Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

CD3-specific antibody-induced active tolerance: from bench to bedside

Key Points

  • Monoclonal CD3-specific antibodies that recognize the ε-chain of the CD3 complex are potent immunosuppressants. They were introduced in clinical transplantation in the early 1980s to prevent and treat episodes of allograft rejection.

  • Experimental studies (particularly in autoimmune mice) have shown that CD3-specific antibodies are remarkably potent at promoting operational immune tolerance.

  • The immune mechanisms that mediate the tolerogenic capacity of CD3-specific antibodies seem to develop in two consecutive phases. The first phase is short lasting and associated with transient T helper 2 polarization, clearance of pathogenic cells and blockade of deleterious immune responses. The second phase is long lasting and marked by the presence of regulatory T cells that can mediate transferable or active tolerance.

  • In mice with autoimmune diabetes, CD3-specific antibodies induce stable disease remission by restoring tolerance to pancreatic β-cells. Recently, this concept was extended to the clinic — preservation of β-cell function in recently diagnosed patients with diabetes was achieved after short-term administration of a CD3-specific antibody.

Abstract

Although they were used initially as non-specific immunosuppressants in transplantation, CD3-specific monoclonal antibodies have elicited renewed interest owing to their capacity to induce immune tolerance. In mouse models of autoimmune diabetes, CD3-specific antibodies induce stable disease remission by restoring tolerance to pancreatic β-cells. This phenomenon was extended recently to the clinic — preservation of β-cell function in recently diagnosed patients with diabetes was achieved by short-term administration of a CD3-specific antibody. CD3-specific antibodies arrest ongoing disease by rapidly clearing pathogenic T cells from the target. Subsequently, they promote long-term T-cell-mediated active tolerance. Recent data indicate that transforming growth factor-β-dependent CD4+CD25+ regulatory T cells might have a central role in this effect.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mode of action of therapeutic monoclonal antibodies.
Figure 2: Humanized and engineered CD3-specific antibodies.
Figure 3: CD3-specific antibody treatment reverses established diabetes in NOD mice.

Similar content being viewed by others

References

  1. Kung, P., Goldstein, G., Reinherz, E. L. & Schlossman, S. F. Monoclonal antibodies defining distinctive human T-cell surface antigens. Science 206, 347–349 (1979).

    Article  CAS  PubMed  Google Scholar 

  2. Cosimi, A. B. et al. Use of monoclonal antibodies to T-cell subsets for immunologic monitoring and treatment in recipients of renal allografts. N. Engl. J. Med. 305, 308–314 (1981). The first pilot clinical trial to indicate that OKT3 can reverse ongoing renal-allograft rejection.

    Article  CAS  PubMed  Google Scholar 

  3. Cosimi, A. B. et al. Treatment of acute renal allograft rejection with OKT3 monoclonal antibody. Transplantation 32, 535–539 (1981).

    Article  CAS  PubMed  Google Scholar 

  4. Clevers, H., Alarcon, B., Wileman, T. & Terhorst, C. The T-cell receptor/CD3 complex: a dynamic protein ensemble. Annu. Rev. Immunol. 6, 629–662 (1988).

    Article  CAS  PubMed  Google Scholar 

  5. Davis, M. M. & Chien, Y. H. in Fundamental Immunology (ed. Paul, W. E.) 341–366 (Raven Press, New York, 1999).

    Google Scholar 

  6. Ortho Multicenter Transplant Study Group. A randomized clinical trial of OKT3 monoclonal antibody for acute rejection of cadaveric renal transplants. N. Engl. J. Med. 313, 337–342 (1985). The first randomized, multi-centre trial to show the clinical effectiveness of OKT3 as an immunosuppressant in renal transplantation.

  7. Vigeral, P. et al. Prophylactic use of OKT3 monoclonal antibody in cadaver kidney recipients. Utilization of OKT3 as the sole immunosuppressive agent. Transplantation 41, 730–733 (1986).

    Article  CAS  PubMed  Google Scholar 

  8. Debure, A. et al. One-month prophylactic use of OKT3 in cadaver kidney transplant recipients. Transplantation 45, 546–553 (1988).

    Article  CAS  PubMed  Google Scholar 

  9. Frey, D. J. et al. Sequential therapy — a prospective randomized trial of MALG versus OKT3 for prophylactic immunosuppression in cadaver renal allograft recipients. Transplantation 54, 50–56 (1992).

    Article  CAS  PubMed  Google Scholar 

  10. Abramowicz, D. et al. The long-term effects of prophylactic OKT3 monoclonal antibody in cadaver kidney transplantation — a single-center, prospective, randomized study. Transplantation 54, 433–437 (1992).

    Article  CAS  PubMed  Google Scholar 

  11. Woodle, E. S. et al. OKT3 therapy for hepatic allograft rejection. Differential response in adults and children. Transplantation 51, 1207–1212 (1991).

    Article  CAS  PubMed  Google Scholar 

  12. Gilbert, E. M. et al. Treatment of refractory cardiac allograft rejection with OKT3 monoclonal antibody. Am. J. Med. 82, 202–206 (1987).

    Article  CAS  PubMed  Google Scholar 

  13. Farges, O. et al. A randomized trial of OKT3-based versus cyclosporine-based immunoprophylaxis after liver transplantation. Long-term results of a European and Australian multicenter study. Transplantation 58, 891–898 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. Millis, J. M. et al. Randomized prospective trial of OKT3 for early prophylaxis of rejection after liver transplantation. Transplantation 47, 82–88 (1989).

    Article  CAS  PubMed  Google Scholar 

  15. Robbins, R. C., Oyer, P. E., Stinson, E. B. & Starnes, V. A. The use of monoclonal antibodies after heart transplantation. Transplant. Sci. 2, 22–27 (1992).

    Google Scholar 

  16. Deeb, G. M. et al. A randomized prospective comparison of MALG with OKT3 for rescue therapy of acute myocardial rejection. Transplantation 51, 180–183 (1991).

    Article  CAS  PubMed  Google Scholar 

  17. Goldstein, G., Kremer, A. B., Barnes, L. & Hirsch, R. L. OKT3 monoclonal antibody reversal of renal and hepatic rejection in pediatric patients. J. Pediatr. 111, 1046–1050 (1987).

    Article  CAS  PubMed  Google Scholar 

  18. Niaudet, P., Jean, G., Broyer, M. & Chatenoud, L. Anti-OKT3 response following prophylactic treatment in paediatric kidney transplant recipients. Pediatr. Nephrol. 7, 263–267 (1993).

    Article  CAS  PubMed  Google Scholar 

  19. Leone, M. R. et al. Monoclonal antibody OKT3 therapy in pediatric kidney transplant recipients. J. Pediatr. 116, S86–S91 (1990).

    Article  CAS  PubMed  Google Scholar 

  20. Broyer, M. et al. Prophylactic OKT3 monoclonal antibody versus antilymphocyte globulins: a prospective, randomized study in 148 first cadaver kidney grafts. Transplant. Proc. 25, 570–571 (1993).

    CAS  PubMed  Google Scholar 

  21. Chatenoud, L. et al. Human in vivo antigenic modulation induced by the anti-T-cell OKT3 monoclonal antibody. Eur. J. Immunol. 12, 979–982 (1982). The first demonstration that T-cell receptor down-modulation is an important mode of action of OKT3.

    Article  CAS  PubMed  Google Scholar 

  22. Chatenoud, L. et al. Restriction of the human in vivo immune response against the mouse monoclonal antibody OKT3. J. Immunol. 137, 830–838 (1986). The first detailed analysis of the fine specificity of the humoral response that is elicited in patients after injection of OKT3. Human antibodies are directed exclusively against isotypic and idiotypic determinants of the xenogeneic antibody molecule. Only idiotype-specific antibodies are neutralizing.

    CAS  PubMed  Google Scholar 

  23. Leo, O., Foo, M., Sachs, D. H., Samelson, L. E. & Bluestone, J. A. Identification of a monoclonal antibody specific for a murine T3 polypeptide. Proc. Natl Acad. Sci. USA 84, 1374–1378 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hirsch, R., Eckhaus, M., Auchincloss, H. Jr, Sachs, D. H. & Bluestone, J. A. Effects of in vivo administration of anti-T3 monoclonal antibody on T-cell function in mice. I. Immunosuppression of transplantation responses. J. Immunol. 140, 3766–3772 (1988).

    CAS  PubMed  Google Scholar 

  25. Johnson, B. D., McCabe, C., Hanke, C. A. & Truitt, R. L. Use of anti-CD3ε F(ab')2 fragments in vivo to modulate graft-versus-host disease without loss of graft-versus-leukemia reactivity after MHC-matched bone-marrow transplantation. J. Immunol. 154, 5542–5554 (1995).

    CAS  PubMed  Google Scholar 

  26. Hughes, C., Wolos, J. A., Giannini, E. H. & Hirsch, R. Induction of T-helper cell hyporesponsiveness in an experimental model of autoimmunity by using nonmitogenic anti-CD3 monoclonal antibody. J. Immunol. 153, 3319–3325 (1994).

    CAS  PubMed  Google Scholar 

  27. Herold, K. C. et al. Prevention of autoimmune diabetes with nonactivating anti-CD3 monoclonal antibody. Diabetes 41, 385–391 (1992).

    Article  CAS  PubMed  Google Scholar 

  28. Chatenoud, L., Thervet, E., Primo, J. & Bach, J. F. Anti-CD3 antibody induces long-term remission of overt autoimmunity in nonobese diabetic mice. Proc. Natl Acad. Sci. USA 91, 123–127 (1994). The first report to show that a short treatment with CD3-specific antibodies restores self-tolerance, thereby inducing stable remission of established diabetes in non-obese diabetic (NOD) mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nooij, F. J. & Jonker, M. The effect on skin allograft survival of a monoclonal antibody specific for a polymorphic CD3-like cell-surface molecule in rhesus monkeys. Eur. J. Immunol. 17, 1089–1093 (1987).

    Article  CAS  PubMed  Google Scholar 

  30. Plain, K. M., Chen, J., Merten, S., He, X. Y. & Hall, B. M. Induction of specific tolerance to allografts in rats by therapy with non-mitogenic, non-depleting anti-CD3 monoclonal antibody: association with TH2 cytokines not anergy. Transplantation 67, 605–613 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Chatenoud, L., Primo, J. & Bach, J. F. CD3 antibody-induced dominant self-tolerance in overtly diabetic NOD mice. J. Immunol. 158, 2947–2954 (1997).

    CAS  PubMed  Google Scholar 

  32. Hirsch, R., Archibald, J. & Gress, R. E. Differential T-cell hyporesponsiveness induced by in vivo administration of intact or F(ab')2 fragments of anti-CD3 monoclonal antibody. F(ab')2 fragments induce a selective T-helper dysfunction. J. Immunol. 147, 2088–2093 (1991).

    CAS  PubMed  Google Scholar 

  33. Isaacs, J. D., Clark, M. R., Greenwood, J. & Waldmann, H. Therapy with monoclonal antibodies. An in vivo model for the assessment of therapeutic potential. J. Immunol. 148, 3062–3071 (1992).

    CAS  PubMed  Google Scholar 

  34. Wong, J. T. & Colvin, R. B. Selective reduction and proliferation of the CD4+ and CD8+ T-cell subsets with bispecific monoclonal antibodies: evidence for inter-T-cell-mediated cytolysis. Clin. Immunol. Immunopathol. 58, 236–250 (1991).

    Article  CAS  PubMed  Google Scholar 

  35. Jung, G., Martin, D. E. & Muller Eberhard, H. J. Induction of cytotoxicity in human peripheral-blood mononuclear cells by monoclonal antibody OKT3. J. Immunol. 139, 639–644 (1987).

    CAS  PubMed  Google Scholar 

  36. Spits, H., Yssel, H., Leeuwenberg, J. & de Vries, J. E. Antigen-specific cytotoxic T-cell and antigen-specific proliferating T-cell clones can be induced to cytolytic activity by monoclonal antibodies against T3. Eur. J. Immunol. 15, 88–91 (1985).

    Article  CAS  PubMed  Google Scholar 

  37. Wesselborg, S., Janssen, O. & Kabelitz, D. Induction of activation-driven death (apoptosis) in activated but not resting peripheral-blood T cells. J. Immunol. 150, 4338–4345 (1993).

    CAS  PubMed  Google Scholar 

  38. Janssen, O., Wesselborg, S. & Kabelitz, D. Immunosuppression by OKT3 — induction of programmed cell death (apoptosis) as a possible mechanism of action. Transplantation 53, 233–234 (1992).

    CAS  PubMed  Google Scholar 

  39. Carpenter, P. A. et al. Non-Fc-receptor-binding humanized anti-CD3 antibodies induce apoptosis of activated human T cells. J. Immunol. 165, 6205–6213 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Chatenoud, L. & Bach, J. F. Antigenic modulation: a major mechanism of antibody action. Immunol. Today 5, 20–25 (1984).

    Article  CAS  PubMed  Google Scholar 

  41. Caillat-Zucman, S. et al. The OKT3 immunosuppressive effect. In situ antigenic modulation of human graft-infiltrating T cells. Transplantation 49, 156–160 (1990).

    Article  CAS  PubMed  Google Scholar 

  42. Woodle, E. S. et al. Phase I trial of a humanized, Fc-receptor nonbinding OKT3 antibody, huOKT3γ1(Ala-Ala) in the treatment of acute renal allograft rejection. Transplantation 68, 608–616 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. Friend, P. J. et al. Phase I study of an engineered aglycosylated humanized CD3 antibody in renal transplant rejection. Transplantation 68, 1632–1637 (1999). References 42 and 43 describe pilot studies in renal-allograft recipients to test the safety of the two engineered, humanized, non-mitogenic CD3-specific monoclonal antibodies that are available at present for clinical use.

    Article  CAS  PubMed  Google Scholar 

  44. Hirsch, R., Gress, R. E., Pluznik, D. H., Eckhaus, M. & Bluestone, J. A. Effects of in vivo administration of anti-CD3 monoclonal antibody on T-cell function in mice. II. In vivo activation of T cells. J. Immunol. 142, 737–743 (1989).

    CAS  PubMed  Google Scholar 

  45. Abbs, I. C. et al. Sparing of first dose effect of monovalent anti-CD3 antibody used in allograft rejection is associated with diminished release of pro-inflammatory cytokines. Ther. Immunol. 1, 325–331 (1994).

    CAS  PubMed  Google Scholar 

  46. Routledge, E. G., Lloyd, I., Gorman, S. D., Clark, M. & Waldmann, H. A humanized monovalent CD3 antibody which can activate homologous complement. Eur. J. Immunol. 21, 2717–2725 (1991).

    Article  CAS  PubMed  Google Scholar 

  47. Goldstein, G. Overview of the development of Orthoclone OKT3: monoclonal antibody for therapeutic use in transplantation. Transplant. Proc. 19, 1–6 (1987).

    CAS  PubMed  Google Scholar 

  48. Abramowicz, D., Crusiaux, A. & Goldman, M. Anaphylactic shock after retreatment with OKT3 monoclonal antibody. N. Engl. J. Med. 327, 736 (1992).

    Article  CAS  PubMed  Google Scholar 

  49. Baudrihaye, M. F., Chatenoud, L., Kreis, H., Goldstein, G. & Bach, J. F. Unusually restricted anti-isotype human immune response to OKT3 monoclonal antibody. Eur. J. Immunol. 14, 686–691 (1984).

    Article  CAS  PubMed  Google Scholar 

  50. Jonker, M. & Den Brok, J. H. Idiotype switching of CD4-specific monoclonal antibodies can prolong the therapeutic effectiveness in spite of host anti-mouse IgG antibodies. Eur. J. Immunol. 17, 1547–1553 (1987).

    Article  CAS  PubMed  Google Scholar 

  51. Chatenoud, L., Jonker, M., Villemain, F., Goldstein, G. & Bach, J. F. The human immune response to the OKT3 monoclonal antibody is oligoclonal. Science 232, 1406–1408 (1986). The first demonstration of the oligoclonality of the human (and monkey) immune response to xenogeneic T-cell-specific monoclonal antibodies in general, and to OKT3 in particular.

    Article  CAS  PubMed  Google Scholar 

  52. Hricik, D. E., Mayes, J. T. & Schulak, J. A. Inhibition of anti-OKT3 antibody generation by cyclosporine — results of a prospective randomized trial. Transplantation 50, 237–240 (1990).

    Article  CAS  PubMed  Google Scholar 

  53. Lazarovits, A. I. et al. Human mouse chimeric CD7 monoclonal antibody (SDZCHH380) for the prophylaxis of kidney transplant rejection. J. Immunol. 150, 5163–5174 (1993).

    CAS  PubMed  Google Scholar 

  54. Vincenti, F. et al. Interleukin-2-receptor blockade with daclizumab to prevent acute rejection in renal transplantation. Daclizumab Triple Therapy Study Group. N. Engl. J. Med. 338, 161–165 (1998).

    Article  CAS  PubMed  Google Scholar 

  55. Nashan, B. et al. Randomised trial of basiliximab versus placebo for control of acute cellular rejection in renal allograft recipients. CHIB 201 International Study Group. Lancet 350, 1193–1198 (1997).

    Article  CAS  PubMed  Google Scholar 

  56. Maini, R. N. et al. Therapeutic efficacy of multiple intravenous infusions of anti-tumor necrosis factor-α monoclonal antibody combined with low-dose weekly methotrexate in rheumatoid arthritis. Arthritis Rheum. 41, 1552–1563 (1998).

    Article  CAS  PubMed  Google Scholar 

  57. Herold, K. C. et al. Anti-CD3 monoclonal antibody in new-onset type 1 diabetes mellitus. N. Engl. J. Med. 346, 1692–1698 (2002). The first report of a pilot clinical study using a humanized, non-mitogenic CD3-specific antibody in overt autoimmunity (insulin-dependent diabetes mellitus).

    Article  CAS  PubMed  Google Scholar 

  58. Utset, T. O. et al. Modified anti-CD3 therapy in psoriatic arthritis: a phase I/II clinical trial. J. Rheumatol. 29, 1907–1913 (2002).

    CAS  PubMed  Google Scholar 

  59. Elliott, M. J. et al. Repeated therapy with monoclonal antibody to tumour-necrosis factor-α (cA2) in patients with rheumatoid arthritis. Lancet 344, 1125–1127 (1994).

    Article  CAS  PubMed  Google Scholar 

  60. Routledge, E. G., Falconer, M. E., Pope, H., Lloyd, I. S. & Waldmann, H. The effect of aglycosylation on the immunogenicity of a humanized therapeutic CD3 monoclonal antibody. Transplantation 60, 847–853 (1995).

    Article  CAS  PubMed  Google Scholar 

  61. Alegre, M. L. et al. An anti-murine CD3 monoclonal antibody with a low affinity for Fcγ receptors suppresses transplantation responses while minimizing acute toxicity and immunogenicity. J. Immunol. 155, 1544–1555 (1995).

    CAS  PubMed  Google Scholar 

  62. Van Wauwe, J. P., de Mey, J. R. & Goossens, J. G. OKT3: a monoclonal anti-human T-lymphocyte antibody with potent mitogenic properties. J. Immunol. 124, 2708–2713 (1980).

    CAS  PubMed  Google Scholar 

  63. Van Lier, R. A., Boot, J. H., de Groot, E. R. & Aarden, L. A. Induction of T-cell proliferation with anti-CD3 switch-variant monoclonal antibodies: effects of heavy chain isotype in monocyte-dependent systems. Eur. J. Immunol. 17, 1599–1604 (1987).

    Article  CAS  PubMed  Google Scholar 

  64. Chatenoud, L. et al. Systemic reaction to the anti-T-cell monoclonal antibody OKT3 in relation to serum levels of tumor-necrosis factor and interferon-γ. N. Engl. J. Med. 320, 1420–1421 (1989).

    Article  CAS  PubMed  Google Scholar 

  65. Abramowicz, D. et al. Release of tumor-necrosis factor, interleukin-2, and γ-interferon in serum after injection of OKT3 monoclonal antibody in kidney transplant recipients. Transplantation 47, 606–608 (1989).

    Article  CAS  PubMed  Google Scholar 

  66. Ferran, C. et al. Cytokine-related syndrome following injection of anti-CD3 monoclonal antibody: further evidence for transient in vivo T-cell activation. Eur. J. Immunol. 20, 509–515 (1990).

    Article  CAS  PubMed  Google Scholar 

  67. Alegre, M. et al. Hypothermia and hypoglycemia induced by anti-CD3 monoclonal antibody in mice: role of tumor-necrosis factor. Eur. J. Immunol. 20, 707–710 (1990).

    Article  CAS  PubMed  Google Scholar 

  68. Ferran, C. et al. Anti-tumor-necrosis factor modulates anti-CD3-triggered T-cell cytokine gene expression in vivo. J. Clin. Invest. 93, 2189–2196 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Durez, P. et al. In vivo induction of interleukin-10 by anti-CD3 monoclonal antibody or bacterial lipopolysaccharide: differential modulation by cyclosporin A. J. Exp. Med. 177, 551–555 (1993).

    Article  CAS  PubMed  Google Scholar 

  70. Yoshimoto, T. & Paul, W. E. CD4pos, NK1.1pos T cells promptly produce interleukin-4 in response to in vivo challenge with anti-CD3. J. Exp. Med. 179, 1285–1295 (1994).

    Article  CAS  PubMed  Google Scholar 

  71. Ferran, C. et al. Inter-mouse strain differences in the in vivo anti-CD3-induced cytokine release. Clin. Exp. Immunol. 86, 537–543 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ferran, C. et al. Cascade modulation by anti-tumor necrosis factor monoclonal antibody of interferon-γ, interleukin-3 and interleukin-6 release after triggering of the CD3/T-cell receptor activation pathway. Eur. J. Immunol. 21, 2349–2353 (1991).

    Article  CAS  PubMed  Google Scholar 

  73. Chatenoud, L., Legendre, C., Kurrle, R., Kreis, H. & Bach, J. F. Absence of clinical symptoms following the first injection of anti-T-cell receptor monoclonal antibody (BMA 031) despite isolated TNF release. Transplantation 55, 443–445 (1993).

    Article  CAS  PubMed  Google Scholar 

  74. Charpentier, B. et al. Evidence that antihuman tumor-necrosis factor monoclonal antibody prevents OKT3-induced acute syndrome. Transplantation 54, 997–1002 (1992).

    Article  CAS  PubMed  Google Scholar 

  75. Hirsch, R., Bluestone, J. A., de Nenno, L. & Gress, R. E. Anti-CD3 F(ab')2 fragments are immunosuppressive in vivo without evoking either the strong humoral response or morbidity associated with whole mAb. Transplantation 49, 1117–1123 (1990).

    Article  CAS  PubMed  Google Scholar 

  76. Woodle, E. S. et al. Anti-CD3 monoclonal antibody therapy. An approach toward optimization by in vitro analysis of new anti-CD3 antibodies. Transplantation 52, 361–368 (1991).

    Article  CAS  PubMed  Google Scholar 

  77. Parlevliet, K. J. et al. In vivo effects of IgA and IgG2a anti-CD3 isotype switch variants. J. Clin. Invest. 93, 2519–2525 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Bolt, S. et al. The generation of a humanized, non-mitogenic CD3 monoclonal antibody which retains in vitro immunosuppressive properties. Eur. J. Immunol. 23, 403–411 (1993).

    Article  CAS  PubMed  Google Scholar 

  79. Alegre, M. L. et al. A non-activating 'humanized' anti-CD3 monoclonal antibody retains immunosuppressive properties in vivo. Transplantation 57, 1537–1543 (1994). References 78 and 79 characterize the two engineered, humanized, non-mitogenic CD3-specific monoclonal antibodies that are available at present for clinical use.

    Article  CAS  PubMed  Google Scholar 

  80. Chatenoud, L., Legendre, C., Ferran, C., Bach, J. F. & Kreis, H. Corticosteroid inhibition of the OKT3-induced cytokine-related syndrome — dosage and kinetics prerequisites. Transplantation 51, 334–338 (1991).

    Article  CAS  PubMed  Google Scholar 

  81. Riechmann, L., Clark, M., Waldmann, H. & Winter, G. Reshaping human antibodies for therapy. Nature 332, 323–327 (1988).

    Article  CAS  PubMed  Google Scholar 

  82. Monaco, A. P., Wood, M. L. & Russell, P. S. Studies on heterologous antilymphocyte serum in mice. III. Immunological tolerance and chimerism produced across the H2-locus with adult thymectomy and antilymphocyte serum. Ann. NY Acad. Sci. 129, 190–209 (1966).

    Article  Google Scholar 

  83. Wood, M. L., Monaco, A. P., Gozzo, J. J. & Liegeois, A. Use of homozygous allogeneic bone marrow for induction of tolerance with antilymphocyte serum: dose and timing. Transplant. Proc. 3, 676–679 (1971).

    CAS  PubMed  Google Scholar 

  84. Benjamin, R. J. & Waldmann, H. Induction of tolerance by monoclonal antibody therapy. Nature 320, 449–451 (1986).

    Article  CAS  PubMed  Google Scholar 

  85. Gutstein, N. L., Seaman, W. E., Scott, J. H. & Wofsy, D. Induction of immune tolerance by administration of monoclonal antibody to L3T4. J. Immunol. 137, 1127–1132 (1986).

    CAS  PubMed  Google Scholar 

  86. Pearson, T. C., Madsen, J. C., Larsen, C. P., Morris, P. J. & Wood, K. J. Induction of transplantation tolerance in adults using donor antigen and anti-CD4 monoclonal antibody. Transplantation 54, 475–483 (1992).

    Article  CAS  PubMed  Google Scholar 

  87. Shizuru, J. A., Taylor-Edwards, C., Banks, B. A., Gregory, A. K. & Fathman, C. G. Immunotherapy of the nonobese diabetic mouse: treatment with an antibody to T-helper lymphocytes. Science 240, 659–662 (1988).

    Article  CAS  PubMed  Google Scholar 

  88. Qin, S. X., Cobbold, S., Benjamin, R. & Waldmann, H. Induction of classical transplantation tolerance in the adult. J. Exp. Med. 169, 779–794 (1989).

    Article  CAS  PubMed  Google Scholar 

  89. Qin, S. et al. 'Infectious' transplantation tolerance. Science 259, 974–977 (1993).

    Article  CAS  PubMed  Google Scholar 

  90. Larsen, C. P. et al. Long-term acceptance of skin and cardiac allografts after blocking CD40 and CD28 pathways. Nature 381, 434–438 (1996).

    Article  CAS  PubMed  Google Scholar 

  91. Lenschow, D. J. et al. Long-term survival of xenogeneic pancreatic islet grafts induced by CTLA4lg. Science 257, 789–792 (1992).

    Article  CAS  PubMed  Google Scholar 

  92. Lakkis, F. G. et al. Blocking the CD28–B7 T-cell costimulation pathway induces long-term cardiac allograft acceptance in the absence of IL-4. J. Immunol. 158, 2443–2448 (1997).

    CAS  PubMed  Google Scholar 

  93. Kirk, A. D. et al. Treatment with humanized monoclonal antibody against CD154 prevents acute renal allograft rejection in nonhuman primates. Nature Med. 5, 686–693 (1999).

    Article  CAS  PubMed  Google Scholar 

  94. Nicolls, M. R. et al. Induction of long-term specific tolerance to allografts in rats by therapy with an anti-CD3-like monoclonal antibody. Transplantation 55, 459–468 (1993). The first demonstration of the tolerogenic properties of CD3-specific antibodies in a cardiac-allograft rat transplant model.

    Article  CAS  PubMed  Google Scholar 

  95. Smith, J. A., Tang, Q. & Bluestone, J. A. Partial TCR signals delivered by FcR-nonbinding anti-CD3 monoclonal antibodies differentially regulate individual TH subsets. J. Immunol. 160, 4841–4849 (1998).

    CAS  PubMed  Google Scholar 

  96. Oldstone, M. B., Nerenberg, M., Southern, P., Price, J. & Lewicki, H. Virus infection triggers insulin-dependent diabetes mellitus in a transgenic model: role of anti-self (virus) immune response. Cell 65, 319–331 (1991).

    Article  CAS  PubMed  Google Scholar 

  97. Von Herrath, M. G., Dockter, J. & Oldstone, M. B. How virus induces a rapid or slow onset insulin-dependent diabetes mellitus in a transgenic model. Immunity 1, 231–242 (1994).

    Article  CAS  PubMed  Google Scholar 

  98. Ohashi, P. S. et al. Ablation of 'tolerance' and induction of diabetes by virus infection in viral antigen transgenic mice. Cell 65, 305–317 (1991).

    Article  CAS  PubMed  Google Scholar 

  99. Seewaldt, S. et al. Virus-induced autoimmune diabetes: most β-cells die through inflammatory cytokines and not perforin from autoreactive (anti-viral) cytotoxic T-lymphocytes. Diabetes 49, 1801–1809 (2000).

    Article  CAS  PubMed  Google Scholar 

  100. Von Herrath, M. G., Coon, B., Wolfe, T. & Chatenoud, L. Nonmitogenic CD3 antibody reverses virally induced (rat insulin promoter–lymphocytic choriomeningitis virus) autoimmune diabetes without impeding viral clearance. J. Immunol. 168, 933–941 (2002).

    Article  CAS  PubMed  Google Scholar 

  101. Askenase, P. W., Hayden, B. J. & Gershon, R. K. Augmentation of delayed-type hypersensitivity by doses of cyclophosphamide which do not affect antibody responses. J. Exp. Med. 141, 697–702 (1975).

    Article  CAS  PubMed  Google Scholar 

  102. Miyazaki, C., Nakamura, T., Kaneko, K., Mori, R. & Shibasaki, H. Reinduction of experimental allergic encephalomyelitis in convalescent Lewis rats with cyclophosphamide. J. Neurol. Sci. 67, 277–284 (1985).

    Article  CAS  PubMed  Google Scholar 

  103. Kardys, E. & Hashim, G. A. Experimental allergic encephalomyelitis in Lewis rats: immunoregulation of disease by a single amino-acid substitution in the disease-inducing determinant. J. Immunol. 127, 862–866 (1981).

    CAS  PubMed  Google Scholar 

  104. Asano, M., Toda, M., Sakaguchi, N. & Sakaguchi, S. Autoimmune disease as a consequence of developmental abnormality of a T-cell subpopulation. J. Exp. Med. 184, 387–396 (1996).

    Article  CAS  PubMed  Google Scholar 

  105. Itoh, M. et al. Thymus and autoimmunity: production of CD25+CD4+ naturally anergic and suppressive T cells as a key function of the thymus in maintaining immunologic self-tolerance. J. Immunol. 162, 5317–5326 (1999).

    CAS  PubMed  Google Scholar 

  106. Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M. & Toda, M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor α-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 155, 1151–1164 (1995).

    CAS  PubMed  Google Scholar 

  107. Sakaguchi, S., Takahashi, T. & Nishizuka, Y. Study on cellular events in postthymectomy autoimmune oophoritis in mice. I. Requirement of Lyt-1 effector cells for oocytes damage after adoptive transfer. J. Exp. Med. 156, 1565–1576 (1982).

    Article  CAS  PubMed  Google Scholar 

  108. Suri-Payer, E., Kehn, P. J., Cheever, A. W. & Shevach, E. M. Pathogenesis of post-thymectomy autoimmune gastritis. Identification of anti-H/K adenosine triphosphatase-reactive T cells. J. Immunol. 157, 1799–1805 (1996).

    CAS  PubMed  Google Scholar 

  109. Suri-Payer, E., Amar, A. Z., Thornton, A. M. & Shevach, E. M. CD4+CD25+ T cells inhibit both the induction and effector function of autoreactive T cells and represent a unique lineage of immunoregulatory cells. J. Immunol. 160, 1212–1218 (1998).

    CAS  PubMed  Google Scholar 

  110. Takahashi, T. et al. Immunologic self-tolerance maintained by CD25+CD4+ regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J. Exp. Med. 192, 303–310 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Salomon, B. et al. B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity 12, 431–440 (2000).

    Article  CAS  PubMed  Google Scholar 

  112. Ludviksson, B. R., Ehrhardt, R. O. & Strober, W. TGF-β production regulates the development of the 2,4,6-trinitrophenol-conjugated keyhole limpet hemocyanin-induced colonic inflammation in IL-2-deficient mice. J. Immunol. 159, 3622–3628 (1997).

    CAS  PubMed  Google Scholar 

  113. Smith, J. A., Tso, J. Y., Clark, M. R., Cole, M. S. & Bluestone, J. A. Nonmitogenic anti-CD3 monoclonal antibodies deliver a partial T-cell receptor signal and induce clonal anergy. J. Exp. Med. 185, 1413–1422 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Chau, L. A., Tso, J. Y., Melrose, J. & Madrenas, J. HuM291 (Nuvion), a humanized Fc-receptor-non-binding antibody against CD3, anergizes peripheral-blood T cells as partial agonist of T-cell receptor. Transplantation 71, 941–950 (2001).

    Article  CAS  PubMed  Google Scholar 

  115. Bank, I. & Chess, L. Perturbation of the T4 molecule transmits a negative signal to T cells. J. Exp. Med. 162, 1294–1303 (1985).

    Article  CAS  PubMed  Google Scholar 

  116. Jabado, N. et al. CD4 ligands inhibit the formation of multifunctional transduction complexes involved in T-cell activation. J. Immunol. 158, 94–103 (1997).

    CAS  PubMed  Google Scholar 

  117. Jauliac, S. et al. Ligands of CD4 inhibit the association of phospholipase Cγ1 with phosphoinositide 3-kinase in T cells: regulation of this association by the phosphoinositide 3-kinase activity. Eur. J. Immunol. 28, 3183–3191 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I am indebted to M. Netter for the iconography.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

LocusLink

CD3

CD4

CD8

CD28

CD62L

CD80

CD86

IFN-γ

IL-1β

IL-4

IL-5

IL-6

TGF-β

TNF

Glossary

HUMANIZED ANTIBODIES

Recombinant antibodies that contain the parental rodent antibody hypervariable regions (which determine antigen specificity) grafted to a human heavy- and light-chain immunoglobulin.

OPERATIONAL TOLERANCE

An antigen-specific unresponsiveness that is sustained in the absence of chronic immunosuppression.

IDIOTYPE

The portion of an immunoglobulin, defined by the hypervariable regions and involved in antigen recognition, that is completely unique.

T HELPER 1/2

(TH1/TH2). At least two distinct subsets of activated CD4+ T cells have been described. TH1 cells produce IL-2, IFN-γ, lymphotoxin and TNF, and support cell-mediated immunity. TH2 cells produce IL-4, IL-5, IL-6, IL-10 and IL-13, support humoral immunity and downregulate TH1 responses.

IMMUNOLOGICAL IGNORANCE

The absence of a pathogenic autoimmune response in spite of the concomitant presence in the host of the autoantigen and T cells bearing the specific autoreactive T-cell receptor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chatenoud, L. CD3-specific antibody-induced active tolerance: from bench to bedside. Nat Rev Immunol 3, 123–132 (2003). https://doi.org/10.1038/nri1000

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1000

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing