Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Co-stimulatory members of the TNFR family: keys to effective T-cell immunity?

Key Points

  • Five interactions between the tumour-necrosis factor receptor (TNFR)–TNF family members have emerged as positive regulators of T cells: OX40–OX40 ligand (OX40L), 4-1BB–4-1BBL, CD27–CD70, herpes-virus entry mediator (HVEM)–LIGHT and CD30–CD30L. The co-stimulatory TNFR-family members are mainly expressed by T cells and their ligands by antigen-presenting cells (APCs).

  • There are two patterns of expression of the co-stimulatory TNFR-family molecules: constitutive (such as CD27 and HVEM) and inducible (such as OX40, 4-1BB and CD30). All can potentially participate in T-cell responses either at the time of T-cell activation or within the first few days of activation.

  • In vitro and in vivo data indicate that HVEM–LIGHT interactions promote the early activation and clonal expansion of T cells, CD27–CD70 might also help to maintain early proliferation, OX40–OX40L and 4-1BB–4-1BBL and CD30–CD30L seem to regulate later expansion of T-cell numbers at the peak of the response.

  • Co-stimulatory TNFR-family signalling seems to regulate T-cell division, survival and effector function by activating nuclear factor-κB (NF-κB), JNK pathways and phosphatidylinositol 3-kinase (PI3K)–protein kinase B (PKB) pathways.

  • It is not clear whether all the TNFR-family molecules are required to function together (simultaneously or sequentially) to regulate a response or whether different responses require different co-stimulatory interactions.

  • Survival signals from TNFR-family members might be crucial for secondary responses and the maintenance of T-cell memory.

  • Blocking co-stimulatory TNF family members might be of benefit in inflammatory and autoimmune diseases and in preventing transplant rejection, whereas promoting these interactions might enhance antitumour immunity.

Abstract

Interactions between co-stimulatory ligands and their receptors are crucial for the activation of T cells, the prevention of tolerance and the development of T-cell immunity. It is now evident that members of the immunoglobulin-like CD28–B7 co-stimulatory family cannot fully account for an effective long-lasting T-cell response or the generation of memory T cells. Several members of the tumour-necrosis factor receptor (TNFR) superfamily — OX40, 4-1BB, CD27, CD30 and HVEM (herpes-virus entry mediator) — are poised to deliver co-stimulatory signals both early and late after encounter with antigen. The roles of these molecules in initiating and sustaining the T-cell response and in promoting long-lived immunity are discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural organization of the co-stimulatory TNFR–TNF-family members.
Figure 2: Generalized time course of expression of co-stimulatory TNFR-family members.
Figure 3: Signalling intermediates in TNFR-family co-stimulation.
Figure 4: Hypothetical model of TNFR control of primary T-cell responses.
Figure 5: Control of antigen-specific T-cell numbers by TNFR-family co-signals.

Similar content being viewed by others

References

  1. Bodmer, J. L., Schneider, P. & Tschopp, J. The molecular architecture of the TNF superfamily. Trends Biochem. Sci. 27, 19–26 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Locksley, R. M., Killeen, N. & Lenardo, M. J. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104, 487–501 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Borst, J. et al. Alternative molecular form of human T cell-specific antigen CD27 expressed upon T cell activation. Eur. J. Immunol. 19, 357–364 (1989).

    Article  CAS  PubMed  Google Scholar 

  4. Morel, Y. et al. Reciprocal expression of the TNF family receptor herpes virus entry mediator and its ligand LIGHT on activated T cells: LIGHT down-regulates its own receptor. J. Immunol. 165, 4397–4404 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Gramaglia, I., Weinberg, A. D., Lemon, M. & Croft, M. Ox-40 ligand: a potent co-stimulatory molecule for sustaining primary CD4 T cell responses. J. Immunol. 161, 6510–6517 (1998).

    CAS  PubMed  Google Scholar 

  6. Pollok, K. E., Kim, S. H. & Kwon, B. S. Regulation of 4-1BB expression by cell–cell interactions and the cytokines, interleukin-2 and interleukin-4. Eur. J. Immunol. 25, 488–494 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Ellis, T. M., Simms, P. E., Slivnick, D. J., Jack, H. M. & Fisher, R. I. CD30 is a signal-transducing molecule that defines a subset of human activated CD45RO+ T cells. J. Immunol. 151, 2380–2389 (1993).

    CAS  PubMed  Google Scholar 

  8. de Jong, R. et al. Regulation of expression of CD27, a T cell-specific member of a novel family of membrane receptors. J. Immunol. 146, 2488–2494 (1991).

    CAS  PubMed  Google Scholar 

  9. Gravestein, L. A. et al. Cloning and expression of murine CD27: comparison with 4-1BB, another lymphocyte-specific member of the nerve growth factor receptor family. Eur. J. Immunol. 23, 943–950 (1993).

    Article  CAS  PubMed  Google Scholar 

  10. Lens, S. M., Baars, P. A., Hooibrink, B., van Oers, M. H. & van Lier, R. A. Antigen-presenting cell-derived signals determine expression levels of CD70 on primed T cells. Immunol. 90, 38–45 (1997).

    Article  CAS  Google Scholar 

  11. Mauri, D. N. et al. LIGHT, a new member of the TNF superfamily, and lymphotoxin-α are ligands for herpesvirus entry mediator. Immunity 8, 21–30 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Wiley, S. R., Goodwin, R. G. & Smith, C. A. Reverse signaling via CD30 ligand. J. Immunol. 157, 3635–3639 (1996).

    CAS  PubMed  Google Scholar 

  13. Baum, P. R. et al. Molecular characterization of murine and human OX40/OX40 ligand systems: identification of a human OX40 ligand as the HTLV-1-regulated protein gp34. EMBO J. 13, 3992–4001 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gilfillan, M. C., Noel, P. J., Podack, E. R., Reiner, S. L. & Thompson, C. B. Expression of the co-stimulatory receptor CD30 is regulated by both CD28 and cytokines. J. Immunol. 160, 2180–2187 (1998).

    CAS  PubMed  Google Scholar 

  15. Walker, L. S. et al. Compromised OX40 function in CD28-deficient mice is linked with failure to develop CXC chemokine receptor 5-positive CD4 cells and germinal centers. J. Exp. Med. 190, 1115–1122 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rogers, P. R., Song, J., Gramaglia, I., Killeen, N. & Croft, M. OX40 promotes Bcl-xL and Bcl-2 expression and is essential for long-term survival of CD4 T cells. Immunity 15, 445–455 (2001). Using knockout T cells, this paper defines the sequential action of OX40 after CD28, and shows that OX40 controls T-cell survival through regulating anti-apoptotic BCL2-family members.

    Article  CAS  PubMed  Google Scholar 

  17. Diehl, L. et al. In vivo triggering through 4-1BB enables TH-independent priming of CTL in the presence of an intact CD28 co-stimulatory pathway. J. Immunol. 168, 3755–3762 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Lens, S. M. et al. Phenotype and function of human B cells expressing CD70 (CD27 ligand). Eur. J. Immunol . 26, 2964–2971 (1996).

    Article  PubMed  Google Scholar 

  19. Pollok, K. E. et al. 4-1BB T-cell antigen binds to mature B cells and macrophages, and co-stimulates anti-μ-primed splenic B cells. Eur. J. Immunol. 24, 367–374 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Ohshima, Y. et al. Expression and function of OX40 ligand on human dendritic cells. J. Immunol. 159, 3838–3848 (1997).

    CAS  PubMed  Google Scholar 

  21. Shanebeck, K. D. et al. Regulation of murine B cell growth and differentiation by CD30 ligand. Eur. J. Immunol. 25, 2147–2153 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Hintzen, R. Q. et al. Characterization of the human CD27 ligand, a novel member of the TNF gene family. J. Immunol. 152, 1762–1773 (1994).

    CAS  PubMed  Google Scholar 

  23. Tamada, K. et al. LIGHT, a TNF-like molecule, co-stimulates T cell proliferation and is required for dendritic cell-mediated allogeneic T cell response. J. Immunol. 164, 4105–4110 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Oshima, H. et al. Characterization of murine CD70 by molecular cloning and mAb. Int. Immunol. 10, 517–526 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Futagawa, T. et al. Expression and function of 4-1BB and 4-1BB ligand on murine dendritic cells. Int. Immunol. 14, 275–286 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Kwon, B. S. et al. A newly identified member of the tumor necrosis factor receptor superfamily with a wide tissue distribution and involvement in lymphocyte activation. J. Biol. Chem. 272, 14272–14276 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Harrop, J. A. et al. Antibodies to TR2 (herpesvirus entry mediator), a new member of the TNF receptor superfamily, block T cell proliferation, expression of activation markers, and production of cytokines. J. Immunol. 161, 1786–1794 (1998).

    CAS  PubMed  Google Scholar 

  28. Tamada, K. et al. Modulation of T-cell-mediated immunity in tumor and graft-versus-host disease models through the LIGHT co-stimulatory pathway. Nature Med. 6, 283–289 (2000). The authors show that LIGHT has potent co-stimulatory activity, with an important role in graft-versus-host disease and can promote antitumour responses.

    Article  CAS  PubMed  Google Scholar 

  29. Ye, Q. et al. Modulation of LIGHT–HVEM co-stimulation prolongs cardiac allograft survival. J. Exp. Med. 195, 795–800 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Scheu, S. et al. Targeted disruption of LIGHT causes defects in co-stimulatory T cell activation and reveals cooperation with lymphotoxin-β in mesenteric lymph node genesis. J. Exp. Med. 195, 1613–1624 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shaikh, R. B. et al. Constitutive expression of LIGHT on T cells leads to lymphocyte activation, inflammation, and tissue destruction. J. Immunol. 167, 6330–6337 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Wang, J. et al. The regulation of T cell homeostasis and autoimmunity by T cell-derived LIGHT. J. Clin. Invest. 108, 1771–1780 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tamada, K. et al. Cutting edge: selective impairment of CD8+ T cell function in mice lacking the TNF superfamily member LIGHT. J. Immunol. 168, 4832–4835 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Wan, X. et al. A TNF family member LIGHT transduces co-stimulatory signals into human T cells. J. Immunol. 169, 6813–6821 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Agematsu, K. et al. Role of CD27 in T cell immune response. Analysis by recombinant soluble CD27. J. Immunol. 153, 1421–1429 (1994).

    CAS  PubMed  Google Scholar 

  36. Hintzen, R. Q. et al. Engagement of CD27 with its ligand CD70 provides a second signal for T cell activation. J. Immunol. 154, 2612–2623 (1995).

    CAS  PubMed  Google Scholar 

  37. Hendriks, J. et al. CD27 is required for generation and long-term maintenance of T cell immunity. Nature Immunol. 1, 433–440 (2000). This is the first description of CD27-deficient mice and shows that CD27 is essential for primary and secondary influenza-specific T-cell responses.

    Article  CAS  Google Scholar 

  38. Arens, R. et al. Constitutive CD27/CD70 interaction induces expansion of effector-type T cells and results in IFNγ-mediated B cell depletion. Immunity 15, 801–812 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Couderc, B. et al. Enhancement of antitumor immunity by expression of CD70 (CD27 ligand) or CD154 (CD40 ligand) co-stimulatory molecules in tumor cells. Cancer Gene Ther. 5, 163–175 (1998).

    CAS  PubMed  Google Scholar 

  40. Lorenz, M. G., Kantor, J. A., Schlom, J. & Hodge, J. W. Anti-tumor immunity elicited by a recombinant vaccinia virus expressing CD70 (CD27L). Hum. Gene Ther. 10, 1095–1103 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Chen, A. I. et al. Ox40-ligand has a critical co-stimulatory role in dendritic cell–T cell interactions. Immunity 11, 689–698 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Kopf, M. et al. OX40-deficient mice are defective in TH cell proliferation but are competent in generating B cell and CTL responses after virus infection. Immunity 11, 699–708 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. Murata, K. et al. Impairment of antigen-presenting cell function in mice lacking expression of OX40 ligand. J. Exp. Med. 191, 365–374 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gramaglia, I. et al. The OX40 co-stimulatory receptor determines the development of CD4 memory by regulating primary clonal expansion. J. Immunol. 165, 3043–3050 (2000). This paper shows that OX40 is essential for the generation of a high frequency of memory CD4+ T cells.

    Article  CAS  PubMed  Google Scholar 

  45. DeBenedette, M. A. et al. Analysis of 4-1BB ligand (4-1BBL)-deficient mice and of mice lacking both 4-1BBL and CD28 reveals a role for 4-1BBL in skin allograft rejection and in the cytotoxic T cell response to influenza virus. J. Immunol. 163, 4833–4841 (1999).

    CAS  PubMed  Google Scholar 

  46. Tan, J. T., Whitmire, J. K., Ahmed, R., Pearson, T. C. & Larsen, C. P. 4-1BB ligand, a member of the TNF family, is important for the generation of antiviral CD8 T cell responses. J. Immunol. 163, 4859–4868 (1999).

    CAS  PubMed  Google Scholar 

  47. Tan, J. T. et al. 4-1BB co-stimulation is required for protective anti-viral immunity after peptide vaccination. J. Immunol. 164, 2320–2325 (2000). This paper, together with references 45 and 46, shows that 4-1BB has an important role in primary and secondary CD8+ T-cell responses to viruses and virus peptides.

    Article  CAS  PubMed  Google Scholar 

  48. Cooper, D., Bansal-Pakala, P. & Croft, M. 41BB (CD137) controls the clonal expansion and survival of CD8 T cells in vivo but does not contribute to the development of cytotoxicity. Eur. J. Immunol. 32, 521–529 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Brocker, T. et al. CD4 T cell traffic control: in vivo evidence that ligation of OX40 on CD4 T cells by OX40-ligand expressed on dendritic cells leads to the accumulation of CD4 T cells in B follicles. Eur. J. Immunol. 29, 1610–1616 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Murata, K. et al. Constitutive OX40/OX40 ligand interaction induces autoimmune-like diseases. J. Immunol. 169, 4628–4636 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Bansal-Pakala, P., Gebre-Hiwot Jember, A. & Croft, M. Signaling through OX40 (CD134) breaks peripheral T-cell tolerance. Nature Med. 7, 907–912 (2001). The authors report that signalling through OX40 can prevent and reverse T-cell tolerance that is induced by encounter with soluble antigen in the absence of adjuvant.

    Article  CAS  PubMed  Google Scholar 

  52. Maxwell, J., Weinberg, A. D., Prell, R. A. & Vella, A. T. Danger and OX40 receptor signaling synergize to enhance memory T cell survival by inhibiting peripheral deletion. J. Immunol. 164, 107–112 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Weatherill, A. R., Maxwell, J. R., Takahashi, C., Weinberg, A. D. & Vella, A. T. OX40 ligation enhances cell cycle turnover of Ag-activated CD4 T cells in vivo. Cell. Immunol. 209, 63–75 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. De Smedt, T. et al. OX40 co-stimulation enhances the development of T cell responses induced by dendritic cells in vivo. J. Immunol. 168, 661–670 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Melero, I. et al. Monoclonal antibodies against the 4-1BB T-cell activation molecule eradicate established tumors. Nature Med. 3, 682–685 (1997). The first to show that agonist reagents to 4-1BB can provide protection against tumours by augmenting the activity of cytotoxic T lymphocytes (CTLs).

    Article  CAS  PubMed  Google Scholar 

  56. Melero, I. et al. Amplification of tumor immunity by gene transfer of the co-stimulatory 4-1BB ligand: synergy with the CD28 co-stimulatory pathway. Eur. J. Immunol. 28, 1116–1121 (1998).

    Article  CAS  PubMed  Google Scholar 

  57. Takahashi, C., Mittler, R. S. & Vella, A. T. 4-1BB is a bona fide CD8 T cell survival signal. J. Immunol. 162, 5037–5040 (1999).

    CAS  PubMed  Google Scholar 

  58. Guinn, B. A., DeBenedette, M. A., Watts, T. H. & Berinstein, N. L. 4-1BBL cooperates with B7-1 and B7-2 in converting a B cell lymphoma cell line into a long-lasting antitumor vaccine. J. Immunol. 162, 5003–5010 (1999).

    CAS  PubMed  Google Scholar 

  59. Halstead, E. S., Mueller, Y. M., Altman, J. D. & Katsikis, P. D. In vivo stimulation of CD137 broadens primary antiviral CD8+ T cell responses. Nature Immunol 3, 536–541 (2002).

    Article  CAS  Google Scholar 

  60. Takahashi, C., Mittler, R. S. & Vella, A. T. Differential clonal expansion of CD4 and CD8 T cells in response to 4-1BB ligation: contribution of 4-1BB during inflammatory responses. Immunol. Lett. 76, 183–191 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Bansal-Pakala, P. & Croft, M. Defective T cell priming associated with aging can be rescued by signaling through 4-1BB (CD137). J. Immunol. 169, 5005–5009 (2002).

    Article  PubMed  Google Scholar 

  62. Bertram, E. M., Lau, P. & Watts, T. H. Temporal segregation of 4-1BB versus CD28-mediated co-stimulation: 4-1BB ligand influences T cell numbers late in the primary response and regulates the size of the T cell memory response following influenza infection. J. Immunol. 168, 3777–3785 (2002). This paper establishes the sequential action of 4-1BB late in the T-cell response after CD28.

    Article  CAS  PubMed  Google Scholar 

  63. Del Prete, G. et al. CD30-mediated signaling promotes the development of human T helper type 2-like T cells. J. Exp. Med. 182, 1655–1661 (1995).

    Article  CAS  PubMed  Google Scholar 

  64. Bowen, M. A., Lee, R. K., Miragliotta, G., Nam, S. Y. & Podack, E. R. Structure and expression of murine CD30 and its role in cytokine production. J. Immunol. 156, 442–449 (1996).

    CAS  PubMed  Google Scholar 

  65. Nakamura, T. et al. Reciprocal regulation of CD30 expression on CD4+ T cells by IL-4 and IFN-γ. J. Immunol. 158, 2090–2098 (1997).

    CAS  PubMed  Google Scholar 

  66. Amakawa, R. et al. Impaired negative selection of T cells in Hodgkin's disease antigen CD30-deficient mice. Cell 84, 551–562 (1996).

    Article  CAS  PubMed  Google Scholar 

  67. DeYoung, A. L., Duramad, O. & Winoto, A. The TNF receptor family member CD30 is not essential for negative selection. J. Immunol. 165, 6170–6173 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Saraiva, M., Smith, P., Fallon, P. G. & Alcami, A. Inhibition of type 1 cytokine-mediated inflammation by a soluble CD30 homologue encoded by ectromelia (mousepox) virus. J. Exp. Med. 196, 829–839 (2002). This paper shows that poxvirus produces a homologue of CD30 that can inhibit inflammation controlled by type 1 cytokines.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Podack, E. R., Strbo, N., Sotosec, V. & Muta, H. CD30-governor of memory T cells? Ann. NY Acad. Sci. 975, 101–113 (2002).

    Article  CAS  PubMed  Google Scholar 

  70. Akiba, H. et al. CD27, a member of the tumor necrosis factor receptor superfamily, activates NF-κB and stress-activated protein kinase/c-Jun N-terminal kinase via TRAF2, TRAF5, and NF-κB-inducing kinase. J. Biol. Chem. 273, 13353–13358 (1998).

    Article  CAS  PubMed  Google Scholar 

  71. Aizawa, S. et al. Tumor necrosis factor receptor-associated factor (TRAF) 5 and TRAF2 are involved in CD30-mediated NF-κB activation. J. Biol. Chem. 272, 2042–2045 (1997).

    Article  CAS  PubMed  Google Scholar 

  72. Ansieau, S. et al. Tumor necrosis factor receptor-associated factor (TRAF)-1, TRAF-2, and TRAF-3 interact in vivo with the CD30 cytoplasmic domain; TRAF-2 mediates CD30-induced nuclear factor-κB activation. Proc. Natl Acad. Sci. USA 93, 14053–14058 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Arch, R. H. & Thompson, C. B. 4-1BB and OX40 are members of a tumor necrosis factor (TNF)-nerve growth factor receptor subfamily that bind TNF receptor-associated factors and activate nuclear factor-κB. Mol. Cell. Biol. 18, 558–65 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Duckett, C. S., Gedrich, R. W., Gilfillan, M. C. & Thompson, C. B. Induction of nuclear factor-κB by the CD30 receptor is mediated by TRAF1 and TRAF2. Mol. Cell. Biol. 17, 1535–1542 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hsu, H. et al. ATAR, a novel tumor necrosis factor receptor family member, signals through TRAF2 and TRAF5. J. Biol. Chem. 272, 13471–13474 (1997).

    Article  CAS  PubMed  Google Scholar 

  76. Kawamata, S., Hori, T., Imura, A., Takaori-Kondo, A. & Uchiyama, T. Activation of OX40 signal transduction pathways leads to tumor necrosis factor receptor-associated factor (TRAF) 2- and TRAF5-mediated NF-κB activation. J. Biol. Chem. 273, 5808–5814 (1998).

    Article  CAS  PubMed  Google Scholar 

  77. Gravestein, L. A. et al. The TNF receptor family member CD27 signals to Jun N-terminal kinase via Traf-2. Eur. J. Immunol. 28, 2208–2216 (1998).

    Article  CAS  PubMed  Google Scholar 

  78. Jang, I. K., Lee, Z. H., Kim, Y. J., Kim, S. H. & Kwon, B. S. Human 4-1BB (CD137) signals are mediated by TRAF2 and activate nuclear factor-κB. Biochem. Biophys. Res. Commun. 242, 613–620 (1998).

    Article  CAS  PubMed  Google Scholar 

  79. Saoulli, K. et al. CD28-independent, TRAF2-dependent co-stimulation of resting T cells by 4-1BB ligand. J. Exp. Med. 187, 1849–1862 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Yamamoto, H., Kishimoto, T. & Minamoto, S. NF-κB activation in CD27 signaling: involvement of TNF receptor-associated factors in its signaling and identification of functional region of CD27. J. Immunol. 161, 4753–4759 (1998).

    CAS  PubMed  Google Scholar 

  81. Marsters, S. A. et al. Herpesvirus entry mediator, a member of the tumor necrosis factor receptor (TNFR) family, interacts with members of the TNFR-associated factor family and activates the transcription factors NF-κB and AP-1. J. Biol. Chem. 272, 14029–14032 (1997).

    Article  CAS  PubMed  Google Scholar 

  82. Cannons, J. L., Hoeflich, K. P., Woodgett, J. R. & Watts, T. H. Role of the stress kinase pathway in signaling via the T cell co-stimulatory receptor 4-1BB. J. Immunol. 163, 2990–2998 (1999).

    CAS  PubMed  Google Scholar 

  83. Lee, H. W. et al. 4-1BB promotes the survival of CD8+ T lymphocytes by increasing expression of Bcl-xL and Bfl-1. J. Immunol. 169, 4882–4888 (2002).

    Article  PubMed  Google Scholar 

  84. Laderach, D., Movassagh, M., Johnson, A., Mittler, R. S. & Galy, A. 4-1BB co-stimulation enhances human CD8+ T cell priming by augmenting the proliferation and survival of effector CD8+ T cells. Int. Immunol. 14, 1155–1167 (2002).

    Article  CAS  PubMed  Google Scholar 

  85. Brennan, P. et al. Phosphatidylinositol 3-kinase couples the interleukin-2 receptor to the cell cycle regulator E2F. Immunity 7, 679–689 (1997).

    Article  CAS  PubMed  Google Scholar 

  86. Harhaj, E. W. & Sun, S. C. IκB kinases serve as a target of CD28 signaling. J. Biol. Chem . 273, 25185–25190 (1998).

    Article  PubMed  Google Scholar 

  87. Su, B. et al. JNK is involved in signal integration during co-stimulation of T lymphocytes. Cell 77, 727–736 (1994).

    Article  PubMed  Google Scholar 

  88. Prasad, K. V. et al. T-cell antigen CD28 interacts with the lipid kinase phosphatidylinositol 3-kinase by a cytoplasmic Tyr(P)-Met-Xaa-Met motif. Proc. Natl Acad. Sci. USA 91, 2834–2838 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kane, L. P., Andres, P. G., Howland, K. C., Abbas, A. K. & Weiss, A. Akt provides the CD28 co-stimulatory signal for upregulation of IL-2 and IFN-γ but not TH2 cytokines. Nature Immunol. 2, 37–44 (2001).

    Article  CAS  Google Scholar 

  90. Boise, L. H. et al. CD28 co-stimulation can promote T cell survival by enhancing the expression of Bcl-XL . Immunity 3, 87–98 (1995).

    Article  CAS  PubMed  Google Scholar 

  91. Linton, P. J. et al. Co–stimulation via OX40L expressed by B cells is sufficient to determine the extent of primary CD4 cell expansion and TH2 cytokine secretion in vivo. J. Exp. Med. 197, 875–883 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kim, M. Y. et al. CD4+CD3 accessory cells co-stimulate primed CD4 T Cells through OX40 and CD30 at sites where T cells collaborate with B cells. Immunity 18, 643–654 (2003). Together with reference 91, this paper defines populations of antigen-presenting cells (APCs), other than dendritic cells, that can deliver late-acting survival signals from tumour-necrosis factor (TNF)-family ligands.

    Article  CAS  PubMed  Google Scholar 

  93. Blazar, B. R. et al. Ligation of 4-1BB (CDw137) regulates graft-versus-host disease, graft-versus-leukemia, and graft rejection in allogeneic bone marrow transplant recipients. J. Immunol . 166, 3174–3183 (2001).

    Article  PubMed  Google Scholar 

  94. Gramaglia, I., Cooper, D., Miner, K. T., Kwon, B. S. & Croft, M. Co-stimulation of antigen-specific CD4 T cells by 4-1BB ligand. Eur. J. Immunol. 30, 392–402 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. Cannons, J. L. et al. 4-1BB ligand induces cell division, sustains survival, and enhances effector function of CD4 and CD8 T cells with similar efficacy. J. Immunol. 167, 1313–1324 (2001).

    Article  CAS  PubMed  Google Scholar 

  96. Akiba, H. et al. Critical contribution of OX40 ligand to T helper cell type 2 differentiation in experimental leishmaniasis. J. Exp. Med. 191, 375–380 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Jember, A. G., Zuberi, R., Liu, F. T. & Croft, M. Development of allergic inflammation in a murine model of asthma is dependent on the co-stimulatory receptor OX40. J. Exp. Med . 193, 387–392 (2001).

    Article  PubMed  PubMed Central  Google Scholar 

  98. De Jong, R. et al. The CD27 subset of peripheral blood memory CD4+ lymphocytes contains functionally differentiated T lymphocytes that develop by persistent antigenic stimulation in vivo. Eur. J. Immunol. 22, 993–999 (1992).

    Article  CAS  PubMed  Google Scholar 

  99. Salek–Ardakani, S. et al. OX40 (CD134) controls memory T helper 2 cells that drive lung inflammation. J. Exp. Med. 198, 1–12 (2003) This paper shows that OX40 directly controls the secondary response of memory T cells and, similar to its action in the primary response, regulates the frequency of effector cells that are generated.

    Article  CAS  Google Scholar 

  100. Kim, Y. J., Brutkiewicz, R. R. & Broxmeyer, H. E. Role of 4-1BB (CD137) in the functional activation of cord blood CD28–CD8+ T cells. Blood 100, 3253–3260 (2002).

    Article  CAS  PubMed  Google Scholar 

  101. Cannons, J. L., Bertram, E. M. & Watts, T. H. Cutting edge: profound defect in T cell responses in TNF receptor-associated factor 2 dominant negative mice. J. Immunol. 169, 2828–2831 (2002).

    Article  CAS  PubMed  Google Scholar 

  102. Yoshioka, T. et al. Contribution of OX40/OX40 ligand interaction to the pathogenesis of rheumatoid arthritis. Eur. J. Immunol. 30, 2815–2823 (2000).

    Article  CAS  PubMed  Google Scholar 

  103. Kim, Y. J., Kim, S. H., Mantel, P. & Kwon, B. S. Human 4-1BB regulates CD28 co-stimulation to promote TH1 cell responses. Eur. J. Immunol. 28, 881–890 (1998).

    Article  CAS  PubMed  Google Scholar 

  104. Bukczynski, J., Wen, T. & Watts, T. H. Co-stimulation of human CD28 T cells by 4-1BB ligand. Eur. J. Immunol. 33, 446–454 (2003).

    Article  CAS  PubMed  Google Scholar 

  105. Maus, M. V. et al. Ex vivo expansion of polyclonal and antigen-specific cytotoxic T lymphocytes by artificial APCs expressing ligands for the T-cell receptor, CD28 and 4-1BB. Nature Biotechnol. 20, 143–148 (2002).

    Article  CAS  Google Scholar 

  106. Tsukada, N. et al. Blockade of CD134 (OX40)–CD134L interaction ameliorates lethal acute graft-versus-host disease in a murine model of allogeneic bone marrow transplantation. Blood 95, 2434–2439 (2000).

    CAS  PubMed  Google Scholar 

  107. Blazar, B. R. et al. Ligation of OX40 (CD134) regulates graft-versus-host disease (GVHD) and graft rejection in allogenic bone marrow transplant (BMT) recipients. Blood 101, 3741–3748 (2003).

    Article  CAS  PubMed  Google Scholar 

  108. Macian, F. et al. Transcriptional mechanisms underlying lymphocyte tolerance. Cell 109, 719–731 (2002).

    Article  CAS  PubMed  Google Scholar 

  109. Sun, Y. et al. Administration of agonistic anti-4-1BB monoclonal antibody leads to the amelioration of experimental autoimmune encephalomyelitis. J. Immunol. 168, 1457–1465 (2002).

    Article  CAS  PubMed  Google Scholar 

  110. Sun, Y. et al. Co-stimulatory molecule-targeted antibody therapy of a spontaneous autoimmune disease. Nature Med. 8, 1405–1413 (2002). Together with reference 109, the authors show that an agonist reagent to 4-1BB can suppress rather than enhance an immune response that is ongoing. This indicates that the nature of any co-stimulation therapy might need to be varied depending on the disease and the stage at which it is targeted.

    Article  CAS  PubMed  Google Scholar 

  111. Zhu, G. et al. Progressive depletion of peripheral B lymphocytes in 4-1BB (CD137) ligand/I-Eα-transgenic mice. J. Immunol. 167, 2671–2676 (2001).

    Article  CAS  PubMed  Google Scholar 

  112. Nakajima, A. et al. Involvement of CD70–CD27 interactions in the induction of experimental autoimmune encephalomyelitis. J. Neuroimmunol. 109, 188–196 (2000).

    Article  CAS  PubMed  Google Scholar 

  113. Weinberg, A. D. et al. Selective depletion of myelin-reactive T cells with the anti-OX40 antibody ameliorates autoimmune encephalomyelitis. Nature Med. 2, 183–189 (1996). The first to report that targeting OX40 can be therapeutically beneficial in a model of disease.

    Article  CAS  PubMed  Google Scholar 

  114. Weinberg, A. D., Wegmann, K. W., Funatake, C. & Whitham, R. H. Blocking OX40–OX40 ligand interaction in vitro and in vivo leads to decreased T cell function and amelioration of experimental allergic encephalomyelitis. J. Immunol. 162, 1818–1826 (1999).

    CAS  PubMed  Google Scholar 

  115. Nohara, C. et al. Amelioration of experimental autoimmune encephalomyelitis with anti-OX40 ligand monoclonal antibody: a critical role for OX40 ligand in migration, but not development, of pathogenic T cells. J. Immunol. 166, 2108–2115 (2001).

    Article  CAS  PubMed  Google Scholar 

  116. Ndhlovu, L. C., Ishii, N., Murata, K., Sato, T. & Sugamura, K. Critical involvement of OX40 ligand signals in the T cell priming events during experimental autoimmune encephalomyelitis. J. Immunol. 167, 2991–2999 (2001).

    Article  CAS  PubMed  Google Scholar 

  117. Arestides, R. S. et al. Co-stimulatory molecule OX40L is critical for both TH1 and TH2 responses in allergic inflammation. Eur. J. Immunol. 32, 2874–2880 (2002).

    Article  CAS  PubMed  Google Scholar 

  118. Higgins, L. M. et al. Regulation of T cell activation in vitro and in vivo by targeting the OX40–OX40 ligand interaction: amelioration of ongoing inflammatory bowel disease with an OX40–IgG fusion protein, but not with an OX40 ligand–IgG fusion protein. J. Immunol. 162, 486–493 (1999).

    CAS  PubMed  Google Scholar 

  119. Malmstrom, V. et al. CD134L expression on dendritic cells in the mesenteric lymph nodes drives colitis in T cell-restored SCID mice. J. Immunol. 166, 6972–6981 (2001).

    Article  CAS  PubMed  Google Scholar 

  120. Ekkens, M. J. et al. The role of OX40 ligand interactions in the development of the TH2 response to the gastrointestinal nematode parasite Heligmosomoides polygyrus. J. Immunol. 170, 384–393 (2003).

    Article  CAS  PubMed  Google Scholar 

  121. Zhai, Y. et al. LIGHT, a novel ligand for lymphotoxin β receptor and TR2/HVEM induces apoptosis and suppresses in vivo tumor formation via gene transfer. J. Clin. Invest. 102, 1142–1151 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Nieland, J. D., Graus, Y. F., Dortmans, Y. E., Kremers, B. L. & Kruisbeek, A. M. CD40 and CD70 co-stimulate a potent in vivo antitumor T cell response. J. Immunother. 21, 225–236 (1998).

    Article  CAS  PubMed  Google Scholar 

  123. Weinberg, A. D. et al. Engagement of the OX-40 receptor in vivo enhances antitumor immunity. J. Immunol. 164, 2160–2169 (2000).

    Article  CAS  PubMed  Google Scholar 

  124. Kjaergaard, J. et al. Therapeutic efficacy of OX-40 receptor antibody depends on tumor immunogenicity and anatomic site of tumor growth. Cancer Res. 60, 5514–5521 (2000).

    CAS  PubMed  Google Scholar 

  125. Pan, P., Zang, Y., Weber, K., Meseck, M. & Chen, S. OX40 ligation enhances primary and memory cytotoxic T lymphocyte responses in an immunotherapy for hepatic colon metastases. Mol. Ther. 6, 528–536 (2002).

    Article  CAS  PubMed  Google Scholar 

  126. Gri, G., Gallo, E., Di Carlo, E., Musiani, P. & Colombo, M. P. OX40 ligand-transduced tumor cell vaccine synergizes with GM-CSF and requires CD40-APC signaling to boost the host T cell antitumor response. J. Immunol. 170, 99–106 (2003).

    Article  CAS  PubMed  Google Scholar 

  127. Strome, S. E. et al. Enhanced therapeutic potential of adoptive immunotherapy by in vitro CD28/4-1BB co-stimulation of tumor-reactive T cells against a poorly immunogenic, major histocompatibility complex class I-negative A9p melanoma. J. Immunother. 23, 430–437 (2000).

    Article  CAS  PubMed  Google Scholar 

  128. Mogi, S. et al. Tumour rejection by gene transfer of 4-1BB ligand into a CD80+ murine squamous cell carcinoma and the requirements of co-stimulatory molecules on tumour and host cells. Immunol. 101, 541–547 (2000).

    Article  CAS  Google Scholar 

  129. Wilcox, R. A. et al. Provision of antigen and CD137 signaling breaks immunological ignorance, promoting regression of poorly immunogenic tumors. J. Clin. Invest. 109, 651–659 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Ye, Z. et al. Gene therapy for cancer using single-chain Fv fragments specific for 4-1BB. Nature Med. 8, 343–348 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

LocusLink

4-1BB

4-1BBL

BCL2

BCL-XL

BFL1

CD27

CD28

CD30

CD30L

CD70

CD80

CD86

HVEM

ICOS

IFN-γ

LIGHT

LTα3

LTβR

NF-κB

OX40

OX40L

PI3K

PKB

TRAF1

TRAF2

TRAF3

TRAF5

Entrez

LCMV

VSV

Glossary

MIXED-LYMPHOCYTE REACTION

(MLR). A proliferative and cytokine response that is brought about when T cells from one donor respond to antigen-presenting cells from a second donor. In most cases, this is an allogeneic reaction that involves the recognition of mismatched peptide–MHC molecules.

T HELPER 1/T HELPER 2 CELLS

(TH1/TH2). Distinct subsets of activated CD4+ T cells. TH1 cells produce interferon-γ, lymphotoxin and tumour-necrosis factor, and support cell-mediated immunity. TH2 cells produce interleukin-4 (IL-4), IL-5, IL-9 and IL-13, and support humoral immunity.

TYPE 1/2 CYTOTOXIC T CELLS (TC1/TC2).

A designation that is used to describe subsets of CD8+ cytotoxic T lymphocytes. TC1 cells typically secrete interferon-γ and tumour-necrosis factor and have marked cytotoxic capacity, whereas TC2 cells secrete interleukin-4 (IL-4), IL-5 and IL-10, and are less effective killers.

NUCLEAR FACTOR-κB

(NF-κB). A family of transcription factors that are important for pro-inflammatory and anti-apoptotic responses. They are activated by the phosphorylation and subsequent ubiquitin-dependent proteolytic degradation of their respective inhibitors, known as inhibitor of NF-κB (IκB). Phosphorylation of IκB occurs through tissue-specific kinases, IκB kinase 1 (IKK1) and IKK2.

JUN N-TERMINAL KINASE

(JNK). A mitogen-activated protein (MAP) kinase that phosphorylates JUN and other components of the AP1 (FOS–JUN) group of transcription factors. This pathway has been implicated in promoting cytokine expression and proliferation, and in some cases might regulate apoptosis.

PROTEIN KINASE B

(PKB). A serine/threonine kinase that is phosphorylated and activated by phosphatidylinositol 3-kinase (PI3K), and can regulate cell division and cell survival through actions on cell-cycle inhibitors and both pro- and anti-apoptotic members of the BCL2 family.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Croft, M. Co-stimulatory members of the TNFR family: keys to effective T-cell immunity?. Nat Rev Immunol 3, 609–620 (2003). https://doi.org/10.1038/nri1148

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1148

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing