Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Dectin-1: a signalling non-TLR pattern-recognition receptor

Key Points

  • Dectin-1 is a mainly myeloid-cell-expressed NK-cell-receptor-like C-type lectin that functions as a transmembrane pattern-recognition receptor through its ability to bind β-glucan carbohydrates. Dectin-1 also recognizes an unidentified endogenous ligand on T cells, possibly acting as a co-stimulatory molecule.

  • Following ligand binding, dectin-1 can mediate various cellular responses, including cytokine and chemokine production, the respiratory burst and phagocytosis.

  • Cellular responses are mediated by signalling events initiated from the atypical cytoplasmic immunoreceptor tyrosine-based activation motif of dectin-1 using novel pathways, including the protein spleen tyrosine kinase (SYK) and collaborative signalling with the Toll-like receptors, in a cell-specific manner.

  • Dectin-1 can recognize several fungal pathogens and might play a role in the innate response to these organisms. These pathogens, in turn, might have mechanisms for avoiding recognition by this receptor.

  • Dectin-1 is likely to play a role in the protective effects against infectious and non-infectious diseases exerted by purified soluble β-glucans in vivo, although the mechanisms behind these activities are unclear.

  • On certain genetic backgrounds, dectin-1 can play a central role in the development of β-glucan-induced autoimmune disease and might also contribute to the development of fungal-induced respiratory disorders.

  • The activities of dectin-1 might be representative of other pattern-recognition receptors, especially other myeloid-cell-expressed NK-cell-receptor-like C-type lectins, which have similar signalling motifs in their cytoplasmic tails.

Abstract

Dectin-1 is a natural killer (NK)-cell-receptor-like C-type lectin that is thought to be involved in innate immune responses to fungal pathogens. This transmembrane signalling receptor mediates various cellular functions, from fungal binding, uptake and killing, to inducing the production of cytokines and chemokines. These activities could influence the resultant immune response and can, in certain circumstances, lead to autoimmunity and disease. As I discuss here, understanding the molecular mechanisms behind these functions has revealed new concepts, including collaborative signalling with the Toll-like receptors (TLRs) and the use of spleen tyrosine kinase (SYK), that have implications for the role of other non-TLR pattern-recognition receptors in immunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Methods of pathogen recognition by pattern-recognition receptors (PRRs).
Figure 2: Dectin-1 structure and genomic localization within the myeloid-cell-expressed natural killer (NK)-cell-receptor-like C-type lectin cluster.
Figure 3: Dectin-1-mediated signal transduction.
Figure 4: Dectin-1-mediated cellular responses to fungal β-glucans.

Similar content being viewed by others

References

  1. Janeway, C. A. Jr. The immune system evolved to discriminate infectious nonself from noninfectious self. Immunol. Today 13, 11?16 (1992).

    CAS  PubMed  Google Scholar 

  2. Martinon, F. & Tschopp, J. NLRs join TLRs as innate sensors of pathogens. Trends Immunol. 26, 447?454 (2005).

    CAS  PubMed  Google Scholar 

  3. Gordon, S. Pattern recognition receptors: doubling up for the innate immune response. Cell 111, 927?930 (2002).

    CAS  PubMed  Google Scholar 

  4. Doyle, S. E. et al. Toll-like receptors induce a phagocytic gene program through p38. J. Exp. Med. 199, 81?90 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Blander, J. M. & Medzhitov, R. Regulation of phagosome maturation by signals from toll-like receptors. Science 304, 1014?1018 (2004).

    CAS  PubMed  Google Scholar 

  6. Ezekowitz, R. A., Sastry, K., Bailly, P. & Warner, A. Molecular characterization of the human macrophage mannose receptor: demonstration of multiple carbohydrate recognition-like domains and phagocytosis of yeasts in Cos-1 cells. J. Exp. Med. 172, 1785?1794 (1990).

    CAS  PubMed  Google Scholar 

  7. Brown, E. J. Complement receptors and phagocytosis. Curr. Opin. Immunol. 3, 76?82 (1991).

    CAS  PubMed  Google Scholar 

  8. Peiser, L., Gough, P. J., Kodama, T. & Gordon, S. Macrophage class A scavenger receptor-mediated phagocytosis of Escherichia coli: role of cell heterogeneity, microbial strain, and culture conditions in vitro. Infect. Immun. 68, 1953?1963 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Elomaa, O. et al. Cloning of a novel bacteria-binding receptor structurally related to scavenger receptors and expressed in a subset of macrophages. Cell 80, 603?609 (1995).

    CAS  PubMed  Google Scholar 

  10. Herre, J. et al. Dectin-1 utilizes novel mechanisms for yeast phagocytosis in macrophages. Blood 104, 4038?4045 (2004).

    CAS  PubMed  Google Scholar 

  11. Gantner, B. N., Simmons, R. M., Canavera, S. J., Akira, S. & Underhill, D. M. Collaborative induction of inflammatory responses by dectin-1 and Toll-like receptor 2. J. Exp. Med. 197, 1107?1117 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Underhill, D. M., Rossnagle, E., Lowell, C. A. & Simmons, R. M. Dectin-1 activates SYK tyrosine kinase in a dynamic subset of macrophages for reactive oxygen production. Blood 106, 2543?2550 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Goldstein, I. M., Roos, D., Kaplan, H. B. & Weissmann, G. Complement and immunoglobulins stimulate superoxide production by human leukocytes independently of phagocytosis. J. Clin. Invest. 56, 1155?1163 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Wright, S. D. & Silverstein, S. C. Receptors for C3b and C3bi promote phagocytosis but not the release of toxic oxygen from human phagocytes. J. Exp. Med. 158, 2016?2023 (1983).

    CAS  PubMed  Google Scholar 

  15. Hoebe, K. et al. CD36 is a sensor of diacylglycerides. Nature 433, 523?527 (2005).

    CAS  PubMed  Google Scholar 

  16. Jiang, Z. et al. CD14 is required for MyD88-independent LPS signaling. Nature Immunol. 6, 565?570 (2005). References 15 and 16 show that non-TLR PRRs can contribute to inflammatory responses by the presentation of PAMPS.

    CAS  Google Scholar 

  17. Swain, S. D., Lee, S. J., Nussenzweig, M. C. & Harmsen, A. G. Absence of the macrophage mannose receptor in mice does not increase susceptibility to Pneumocystis carinii infection in vivo. Infect. Immun. 71, 6213?6221 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Lee, S. J., Zheng, N. Y., Clavijo, M. & Nussenzweig, M. C. Normal host defense during systemic candidiasis in mannose receptor-deficient mice. Infect. Immun. 71, 437?445 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Brown, G. D. et al. dectin-1 mediates the biological effects of β-glucan. J. Exp. Med. 197, 1119?1124 (2003). This article, together with reference 11, shows that signalling from dectin-1 directly contributes to the inflammatory response.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Yokoyama, W. M. et al. cDNA cloning of mouse NKR-P1 and genetic linkage with LY-49. Identification of a natural killer cell gene complex on mouse chromosome 6. J. Immunol. 147, 3229?3236 (1991).

    CAS  PubMed  Google Scholar 

  21. Ariizumi, K. et al. Identification of a novel, dendritic cell-associated molecule, dectin-1, by subtractive cDNA cloning. J. Biol. Chem. 275, 20157?20167 (2000).

    CAS  PubMed  Google Scholar 

  22. Sawamura, T. et al. An endothelial receptor for oxidized low-density lipoprotein. Nature 386, 73?77 (1997).

    CAS  PubMed  Google Scholar 

  23. Marshall, A. S. et al. Identification and characterization of a novel human myeloid inhibitory C-type lectin-like receptor (MICL) that is predominantly expressed on granulocytes and monocytes. J. Biol. Chem. 279, 14792?14802 (2004).

    CAS  PubMed  Google Scholar 

  24. Colonna, M., Samaridis, J. & Angman, L. Molecular characterization of two novel C-type lectin-like receptors, one of which is selectively expressed in human dendritic cells. Eur. J. Immunol. 30, 697?704 (2000).

    CAS  PubMed  Google Scholar 

  25. Sobanov, Y. et al. A novel cluster of lectin-like receptor genes expressed in monocytic, dendritic and endothelial cells maps close to the NK receptor genes in the human NK gene complex. Eur. J. Immunol. 31, 3493?3503. (2001).

    CAS  PubMed  Google Scholar 

  26. Chen, M., Masaki, T. & Sawamura, T. LOX-1, the receptor for oxidized low-density lipoprotein identified from endothelial cells: implications in endothelial dysfunction and atherosclerosis. Pharmacol. Ther. 95, 89?100 (2002).

    CAS  PubMed  Google Scholar 

  27. Brown, G. D. & Gordon, S. Immune recognition: A new receptor for β-glucans. Nature 413, 36?37 (2001).

    CAS  PubMed  Google Scholar 

  28. Shimaoka, T. et al. LOX-1 supports adhesion of Gram-positive and Gram-negative bacteria. J. Immunol. 166, 5108?5114 (2001).

    CAS  PubMed  Google Scholar 

  29. Delneste, Y. et al. Involvement of LOX-1 in dendritic cell-mediated antigen cross-presentation. Immunity 17, 353?362 (2002).

    CAS  PubMed  Google Scholar 

  30. Oka, K. et al. Lectin-like oxidized low-density lipoprotein receptor 1 mediates phagocytosis of aged/apoptotic cells in endothelial cells. Proc. Natl. Acad. Sci. USA 95, 9535?9540 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Rogers, N. C. et al. Syk-dependent cytokine induction by dectin-1 reveals a novel pattern recognition pathway for C-type lectins. Immunity 22, 507?517 (2005). This paper, together with reference 12, is the first demonstration that signalling from C-type lectins occurs through SYK and that this can be mediated by a single YXXL motif.

    CAS  PubMed  Google Scholar 

  32. Mason, L. H. et al. The Ly-49D receptor activates murine natural killer cells. J. Exp. Med. 184, 2119?2128 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Diefenbach, A. et al. Selective associations with signalling proteins determine stimulatory versus costimulatory activity of NKG2D. Nature Immunol. 3, 1142?1149 (2002).

    CAS  Google Scholar 

  34. Gilfillan, S., Ho, E. L., Cella, M., Yokoyama, W. M. & Colonna, M. NKG2D recruits two distinct adapters to trigger NK cell activation and costimulation. Nature Immunol. 3, 1150?1155 (2002).

    CAS  Google Scholar 

  35. Hermanz-Falcon, P., Arce, I., Roda-Navarro, P. & Fernandez-Ruiz, E. Cloning of human DECTIN-1, a novel C-type lectin-like receptor gene expressed on dendritic cells. Immunogenetics 53, 288?295 (2001).

    CAS  PubMed  Google Scholar 

  36. Willment, J. A., Gordon, S. & Brown, G. D. Characterisation of the human β-glucan receptor and its alternatively spliced isoforms. J. Biol. Chem. 276, 43818?43823 (2001).

    CAS  PubMed  Google Scholar 

  37. Yokota, K., Takashima, A., Bergstresser, P. R. & Ariizumi, K. Identification of a human homologue of the dendritic cell-associated C-type lectin-1, dectin-1. Gene 272, 51?60 (2001).

    CAS  PubMed  Google Scholar 

  38. Willment, J. A. et al. The human β-glucan receptor is widely expressed and functionally equivalent to murine dectin-1 on primary cells. Eur. J. Immunol. 35, 1539?1547 (2005).

    CAS  PubMed  Google Scholar 

  39. Riedl, E., Tada, Y. & Udey, M. C. Identification and characterization of an alternatively spliced isoform of mouse Langerin/CD207. J. Invest. Dermatol. 123, 78?86 (2004).

    CAS  PubMed  Google Scholar 

  40. Taylor, P. R. et al. The β-glucan receptor, dectin-1, is predominantly expressed on the surface of cells of the monocyte/macrophage and neutrophil lineages. J. Immunol. 169, 3876?3882 (2002).

    CAS  PubMed  Google Scholar 

  41. Reid, D. M. et al. Expression of the β-glucan receptor, dectin-1, on murine leukocytes in situ correlates with its function in pathogen recognition and reveals potential roles in leukocyte interactions. J. Leukoc. Biol. 76, 86?94 (2004).

    CAS  PubMed  Google Scholar 

  42. Willment, J. A. et al. Dectin-1 expression and function is enhanced on alternatively activated and GM-CSF treated macrophages and negatively regulated by IL-10, dexamethasone and LPS. J. Immunol. 171, 4569?4573 (2003).

    CAS  PubMed  Google Scholar 

  43. Weis, W. I., Taylor, M. E. & Drickamer, K. The C-type lectin superfamily in the immune system. Immunol. Rev. 163, 19?34 (1998).

    CAS  PubMed  Google Scholar 

  44. Pavlicek, J. et al. Molecular characterization of binding of calcium and carbohydrates by an early activation antigen of lymphocytes CD69. Biochemistry 42, 9295?9306 (2003).

    CAS  PubMed  Google Scholar 

  45. Gange, C. T. et al. Characterization of sugar binding by osteoclast inhibitory lectin. J. Biol. Chem. 279, 29043?29049 (2004).

    CAS  PubMed  Google Scholar 

  46. Adachi, Y. et al. Characterization of β-glucan recognition site on C-type lectin, dectin 1. Infect. Immun. 72, 4159?4171 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Brown, G. D. et al. Dectin-1 is a major β-glucan receptor on macrophages. J. Exp. Med. 196, 407?412 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Grunebach, F., Weck, M. M., Reichert, J. & Brossart, P. Molecular and functional characterization of human dectin-1. Exp. Hematol. 30, 1309?1315 (2002).

    CAS  PubMed  Google Scholar 

  49. Yokoyama, W. M. & Plougastel, B. F. Immune functions encoded by the natural killer gene complex. Nature Rev. Immunol. 3, 304?316 (2003).

    CAS  Google Scholar 

  50. Iizuka, K., Naidenko, O. V., Plougastel, B. F., Fremont, D. H. & Yokoyama, W. M. Genetically linked C-type lectin-related ligands for the NKRP1 family of natural killer cell receptors. Nature Immunol. 4, 801?807 (2003).

    CAS  Google Scholar 

  51. Steele, C. et al. Alveolar macrophage-mediated killing of Pneumocystis carinii f. sp. muris involves molecular recognition by the dectin-1 β-glucan recptor. J. Exp. Med. 198, 1677?1688 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Underhill, D. M. et al. The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature 401, 811?815 (1999). This is the first paper showing the involvement of TLR2 in the inflammatory response to zymosan.

    CAS  PubMed  Google Scholar 

  53. Ozinsky, A. et al. The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between toll-like receptors. Proc. Natl. Acad. Sci. USA 97, 13766?13771 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Kataoka, K., Muta, T., Yamazaki, S. & Takeshige, K. Activation of macrophages by linear (1, 3)-β-D-glucans. J. Biol. Chem. 277, 36825?36831 (2002).

    CAS  PubMed  Google Scholar 

  55. Young, S. H., Ye, J., Frazer, D. G., Shi, X. & Castranova, V. Molecular mechanism of tumor necrosis factor-α production in 1,3-β-glucan (zymosan)-activated macrophages. J. Biol. Chem. 276, 20781?20787 (2001).

    CAS  PubMed  Google Scholar 

  56. Lanier, L. L., Corliss, B. C., Wu, J., Leong, C. & Phillips, J. H. Immunoreceptor DAP12 bearing a tyrosine-based activation motif is involved in activating NK cells. Nature 391, 703?707 (1998).

    CAS  PubMed  Google Scholar 

  57. Van den Herik-Oudijk, I. E., Capel, P. J., van der Bruggen, T. & Van de Winkel, J. G. Identification of signaling motifs within human Fcg RIIa and Fcg RIIb isoforms. Blood 85, 2202?2211 (1995).

    CAS  PubMed  Google Scholar 

  58. Pitcher, L. A. & van Oers, N. S. T-cell receptor signal transmission: who gives an ITAM? Trends Immunol. 24, 554?560 (2003).

    CAS  PubMed  Google Scholar 

  59. Crowley, M. T. et al. A critical role for Syk in signal transduction and phagocytosis mediated by Fcγ receptors on macrophages. J. Exp. Med. 186, 1027?1039 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Turner, M. et al. Perinatal lethality and blocked B-cell development in mice lacking the tyrosine kinase Syk. Nature 378, 298?302 (1995).

    CAS  PubMed  Google Scholar 

  61. Cambi, A. & Figdor, C. G. Dual function of C-type lectin-like receptors in the immune system. Curr. Opin. Cell. Biol. 15, 539?546 (2003).

    CAS  PubMed  Google Scholar 

  62. Curtis, B. M., Scharnowske, S. & Watson, A. J. Sequence and expression of a membrane-associated C-type lectin that exhibits CD4-independent binding of human immunodeficiency virus envelope glycoprotein gp120. Proc. Natl. Acad. Sci. USA 89, 8356?8360 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Geijtenbeek, T. B. et al. Mycobacteria target DC-SIGN to suppress dendritic cell function. J. Exp. Med. 197, 7?17 (2003). This article shows that C-type lectin signalling can suppress TLR-mediated inflammatory responses.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Arbibe, L. et al. Toll-like receptor 2-mediated NF-κB activation requires a Rac1-dependent pathway. Nature Immunol. 1, 533?540 (2000).

    CAS  Google Scholar 

  65. Shimazu, R. et al. MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J. Exp. Med. 189, 1777?1782 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Mantegazza, A. R. et al. CD63 Tetraspanin slows down cell migration and translocates to the endosomal/lysosomal/MIICs route after extracellular stimuli in human immature dendritic cells. Blood 104, 1183?1190 (2004).

    CAS  PubMed  Google Scholar 

  67. Yoshitomi, H. et al. A role for fungal β-glucans and their receptor dectin-1 in the induction of autoimmune arthritis in genetically susceptible mice. J. Exp. Med. 201, 949?960 (2005). This is the first report of a non-TLR PRR directly contributing to the development of autoimmunity.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Romani, L. Immunity to fungal infections. Nature Rev. Immunol. 4, 11?24 (2004).

    CAS  Google Scholar 

  69. Klis, F. M., Mol, P., Hellingwerf, K. & Brul, S. Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS Microbiol. Rev. 26, 239?256 (2002).

    CAS  PubMed  Google Scholar 

  70. Gantner, B. N., Simmons, R. M. & Underhill, D. M. dectin-1 mediates macrophage recognition of Candida albicans yeast but not filaments. EMBO J. 24, 1277?1286 (2005). This article shows that fungi can avoid recognition by dectin-1 by masking their β-glucan.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Torosantucci, A. et al. A novel glyco-conjugate vaccine against fungal pathogens. J. Exp. Med. 202, 597?606 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Viriyakosol, S., Fierer, J., Brown, G. D. & Kirkland, T. N. Innate immunity to the pathogenic fungus Coccidioides posadasii is dependent on Toll-like receptor 2 and dectin-1. Infect. Immun. 73, 1553?1560 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Vazquez-Torres, A., Jones-Carson, J., Wagner, R. D., Warner, T. & Balish, E. Early resistance of interleukin-10 knockout mice to acute systemic candidiasis. Infect. Immun. 67, 670?674 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Belkaid, Y. & Rouse, B. T. Natural regulatory T cells in infectious disease. Nature Immunol. 6, 353?360 (2005).

    CAS  Google Scholar 

  75. Netea, M. G. et al. Toll-like receptor 2 suppresses immunity against Candida albicans through induction of IL-10 and regulatory T cells. J. Immunol. 172, 3712?3718 (2004).

    CAS  PubMed  Google Scholar 

  76. Montagnoli, C. et al. B7/CD28-dependent CD4+CD25+ regulatory T cells are essential components of the memory-protective immunity to Candida albicans. J. Immunol. 169, 6298?6308 (2002).

    CAS  PubMed  Google Scholar 

  77. Bellocchio, S. et al. The contribution of the toll-like/IL-1 receptor superfamily to innate and adaptive immunity to fungal pathogens in vivo. J. Immunol. 172, 3059?3069 (2004). A comprehensive study of the role of selected TLRs in fungal infection, using knockout mice.

    CAS  PubMed  Google Scholar 

  78. Villamon, E. et al. Toll-like receptor-2 is essential in murine defenses against Candida albicans infections. Microbes Infect. 6, 1?7 (2004).

    CAS  PubMed  Google Scholar 

  79. Netea, M. G., Van der Meer, J. W. & Kullberg, B. J. Toll-like receptors as an escape mechanism from the host defense. Trends Microbiol. 12, 484?488 (2004).

    CAS  PubMed  Google Scholar 

  80. Gale, C. A. et al. Linkage of adhesion, filamentous growth, and virulence in Candida albicans to a single gene, INT1. Science 279, 1355?1358 (1998).

    CAS  PubMed  Google Scholar 

  81. Lo, H. J. et al. Nonfilamentous C. albicans mutants are avirulent. Cell 90, 939?949 (1997).

    CAS  PubMed  Google Scholar 

  82. Gow, N. A., Brown, A. J. & Odds, F. C. Fungal morphogenesis and host invasion. Curr. Opin. Microbiol. 5, 366?371 (2002).

    CAS  PubMed  Google Scholar 

  83. d'Ostiani, C. F. et al. Dendritic cells discriminate between yeasts and hyphae of the fungus Candida albicans. Implications for initiation of T helper cell immunity in vitro and in vivo. J. Exp. Med. 191, 1661?1674 (2000). This paper describes the different response of DCs to yeast and hyphal forms of C. albicans.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Cross, C. E. & Bancroft, G. J. Ingestion of acapsular Cryptococcus neoformans occurs via mannose and β-glucan receptors, resulting in cytokine production and increased phagocytosis of the encapsulated form. Infect. Immun. 63, 2604?2611 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Borges-Walmsley, M. I., Chen, D., Shu, X. & Walmsley, A. R. The pathobiology of Paracoccidioides brasiliensis. Trends Microbiol. 10, 80?87 (2002).

    CAS  PubMed  Google Scholar 

  86. Williams, D. L. et al. Pre-clinical safety evaluation of soluble glucan. Int. J. Immunopharmacol. 10, 405?414 (1988).

    CAS  PubMed  Google Scholar 

  87. Adams, D. S. et al. PGG-Glucan activates NF-κB-like and NF-IL-6-like transcription factor complexes in a murine monocytic cell line. J. Leukoc. Biol. 62, 865?873 (1997).

    CAS  PubMed  Google Scholar 

  88. Battle, J. et al. Ligand binding to the (1→3)-β-D-glucan receptor stimulates NFκB activation, but not apoptosis in U937 cells. Biochem. Biophys. Res. Commun. 249, 499?504 (1998).

    CAS  PubMed  Google Scholar 

  89. Williams, D. L. et al. Modulation of the phosphoinositide 3-kinase pathway alters innate resistance to polymicrobial sepsis. J. Immunol. 172, 449?456 (2004).

    CAS  PubMed  Google Scholar 

  90. Firestein, G. S. Evolving concepts of rheumatoid arthritis. Nature 423, 356?361 (2003).

    CAS  PubMed  Google Scholar 

  91. Keystone, E. C., Schorlemmer, H. U., Pope, C. & Allison, A. C. Zymosan-induced arthritis: a model of chronic proliferative arthritis following activation of the alternative pathway of complement. Arthritis Rheum. 20, 1396?1401 (1977).

    CAS  PubMed  Google Scholar 

  92. Sakaguchi, N. et al. Altered thymic T-cell selection due to a mutation of the ZAP-70 gene causes autoimmune arthritis in mice. Nature 426, 454?460 (2003).

    CAS  PubMed  Google Scholar 

  93. Douwes, J. (1→3)-β-D-glucans and respiratory health: a review of the scientific evidence. Indoor Air 15, 160?169 (2005).

    CAS  PubMed  Google Scholar 

  94. Rylander, R. & Lin, R. H. (1→3)-β-D-glucan- relationship to indoor air-related symptoms, allergy and asthma. Toxicology 152, 47?52. (2000).

    CAS  PubMed  Google Scholar 

  95. Evans, S. E. et al. Pneumocystis cell wall β-glucans stimulate alveolar epithelial cell chemokine generation through nuclear factor-κB-dependent mechanisms. Am. J. Respir. Cell Mol. Biol. 32, 490?497 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Hong, F. et al. Mechanism by which orally administered β-1, 3-glucans enhance the tumoricidal activity of antitumor monoclonal antibodies in murine tumor models. J. Immunol. 173, 797?806 (2004).

    CAS  PubMed  Google Scholar 

  97. Rice, P. J. et al. Oral delivery and gastrointestinal absorption of soluble glucans stimulate increased resistance to infectious challenge. J. Pharmacol. Exp. Ther. 314, 1079?1086 (2005).

    CAS  PubMed  Google Scholar 

  98. Thornton, B. P., Vetvicka, V., Pitman, M., Goldman, R. C. & Ross, G. D. Analysis of the sugar specificity and molecular location of the β-glucan-binding lectin site of complement receptor type 3 (CD11b/CD18). J. Immunol. 156, 1235?1246 (1996).

    CAS  PubMed  Google Scholar 

  99. Xia, Y. & Ross, G. D. Generation of recombinant fragments of CD11b expressing the functional β-glucan-binding lectin site of CR3 (CD11b/CD18). J. Immunol. 162, 7285?7293 (1999).

    CAS  PubMed  Google Scholar 

  100. Di Renzo, L., Yefenof, E. & Klein, E. The function of human NK cells is enhanced by β-glucan, a ligand of CR3 (CD11b/CD18). Eur. J. Immunol. 21, 1755?1758 (1991).

    CAS  PubMed  Google Scholar 

  101. Ross, G. D. et al. Characterization of patients with an increased susceptibility to bacterial infections and a genetic deficiency of leukocyte membrane complement receptor type 3 and the related membrane antigen LFA-1. Blood 66, 882?890 (1985).

    CAS  PubMed  Google Scholar 

  102. Tsikitis, V. L., Morin, N. A., Harrington, E. O., Albina, J. E. & Reichner, J. S. The lectin-like domain of complement receptor 3 protects endothelial barrier function from activated neutrophils. J. Immunol. 173, 1284?1291 (2004).

    CAS  PubMed  Google Scholar 

  103. Xia, Y. et al. The β-glucan-binding lectin site of mouse CR3 (CD11b/CD18) and its function in generating a primed state of the receptor that mediates cytotoxic activation in response to iC3b-opsonized target cells. J. Immunol. 162, 2281?2290 (1999).

    CAS  PubMed  Google Scholar 

  104. Hahn, P. Y. et al. Pneumocystis carinii cell wall β-glucan induces release of macrophage inflammatory protein-2 from alveolar epithelial cells via a lactosylceramide-mediated mechanism. J. Biol. Chem. 278, 2043?2050 (2003).

    CAS  PubMed  Google Scholar 

  105. Wakshull, E. et al. PGG-glucan, a soluble β-(1, 3)-glucan, enhances the oxidative burst response, microbicidal activity, and activates an NF-κB-like factor in human PMN: evidence for a glycosphingolipid β-(1, 3)-glucan receptor. Immunopharmacology 41, 89?107 (1999).

    CAS  PubMed  Google Scholar 

  106. Zimmerman, J. W. et al. A novel carbohydrate-glycosphingolipid interaction between a β-(1?3)-glucan immunomodulator, PGG-glucan, and lactosylceramide of human leukocytes. J. Biol. Chem. 273, 22014?22020 (1998).

    CAS  PubMed  Google Scholar 

  107. Jimenez-Lucho, V., Ginsburg, V. & Krivan, H. C. Cryptococcus neoformans, Candida albicans, and other fungi bind specifically to the glycosphingolipid lactosylceramide (Gal β-1?4Glc β-1?1Cer), a possible adhesion receptor for yeasts. Infect. Immun. 58, 2085?2090 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Iwabuchi, K. & Nagaoka, I. Lactosylceramide-enriched glycosphingolipid signaling domain mediates superoxide generation from human neutrophils. Blood 100, 1454?1464 (2002).

    CAS  PubMed  Google Scholar 

  109. Rice, P. J. et al. Human monocyte scavenger receptors are pattern recognition receptors for (1→3)-β-D-glucans. J. Leukoc. Biol. 72, 140?146 (2002).

    CAS  PubMed  Google Scholar 

  110. Dushkin, M. I., Safina, A. F., Vereschagin, E. I. & Schwartz, Y. Carboxymethylated β-1, 3-glucan inhibits the binding and degradation of acetylated low density lipoproteins in macrophages in vitro and modulates their plasma clearance in vivo. Cell Biochem. Funct. 14, 209?217 (1996).

    CAS  PubMed  Google Scholar 

  111. Vereschagin, E. I. et al. Soluble glucan protects against endotoxin shock in the rat: the role of the scavenger receptor. Shock 9, 193?198 (1998).

    CAS  PubMed  Google Scholar 

  112. Pearson, A., Lux, A. & Krieger, M. Expression cloning of dSR-CI, a class C macrophage-specific scavenger receptor from Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 92, 4056?4060 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Masoud, M., Rudensky, B., Elstein, D. & Zimran, A. Chitotriosidase deficiency in survivors of Candida sepsis. Blood Cells Mol. Dis. 29, 116?118 (2002).

    CAS  PubMed  Google Scholar 

  114. Yauch, L. E., Mansour, M. K., Shoham, S., Rottman, J. B. & Levitz, S. M. Involvement of CD14, toll-like receptors 2 and 4, and MyD88 in the host response to the fungal pathogen Cryptococcus neoformans in vivo. Infect. Immun. 72, 5373?5382 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Lee, S. J., Gonzalez-Aseguinolaza, G. & Nussenzweig, M. C. Disseminated candidiasis and hepatic malarial infection in mannose-binding-lectin-A-deficient mice. Mol. Cell. Biol. 22, 8199?8203 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Hogaboam, C. M., Takahashi, K., Ezekowitz, R. A., Kunkel, S. L. & Schuh, J. M. Mannose-binding lectin deficiency alters the development of fungal asthma: effects on airway response, inflammation, and cytokine profile. J. Leukoc. Biol. 75, 805?814 (2004).

    CAS  PubMed  Google Scholar 

  117. Garlanda, C. et al. Non-redundant role of the long pentraxin PTX3 in anti-fungal innate immune response. Nature 420, 182?186 (2002).

    CAS  PubMed  Google Scholar 

  118. Atochina, E. N. et al. Enhanced lung injury and delayed clearance of Pneumocystis carinii in surfactant protein A-deficient mice: attenuation of cytokine responses and reactive oxygen-nitrogen species. Infect. Immun. 72, 6002?6011 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Linke, M. J. et al. Immunosuppressed surfactant protein A-deficient mice have increased susceptibility to Pneumocystis carinii infection. J. Infect. Dis. 183, 943?952 (2001).

    CAS  PubMed  Google Scholar 

  120. Atochina, E. N. et al. Delayed clearance of Pneumocystis carinii infection, increased inflammation, and altered nitric oxide metabolism in lungs of surfactant protein-D knockout mice. J. Infect. Dis. 189, 1528?1539 (2004).

    CAS  PubMed  Google Scholar 

  121. Biondo, C. et al. MyD88 and TLR2, but not TLR4, are required for host defense against Cryptococcus neoformans. Eur. J. Immunol. 35, 870?878 (2005).

    CAS  PubMed  Google Scholar 

  122. Netea, M. G. et al. The role of toll-like receptor (TLR) 2 and TLR4 in the host defense against disseminated candidiasis. J. Infect. Dis. 185, 1483?1489 (2002).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I would like to thank all my colleagues, particularly S. Gordon, for their contributions to the work on dectin-1. I thank S. Gordon, J. Willment, K. Dennehy and E. Sturrock for critically reading the manuscript. I am grateful to the Wellcome Trust and the Edward Jenner Institute for Vaccine Research for financial support. G.D.B. is a Wellcome Trust Senior Research Fellow in biomedical science in South Africa.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Supplementary information

Supplementary information S1 (movie)

S1| Phagocytosis of zymosan by cells expressing dectin-1. RAW264.7 cells (a mouse macrophage cell line), which have low levels of endogenous dectin-1 expression, were engineered to express dectin-1 and cultured in the presence of fluorescently-labelled zymosan, before being imaged by immunofluorescent microscopy. Dectin-1-expressing cells can be seen to efficiently recognize and phagocytose zymosan. The movie represents 30 minutes of real-time phagocytosis, speeded up 138-fold. Movies courtesy of S. Heinsbroek (University of Oxford). (AVI 798 kb)

Supplementary information S2 (movie)

S2| Lack of phagocytosis of zymosan by cells expressing low levels dectin-1. RAW264.7 cells (a mouse macrophage cell line), which express low levels of endogenous dectin-1 expression, were cultured in the presence of fluorescently-labelled zymosan and imaged by immunofluorescent microscopy. These cells are unable to efficiently recognize or phagocytose zymosan, unlike RAW264.7 cells engineered to express dectin-1 (see Supplementary information S1 (movie). The movie represents 30 minutes of real-time phagocytosis, speeded up 257-fold. Movies courtesy of S. Heinsbroek (University of Oxford). (AVI 1665 kb)

Related links

Related links

DATABASES

Entrez Gene

CR3

dectin-1

LOX1

MICL

NKG2D

SYK

TLR

FURTHER INFORMATION

Gordon Brown's homepage

Glossary

Pattern-recognition receptor

A receptor that binds to molecular patterns found in pathogens but not mammalian cells. Examples include dectin-1, which binds β-glucans, and Toll-like receptors, which are activated by various microbial products, such as bacterial lipopolysaccharides, hypomethylated DNA, flagellin and double-stranded RNA.

Pathogen-associated molecular pattern

A molecular pattern that is found in pathogens but not mammalian cells. Examples include β-glucan, which binds dectin-1, and various microbial products, such as bacterial lipopolysaccharides, hypomethylated DNA, flagellin and double-stranded RNA, which bind Toll-like receptors.

Opsonic recognition

The indirect recognition of microorganisms by specific phagocyte receptors, such as complement receptors, which recognize host serum or tissue-fluid proteins (opsonins), such as complement, that are coated (osponized) on the microbial surface.

Respiratory burst

The activation of a multi-protein enzyme complex, the phagocyte nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, which translocates to the phagosome membrane and generates lumenal superoxide anions through the transfer of electrons from NADPH to O2.

Reactive oxygen intermediates

Toxic oxidants, such as hydrogen peroxide and hydroxyl radicals, that are produced by chemical reactions of superoxide anions in the phagosome lumen following the respiratory burst. In neutrophils, hydrogen peroxide can be further converted by myeloperoxidase into the highly toxic oxidant, hypochlorous acid.

Type II transmembrane receptor

Single-pass type II transmembrane receptors have their amino (N) terminus in the cytoplasm and their carboxyl terminus on the cell surface. They have a transmembrane sequence of around 25 hydrophobic amino-acid residues but do not contain a recognizable N-terminal signal sequence, which is required for the secretion of type I receptors, which lie in the opposite orientation in the membrane.

C-type lectin superfamily

A family of proteins that contain one or more C-type lectin-like domain (CTLD), which have been divided into 14 groups based on the organization of their CTLDs. The CTLDs, which were first identified as carbohydrate-recognition domains in Ca2+-dependent lectins, do not all recognize sugars, but are homologous and have a conserved sequence motif that determines the CTLD protein fold.

Immunoreceptor tyrosine-based activation motif

(ITAM). A sequence that is present in the cytoplasmic domains of the invariant chains of various cell-surface immune receptors, such as the T-cell and B-cell receptor, the receptor for IgE (FcεR) and natural-killer-cell activating receptors. Following phosphorylation of their tyrosine residue, ITAMs function as docking sites for SRC homology 2 (SH2)-domain-containing tyrosine kinases and adaptor molecules, thereby facilitating intracellular-signalling cascades.

Alternative macrophage activation

A state of macrophage activation, induced by the T-helper 2 (TH2) cytokines interleukin-4 (IL-4) and IL-13, that is distinct from the classical activation induced by interferon-γ, and which leads to a cellular phenotype involved in humoral immunity and repair.

Tetraspanin

A family of transmembrane proteins that have four transmembrane domains and two extracellular domains of different sizes, which are defined by several conserved amino acids in the transmembrane domains. Their function is not known clearly, but they seem to interact with many other transmembrane proteins and to form large multimeric protein networks, which might be involved in intracellular signalling.

SKG mice

A BALB/c-derived mouse line that spontaneously develops chronic autoimmune arthritis in non-specific-pathogen-free (non-SPF) conditions. These mice have a point mutation in a SRC homology 2 (SH2) domain of the signal transducer ζ-chain-associated protein kinase of 70 kDa in lymphocytes (ZAP70), resulting in aberrant thymic selection and the production of arthritogenic T cells. Exposure of SKG mice to environmental agents, such as β-glucans, leads to the activation of these T cells and the development of disease.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, G. Dectin-1: a signalling non-TLR pattern-recognition receptor. Nat Rev Immunol 6, 33–43 (2006). https://doi.org/10.1038/nri1745

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1745

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing