol. 16, 1759–1769 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yu, C. L. et al. Enhanced DNA-binding activity of a Stat3-related protein in cells transformed by the Src oncoprotein. Science 269, 81–83 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Benekli, M., Baer, M. R., Baumann, H. & Wetzler, M. Signal transducer and activator of transcription proteins in leukemias. Blood 101, 2940–2954 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Bowman, T., Garcia, R., Turkson, J. & Jove, R. STATs in oncogenesis. Oncogene 19, 2474–2488 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Danial, N. N. & Rothman, P. JAK–STAT signaling activated by Abl oncogenes. Oncogene 19, 2523–2531 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Akira, S. Functional roles of STAT family proteins: lessons from knockout mice. Stem Cells 17, 138–146 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Durbin, J. E., Hackenmiller, R., Simon, M. C. & Levy, D. E. Targeted disruption of the mouse Stat1 gene results in compromised innate immunity to viral disease. Cell 84, 443–450 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Meraz, M. A. et al. Targeted disruption of the Stat1 gene in mice reveals unexpected physiologic specificity in the JAK–STAT signaling pathway. Cell 84, 431–442 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. Park, C., Li, S., Cha, E. & Schindler, C. Immune response in Stat2 knockout mice. Immunity 13, 795–804 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Kaplan, M. H., Sun, Y. L., Hoey, T. & Grusby, M. J. Impaired IL-12 responses and enhanced development of Th2 cells in Stat4-deficient mice. Nature 382, 174–177 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. Shimoda, K. et al. Lack of IL-4-induced Th2 response and IgE class switching in mice with disrupted Stat6 gene. Nature 380, 630–633 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Takeda, K. et al. Essential role of Stat6 in IL-4 signalling. Nature 380, 627–630 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Thierfelder, W. E. et al. Requirement for Stat4 in interleukin-12-mediated responses of natural killer and T cells. Nature 382, 171–174 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Cui, Y. et al. Inactivation of Stat5 in mouse mammary epithelium during pregnancy reveals distinct functions in cell proliferation, survival, and differentiation. Mol. Cell. Biol. 24, 8037–8047 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Socolovsky, M., Fallon, A. E., Wang, S., Brugnara, C. & Lodish, H. F. Fetal anemia and apoptosis of red cell progenitors in Stat5a−/−5b−/− mice: a direct role for Stat5 in Bcl-XL induction. Cell 98, 181–191 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Teglund, S. et al. Stat5a and Stat5b proteins have essential and nonessential, or redundant, roles in cytokine responses. Cell 93, 841–850 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Takeda, K. et al. Targeted disruption of the mouse Stat3 gene leads to early embryonic lethality. Proc. Natl Acad. Sci. USA 94, 3801–3804 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Levy, D. E. & Lee, C. K. What does Stat3 do? J. Clin. Invest. 109, 1143–1148 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Horvath, C. M. Silencing STATs: lessons from paramyxovirus interferon evasion. Cytokine Growth Factor Rev. 15, 117–127 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Davis, L. I. The nuclear pore complex. Annu. Rev. Biochem. 64, 865–896 (1995).

    Article  CAS  PubMed  Google Scholar 

  41. Rout, M. P. et al. The yeast nuclear pore complex: composition, architecture, and transport mechanism. J. Cell Biol. 148, 635–651 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Suntharalingam, M. & Wente, S. R. Peering through the pore: nuclear pore complex structure, assembly, and function. Dev. Cell 4, 775–789 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Gorlich, D. & Mattaj, I. W. Nucleocytoplasmic transport. Science 271, 1513–1518 (1996).

    Article  CAS  PubMed  Google Scholar 

  44. Macara, I. G. Transport into and out of the nucleus. Microbiol. Mol. Biol. Rev. 65, 570–594 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mattaj, I. W. & Englmeier, L. Nucleocytoplasmic transport: the soluble phase. Annu. Rev. Biochem. 67, 265–306 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Pemberton, L. F. & Paschal, B. M. Mechanisms of receptor-mediated nuclear import and nuclear export. Traffic 6, 187–198 (2005). Recent review of nuclear trafficking processes.

    Article  CAS  PubMed  Google Scholar 

  47. Bednenko, J., Cingolani, G. & Gerace, L. Nucleocytoplasmic transport: navigating the channel. Traffic 4, 127–135 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Peters, R. Translocation through the nuclear pore complex: selectivity and speed by reduction-of-dimensionality. Traffic 6, 421–427 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Rout, M. P., Aitchison, J. D., Magnasco, M. O. & Chait, B. T. Virtual gating and nuclear transport: the hole picture. Trends Cell Biol. 13, 622–628 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Dingwall, C. & Laskey, R. A. Nuclear targeting sequences--a-consensus? Trends Biochem. Sci. 16, 478–481 (1991).

    Article  CAS  PubMed  Google Scholar 

  51. Gorlich, D. & Kutay, U. Transport between the cell nucleus and the cytoplasm. Annu. Rev. Cell Dev. Biol. 15, 607–660 (1999). Comprehensive review of nuclear transport mechanisms.

    Article  CAS  PubMed  Google Scholar 

  52. Robbins, J., Dilworth, S. M., Laskey, R. A. & Dingwall, C. Two interdependent basic domains in nucleoplasmin nuclear targeting sequence: identification of a class of bipartite nuclear targeting sequence. Cell 64, 615–623 (1991).

    Article  CAS  PubMed  Google Scholar 

  53. Cingolani, G., Petosa, C., Weis, K. & Muller, C. W. Structure of importin-β bound to the IBB domain of importin-α. Nature 399, 221–229 (1999).

    Article  CAS  PubMed  Google Scholar 

  54. Conti, E., Uy, M., Leighton, L., Blobel, G. & Kuriyan, J. Crystallographic analysis of the recognition of a nuclear localization signal by the nuclear import factor karyopherin α. Cell 94, 193–204 (1998).

    Article  CAS  PubMed  Google Scholar 

  55. Herold, A., Truant, R., Wiegand, H. & Cullen, B. R. Determination of the functional domain organization of the importin α nuclear import factor. J. Cell Biol. 143, 309–318 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kobe, B. Autoinhibition by an internal nuclear localization signal revealed by the crystal structure of mammalian importin α. Nature Struct. Biol. 6, 388–397 (1999).

    Article  CAS  PubMed  Google Scholar 

  57. Kutay, U., Bischoff, F. R., Kostka, S., Kraft, R. & Gorlich, D. Export of importin α from the nucleus is mediated by a specific nuclear transport factor. Cell 90, 1061–1071 (1997).

    Article  CAS  PubMed  Google Scholar 

  58. Kohler, M. et al. Evidence for distinct substrate specificities of importin α family members in nuclear protein import. Mol. Cell. Biol. 19, 7782–7791 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yoneda, Y. Nucleocytoplasmic protein traffic and its significance to cell function. Genes Cells 5, 777–787 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Christophe, D., Christophe-Hobertus, C. & Pichon, B. Nuclear targeting of proteins: how many different signals? Cell. Signal. 12, 337–341 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Strom, A. C. & Weis, K. Importin-β-like nuclear transport receptors. Genome Biol. 2, 3008 (2001).

    Article  Google Scholar 

  62. Wen, W., Meinkoth, J. L., Tsien, R. Y. & Taylor, S. S. Identification of a signal for rapid export of proteins from the nucleus. Cell 82, 463–473 (1995).

    Article  CAS  PubMed  Google Scholar 

  63. Fornerod, M., Ohno, M., Yoshida, M. & Mattaj, I. W. CRM1 is an export receptor for leucine-rich nuclear export signals. Cell 90, 1051–1060 (1997).

    Article  CAS  PubMed  Google Scholar 

  64. Petosa, C. et al. Architecture of CRM1/Exportin1 suggests how cooperativity is achieved during formation of a nuclear export complex. Mol. Cell 16, 761–775 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Kudo, N. et al. Leptomycin B inhibition of signal-mediated nuclear export by direct binding to CRM1. Exp. Cell Res. 242, 540–547 (1998).

    Article  CAS  PubMed  Google Scholar 

  66. Wolff, B., Sanglier, J. J. & Wang, Y. Leptomycin B is an inhibitor of nuclear export: inhibition of nucleo- cytoplasmic translocation of the human immunodeficiency virus type 1 (HIV-1) Rev protein and Rev-dependent mRNA. Chem. Biol. 4, 139–147 (1997).

    Article  CAS  PubMed  Google Scholar 

  67. Fu, X. Y. A transcription factor with SH2 and SH3 domains is directly activated by an interferon α-induced cytoplasmic protein tyrosine kinase(s). Cell 70, 323–335 (1992).

    Article  CAS  PubMed  Google Scholar 

  68. Gutch, M. J., Daly, C. & Reich, N. C. Tyrosine phosphorylation is required for activation of an α interferon-stimulated transcription factor. Proc. Natl Acad. Sci. USA 89, 11411–11415 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Schindler, C., Shuai, K., Prezioso, V. R. & Darnell, J. E., Jr. Interferon-dependent tyrosine phosphorylation of a latent cytoplasmic transcription factor. Science 257, 809–813 (1992).

    Article  CAS  PubMed  Google Scholar 

  70. Shuai, K., Stark, G. R., Kerr, I. M. & Darnell, J. E., Jr. A single phosphotyrosine residue of Stat91 required for gene activation by interferon-γ. Science 261, 1744–1746 (1993). References 67–70 demonstrated that direct tyrosine phosphorylation is responsible for STAT activation.

    Article  CAS  PubMed  Google Scholar 

  71. Schindler, C., Fu, X. Y., Improta, T., Aebersold, R. & Darnell, J. E., Jr. Proteins of transcription factor ISGF-3: one gene encodes the 91- and 84-kDa ISGF-3 proteins that are activated by interferon α. Proc. Natl Acad. Sci. USA 89, 7836–7839 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Veals, S. A. et al. Subunit of an α-interferon-responsive transcription factor is related to interferon regulatory factor and Myb families of DNA-binding proteins. Mol. Cell. Biol. 12, 3315–3324 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Banninger, G. & Reich, N. C. STAT2 nuclear trafficking. J. Biol. Chem. 279, 39199–39206 (2004). First description of STAT2 nuclear shuttling dependent on a NES in its C terminus and on association with IRF9.

    Article  CAS  PubMed  Google Scholar 

  74. Mowen, K. & David, M. Role of the STAT1–SH2 domain and STAT2 in the activation and nuclear translocation of STAT1. J. Biol. Chem. 273, 30073–30076 (1998).

    Article  CAS  PubMed  Google Scholar 

  75. Sekimoto, T., Imamoto, N., Nakajima, K., Hirano, T. & Yoneda, Y. Extracellular signal-dependent nuclear import of Stat1 is mediated by nuclear pore-targeting complex formation with NPI-1, but not Rch1. EMBO J. 16, 7067–7077 (1997). First study to show that importin-α5 specifically recognizes the tyrosine phosphorylated STAT1 dimer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sekimoto, T., Nakajima, K., Tachibana, T., Hirano, T. & Yoneda, Y. Interferon-γ-dependent nuclear import of Stat1 is mediated by the GTPase activity of Ran/TC4. J. Biol. Chem. 271, 31017–31020 (1996).

    Article  CAS  PubMed  Google Scholar 

  77. McBride, K. M., Banninger, G., McDonald, C. & Reich, N. C. Regulated nuclear import of the STAT1 transcription factor by direct binding of importin-α. EMBO J. 21, 1754–1763 (2002). Definitive evidence for a gain-of-function NLS in the DNA-binding domain of STAT1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Melen, K. et al. Importin α nuclear localization signal binding sites for STAT1, STAT2, and influenza A virus nucleoprotein. J. Biol. Chem. 278, 28193–28200 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Melen, K., Kinnunen, L. & Julkunen, I. Arginine/lysine-rich structural element is involved in interferon-induced nuclear import of STATs. J. Biol. Chem. 276, 16447–16455 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Cokol, M., Nair, R. & Rost, B. Finding nuclear localization signals. EMBO Rep. 1, 411–415 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. LaCasse, E. C. & Lefebvre, Y. A. Nuclear localization signals overlap DNA- or RNA-binding domains in nucleic acid-binding proteins. Nucleic Acids Res. 23, 1647–1656 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Fagerlund, R., Melen, K., Kinnunen, L. & Julkunen, I. Arginine/lysine-rich nuclear localization signals mediate interactions between dimeric STATs and importin α5. J. Biol. Chem. 277, 30072–30078 (2002).

    Article  CAS  PubMed  Google Scholar 

  83. Strehlow, I. & Schindler, C. Amino-terminal signal transducer and activator of transcription (STAT) domains regulate nuclear translocation and STAT deactivation. J. Biol. Chem. 273, 28049–28056 (1998).

    Article  CAS  PubMed  Google Scholar 

  84. Subramaniam, P. S., Green, M. M., Larkin, J., Torres, B. A. & Johnson, H. M. Nuclear translocation of IFN-γ is an intrinsic requirement for its biologic activity and can be driven by a heterologous nuclear localization sequence. J. Interferon Cytokine Res. 21, 951–959 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Marg, A. et al. Nucleocytoplasmic shuttling by nucleoporins Nup153 and Nup214 and CRM1-dependent nuclear export control the subcellular distribution of latent Stat1. J. Cell Biol. 165, 823–833 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Meyer, T., Begitt, A., Lodige, I., van Rossum, M. & Vinkemeier, U. Constitutive and IFN-γ-induced nuclear import of STAT1 proceed through independent pathways. EMBO J. 21, 344–354 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Chatterjee-Kishore, M., Wright, K. L., Ting, J. P. & Stark, G. R. How Stat1 mediates constitutive gene expression: a complex of unphosphorylated Stat1 and IRF1 supports transcription of the LMP2 gene. EMBO J. 19, 4111–4122 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Koster, M. & Hauser, H. Dynamic redistribution of STAT1 protein in IFN signaling visualized by GFP fusion proteins. Eur. J. Biochem. 260, 137–144 (1999).

    Article  CAS  PubMed  Google Scholar 

  89. Begitt, A., Meyer, T., van Rossum, M. & Vinkemeier, U. Nucleocytoplasmic translocation of Stat1 is regulated by a leucine-rich export signal in the coiled-coil domain. Proc. Natl Acad. Sci. USA 97, 10418–10423 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. McBride, K. M., McDonald, C. & Reich, N. C. Nuclear export signal located within theDNA-binding domain of the STAT1 transcription factor. EMBO J. 19, 6196–6206 (2000). Identification of an NES in the DNA-binding domain of STAT1, and evidence that DNA binding is necessary for STAT1 nuclear accumulation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Mowen, K. & David, M. Regulation of STAT1 nuclear export by Jak1. Mol. Cell. Biol. 20, 7273–7281 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Haspel, R. L., Salditt-Georgieff, M. & Darnell, J. E., Jr. The rapid inactivation of nuclear tyrosine phosphorylated Stat1 depends upon a protein tyrosine phosphatase. EMBO J. 15, 6262–6268 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. ten Hoeve, J. et al. Identification of a nuclear Stat1 protein tyrosine phosphatase. Mol. Cell. Biol. 22, 5662–5668 (2002). First identification of a nuclear phosphatase that can dephosphorylate STAT1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Shuai, K. & Liu, B. Regulation of gene-activation pathways by PIAS proteins in the immune system. Nature Rev. Immunol. 5, 593–605 (2005).

    Article  CAS  Google Scholar 

  95. Zhong, M. et al. Implications of an antiparallel dimeric structure of nonphosphorylated STAT1 for the activation-inactivation cycle. Proc. Natl Acad. Sci. USA 102, 3966–3971 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Fu, X. Y., Schindler, C., Improta, T., Aebersold, R. & Darnell, J. E., Jr. The proteins of ISGF-3, the interferon αlpha-induced transcriptional activator, define a gene family involved in signal transduction. Proc. Natl Acad. Sci. USA 89, 7840–7843 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lau, J. F., Parisien, J. P. & Horvath, C. M. Interferon regulatory factor subcellular localization is determined by a bipartite nuclear localization signal in the DNA-binding domain and interaction with cytoplasmic retention factors. Proc. Natl Acad. Sci. USA 97, 7278–7283 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Martinez-Moczygemba, M., Gutch, M. J., French, D. L. & Reich, N. C. Distinct STAT structure promotes interaction of STAT2 with the p48 subunit of the interferon-α-stimulated transcription factor ISGF3. J. Biol. Chem. 272, 20070–20076 (1997).

    Article  CAS  PubMed  Google Scholar 

  99. Akira, S. et al. Molecular cloning of APRF, a novel IFN-stimulated gene factor 3 p91-related transcription factor involved in the gp130-mediated signaling pathway. Cell 77, 63–71 (1994).

    Article  CAS  PubMed  Google Scholar 

  100. Lutticken, C. et al. Association of transcription factor APRF and protein kinase Jak1 with the interleukin-6 signal transducer gp130. Science 263, 89–92 (1994).

    Article  CAS  PubMed  Google Scholar 

  101. Wegenka, U. M., Buschmann, J., Lutticken, C., Heinrich, P. C. & Horn, F. Acute-phase response factor, a nuclear factor binding to acute-phase response elements, is rapidly activated by interleukin-6 at the posttranslational level. Mol. Cell. Biol. 13, 276–288 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Zhong, Z., Wen, Z. & Darnell, J. E., Jr. Stat3 and Stat4: members of the family of signal transducers and activators of transcription. Proc. Natl Acad. Sci. USA 91, 4806–4810 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Liu, L., McBride, K. M. & Reich, N. C. STAT3 nuclear import is independent of tyrosine phosphorylation and mediated by importin-α3. Proc. Natl Acad. Sci. USA 102, 8150–8155 (2005). First report showing that importin-α3 is responsible for STAT3 nuclear import independent of tyrosine phosphorylation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Pranada, A. L., Metz, S., Herrmann, A., Heinrich, P. C. & Muller-Newen, G. Real time analysis of STAT3 nucleocytoplasmic shuttling. J. Biol. Chem. 279, 15114–15123 (2004).

    Article  CAS  PubMed  Google Scholar 

  105. Kohler, M. et al. Cloning of two novel human importin-α subunits and analysis of the expression pattern of the importin-α protein family. FEBS Lett. 417, 104–108 (1997).

    Article  CAS  PubMed  Google Scholar 

  106. Kohler, M., Gorlich, D., Hartmann, E. & Franke, J. Adenoviral E1A protein nuclear import is preferentially mediated by importin α3 in vitro. Virology 289, 186–191 (2001).

    Article  CAS  PubMed  Google Scholar 

  107. Welch, K., Franke, J., Kohler, M. & Macara, I. G. RanBP3 contains an unusual nuclear localization signal that is imported preferentially by importin-α3. Mol. Cell. Biol. 19, 8400–8411 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ma, J. & Cao, X. Regulation of Stat3 nuclear import by importin α5 and importin α7 via two different functional sequence elements. Cell. Signal. 18, 1117–1126 (2006).

    Article  CAS  PubMed  Google Scholar 

  109. Ma, J., Zhang, T., Novotny-Diermayr, V., Tan, A. L. & Cao, X. A novel sequence in the coiled-coil domain of Stat3 essential for its nuclear translocation. J. Biol. Chem. 278, 29252–29260 (2003).

    Article  CAS  PubMed  Google Scholar 

  110. Yang, J. et al. Novel roles of unphosphorylated STAT3 in oncogenesis and transcriptional regulation. Cancer Res. 65, 939–947 (2005).

    CAS  PubMed  Google Scholar 

  111. Ivanov, V. N. et al. Cooperation between STAT3 and c-jun suppresses Fas transcription. Mol. Cell 7, 517–528 (2001).

    Article  CAS  PubMed  Google Scholar 

  112. Zhang, X., Wrzeszczynska, M. H., Horvath, C. M. & Darnell, J. E., Jr. Interacting regions in Stat3 and c-Jun that participate in cooperative transcriptional activation. Mol. Cell. Biol. 19, 7138–7146 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Liu, L. et al. Identification of STAT3 as a specific substrate of breast tumor kinase. Oncogene (in the press).

  114. Bhattacharya, S. & Schindler, C. Regulation of Stat3 nuclear export. J. Clin. Invest. 111, 553–559 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Zeng, R., Aoki, Y., Yoshida, M., Arai, K. & Watanabe, S. Stat5B shuttles between cytoplasm and nucleus in a cytokine-dependent and-independent manner. J. Immunol. 168, 4567–4575 (2002).

    Article  CAS  PubMed  Google Scholar 

  116. Herrington, J., Rui, L., Luo, G., Yu-Lee, L. Y. & Carter-Su, C. A functional DNA binding domain is required for growth hormone-induced nuclear accumulation of Stat5B. J. Biol. Chem. 274, 5138–5145 (1999). References 115 and 116 indicate that the nuclear shuttling of STAT5 and its nuclear accumulation depend on DNA binding.

    Article  CAS  PubMed  Google Scholar 

  117. Dormann, D., Abe, T., Weijer, C. J. & Williams, J. Inducible nuclear translocation of a STAT protein in Dictyostelium prespore cells: implications for morphogenesis and cell-type regulation. Development 128, 1081–1088 (2001).

    CAS  PubMed  Google Scholar 

  118. Fukuzawa, M., Abe, T. & Williams, J. G. The Dictyostelium prestalk cell inducer DIF regulates nuclear accumulation of a STAT protein by controlling its rate of export from the nucleus. Development 130, 797–804 (2003).

    Article  CAS  PubMed  Google Scholar 

  119. Hou, S. X., Zheng, Z., Chen, X. & Perrimon, N. The Jak/STAT pathway in model organisms: emerging roles in cell movement. Dev. Cell 3, 765–778 (2002).

    Article  CAS  PubMed  Google Scholar 

  120. Kieslinger, M. et al. Antiapoptotic activity of Stat5 required during terminal stages of myeloid differentiation. Genes Dev. 14, 232–244 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Lin, C. C. et al. Characterization of two mosquito STATs, AaSTAT and CtSTAT. Differential regulation of tyrosine phosphorylation and DNA binding activity by lipopolysaccharide treatment and by Japanese encephalitis virus infection. J. Biol. Chem. 279, 3308–3317 (2004).

    Article  CAS  PubMed  Google Scholar 

  122. Oates, A. C. et al. Zebrafish stat3 is expressed in restricted tissues during embryogenesis and stat1 rescues cytokine signaling in a STAT1-deficient human cell line. Dev. Dyn. 215, 352–370 (1999).

    Article  CAS  PubMed  Google Scholar 

  123. Pascal, A., Riou, J. F., Carron, C., Boucaut, J. C. & Umbhauer, M. Cloning and developmental expression of STAT5 in Xenopus laevis. Mech. Dev. 106, 171–174 (2001).

    Article  CAS  PubMed  Google Scholar 

  124. Wang, Y. & Levy, D. E. C. elegans STAT Cooperates with DAF-7/TGF-β signaling to repress dauer formation. Curr. Biol. 16, 89–94 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank current and past members of the Reich laboratory for their thoughtful contributions to the ins and outs of STATs. The work was supported by grants from the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nancy C. Reich.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Nancy Reich's homepage

Glossary

G-protein-coupled receptor

(GPCR). One of a large group of receptors that bind a diverse set of molecules, including chemokines, complement components, biologically active amines and neurotransmitters. GPCRs are seven-transmembrane-spanning receptors and are coupled to heterotrimeric, GTP-regulated signalling proteins.

Oncogenic tyrosine kinases

Enzymes that phosphorylate tyrosine residues, and uncontrolled activity of these enzymes promotes cancer.

Nuclear-localization signal

A protein motif that targets proteins for import to the nucleus.

Nuclear-export signal

A sequence motif that can direct the export of proteins from the nucleus.

RNA interference

The use of double-stranded RNAs with sequences that precisely match a given gene, to knock-down the expression of that gene by directing RNA-degrading enzymes to destroy the encoded mRNA transcript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reich, N., Liu, L. Tracking STAT nuclear traffic. Nat Rev Immunol 6, 602–612 (2006). https://doi.org/10.1038/nri1885

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1885

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing