Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Beyond binding: antibody effector functions in infectious diseases

Key Points

  • Beyond direct neutralization, antibodies induce, through their crystallizable fragment (Fc) domain, innate and adaptive immune responses critical to a successful host immune response against infection.

  • The constant Fc domain of the antibody is remarkably diverse, with a repertoire of isotype, subclass and post-translational modifications, such as glycosylation, that modulate binding to Fc domain sensors on host cells that changes dynamically over the course of infection.

  • The antigen-binding fragment (Fab) and Fc domains of an antibody distinctly influence each other and collaboratively drive function.

  • Stoichiometry between antigen and antibody influence immune complex formation and subsequent engagement with Fc domain sensors on host cells and thus effector functions.

  • Antibodies can both provide protection and enhance disease in infections.

  • Emerging tools that systematically probe antibody specificity, affinity, function, glycosylation, isotypes and subclasses to track protective or pathologic phenotypes during infection may provide novel insight into the rational design of monoclonal therapeutics and next-generation vaccines.

Abstract

Antibodies play an essential role in host defence against pathogens by recognizing microorganisms or infected cells. Although preventing pathogen entry is one potential mechanism of protection, antibodies can control and eradicate infections through a variety of other mechanisms. In addition to binding and directly neutralizing pathogens, antibodies drive the clearance of bacteria, viruses, fungi and parasites via their interaction with the innate and adaptive immune systems, leveraging a remarkable diversity of antimicrobial processes locked within our immune system. Specifically, antibodies collaboratively form immune complexes that drive sequestration and uptake of pathogens, clear toxins, eliminate infected cells, increase antigen presentation and regulate inflammation. The diverse effector functions that are deployed by antibodies are dynamically regulated via differential modification of the antibody constant domain, which provides specific instructions to the immune system. Here, we review mechanisms by which antibody effector functions contribute to the balance between microbial clearance and pathology and discuss tractable lessons that may guide rational vaccine and therapeutic design to target gaps in our infectious disease armamentarium.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Antibody isotypes and subclasses.
Figure 2: Antigen, antibody and Fc receptor stoichiometry in effector function.
Figure 3: Antibody effector functions.
Figure 4: Factors influencing humoral activity in response to infection.

Similar content being viewed by others

References

  1. Behring, E. & Kitasato, S. Über das zustandekommen der diphtherie-immunität und der tetanus-immunität bei thieren [German]. Dtsch. Med. Wochenschrift 49, 1113–1114 (1890).

    Google Scholar 

  2. Hey, A. History and practice: antibodies in infectious diseases. Microbiol. Spectr. 3, AID-0026-2014 (2015).

    Article  PubMed  CAS  Google Scholar 

  3. Ehrlich, P. On immunity with special reference to cell life. Proc. R. Soc. Lond. 66, 424–448 (1899).

    Google Scholar 

  4. Metchnikoff, E. Untersuchung ueber die intracellulare verdauung bei wirbellosen thieren [German]. Arb. Zool. Inst. Univ. Wien u. Zool. Stat. Triest 5, 141–168 (1884).

    Google Scholar 

  5. Jerne, N. K. The natural-selection theory of antibody formation. Proc. Natl Acad. Sci. USA 41, 849–857 (1955).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kohler, G. & Milstein, C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256, 495–497 (1975).

    Article  CAS  PubMed  Google Scholar 

  7. Ecker, D. M., Jones, S. D. & Levine, H. L. The therapeutic monoclonal antibody market. mAbs 7, 9–14 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Pignotti, M. S. et al. Consensus conference on the appropriateness of palivizumab prophylaxis in respiratory syncytial virus disease. Pediatr. Pulmonol. 51, 1088–1096 (2016).

    Article  PubMed  Google Scholar 

  9. Migone, T. S. et al. Raxibacumab for the treatment of inhalational anthrax. N. Engl. J. Med. 361, 135–144 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Wilcox, M. H. et al. Bezlotoxumab for prevention of recurrent Clostridium difficile infection. N. Engl. J. Med. 376, 305–317 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. Weiner, G. J. Building better monoclonal antibody-based therapeutics. Nat. Rev. Cancer 15, 361–370 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Halstead, S. B., Mahalingam, S., Marovich, M. A., Ubol, S. & Mosser, D. M. Intrinsic antibody-dependent enhancement of microbial infection in macrophages: disease regulation by immune complexes. Lancet Infect. Dis. 10, 712–722 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Casadevall, A., Dadachova, E. & Pirofski, L. A. Passive antibody therapy for infectious diseases. Nat. Rev. Microbiol. 2, 695–703 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Zeitlin, L. et al. Antibody therapeutics for Ebola virus disease. Curr. Opin. Virol. 17, 45–49 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wine, Y., Horton, A. P., Ippolito, G. C. & Georgiou, G. Serology in the 21 st century: the molecular-level analysis of the serum antibody repertoire. Curr. Opin. Immunol. 35, 89–97 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Plotkin, S. A. Complex correlates of protection after vaccination. Clin. Infect. Dis. 56, 1458–1465 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Pulendran, B. & Ahmed, R. Immunological mechanisms of vaccination. Nat. Immunol. 12, 509–517 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ockenhouse, C. F. et al. Ad35.CS.01-RTS,S/AS01 heterologous prime boost vaccine efficacy against sporozoite challenge in healthy malaria-naive adults. PLoS ONE 10, e0131571 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Corey, L. et al. Immune correlates of vaccine protection against HIV-1 acquisition. Sci. Transl Med. 7, 310rv7 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Haynes, B. F. et al. Immune-correlates analysis of an HIV-1 vaccine efficacy trial. N. Engl. J. Med. 366, 1275–1286 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rerks-Ngarm, S. et al. Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N. Engl. J. Med. 361, 2209–2220 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Li, Z., Woo, C. J., Iglesias-Ussel, M. D., Ronai, D. & Scharff, M. D. The generation of antibody diversity through somatic hypermutation and class switch recombination. Genes Dev. 18, 1–11 (2004).

    Article  PubMed  CAS  Google Scholar 

  23. Mesin, L., Ersching, J. & Victora, G. D. Germinal center B cell dynamics. Immunity 45, 471–482 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Onoue, K., Grossberg, A. L., Yagi, Y. & Pressman, D. Immunoglobulin M antibodies with ten combining sites. Science 162, 574–576 (1968).

    Article  CAS  PubMed  Google Scholar 

  25. Czajkowsky, D. M. & Shao, Z. The human IgM pentamer is a mushroom-shaped molecule with a flexural bias. Proc. Natl Acad. Sci. USA 106, 14960–14965 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sun, Z. et al. Semi-extended solution structure of human myeloma immunoglobulin D determined by constrained X-ray scattering. J. Mol. Biol. 353, 155–173 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Arnold, J. N., Wormald, M. R., Sim, R. B., Rudd, P. M. & Dwek, R. A. The impact of glycosylation on the biological function and structure of human immunoglobulins. Annu. Rev. Immunol. 25, 21–50 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Lutz, C. et al. IgD can largely substitute for loss of IgM function in B cells. Nature 393, 797–801 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Chen, K. et al. Immunoglobulin D enhances immune surveillance by activating antimicrobial, proinflammatory and B cell-stimulating programs in basophils. Nat. Immunol. 10, 889–898 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Choi, J. H. et al. IgD class switching is initiated by microbiota and limited to mucosa-associated lymphoid tissue in mice. Proc. Natl Acad. Sci. USA 114, E1196–E1204 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Jefferis, R. Isotype and glycoform selection for antibody therapeutics. Arch. Biochem. Biophys. 526, 159–166 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Macpherson, A. J., McCoy, K. D., Johansen, F. E. & Brandtzaeg, P. The immune geography of IgA induction and function. Mucosal Immunol. 1, 11–22 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Wan, T. et al. The crystal structure of IgE Fc reveals an asymmetrically bent conformation. Nat. Immunol. 3, 681–686 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Rispens, T. & Vidarsson, G. in Antibody Fc (eds Ackerman, M. & Nimmerjahn, F.) 159–177 (Academic Press, 2013).

    Google Scholar 

  35. Dall'Acqua, W. F., Cook, K. E., Damschroder, M. M., Woods, R. M. & Wu, H. Modulation of the effector functions of a human IgG1 through engineering of its hinge region. J. Immunol. 177, 1129–1138 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Redpath, S., Michaelsen, T. E., Sandlie, I. & Clark, M. R. The influence of the hinge region length in binding of human IgG to human Fcgamma receptors. Hum. Immunol. 59, 720–727 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Ryan, M. H. et al. Proteolysis of purified IgGs by human and bacterial enzymes in vitro and the detection of specific proteolytic fragments of endogenous IgG in rheumatoid synovial fluid. Mol. Immunol. 45, 1837–1846 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Brezski, R. J. et al. Tumor-associated and microbial proteases compromise host IgG effector functions by a single cleavage proximal to the hinge. Proc. Natl Acad. Sci. USA 106, 17864–17869 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Vincents, B., von Pawel-Rammingen, U., Bjorck, L. & Abrahamson, M. Enzymatic characterization of the streptococcal endopeptidase, IdeS, reveals that it is a cysteine protease with strict specificity for IgG cleavage due to exosite binding. Biochemistry 43, 15540–15549 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Roux, K. H., Strelets, L. & Michaelsen, T. E. Flexibility of human IgG subclasses. J. Immunol. 159, 3372–3382 (1997).

    CAS  PubMed  Google Scholar 

  41. Stapleton, N. M. et al. Competition for FcRn-mediated transport gives rise to short half-life of human IgG3 and offers therapeutic potential. Nat. Commun. 2, 599 (2011).

    Article  PubMed  CAS  Google Scholar 

  42. Senior, B. W. & Woof, J. M. Effect of mutations in the human immunoglobulin A1 (IgA1) hinge on its susceptibility to cleavage by diverse bacterial IgA1 proteases. Infection Immun. 73, 1515–1522 (2005).

    Article  CAS  Google Scholar 

  43. Reusch, D. & Tejada, M. L. Fc glycans of therapeutic antibodies as critical quality attributes. Glycobiology 25, 1325–1334 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ferrara, C. et al. Unique carbohydrate-carbohydrate interactions are required for high affinity binding between FcγRIII and antibodies lacking core fucose. Proc. Natl Acad. Sci. USA 108, 12669–12674 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shields, R. L. et al. Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human FcγRIII and antibody-dependent cellular toxicity. J. Biol. Chem. 277, 26733–26740 (2002). References 44 and 45 together demonstrate, via the use of monoclonal antibody glycoengineering, that the lack of fucose on the antibody Fc domain increases binding to the activating FcγRIII and subsequently ADCC.

    Article  CAS  PubMed  Google Scholar 

  46. Bournazos, S. et al. Broadly neutralizing anti-HIV-1 antibodies require Fc effector functions for in vivo activity. Cell 158, 1243–1253 (2014). In a human FcR mouse model, the authors provide evidence that Fc effector functions enhance the antiviral potency of broadly neutralizing antibodies against HIV.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Woof, J. M. & Burton, D. R. Human antibody-Fc receptor interactions illuminated by crystal structures. Nat. Rev. Immunol. 4, 89–99 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Igietseme, J. U., Zhu, X. & Black, C. M. in Antibody Fc (eds Ackerman, M. & Nimmerjahn, F.) 269–281 (Academic Press, 2013).

    Google Scholar 

  49. Pincetic, A. et al. Type I and type II Fc receptors regulate innate and adaptive immunity. Nat. Immunol. 15, 707–716 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bruhns, P. et al. Specificity and affinity of human Fcγ receptors and their polymorphic variants for human IgG subclasses. Blood 113, 3716–3725 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Bruhns, P. Properties of mouse and human IgG receptors and their contribution to disease models. Blood 119, 5640–5649 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Ravetch, J. V. in Fundamental Immunology Ch. 22, (ed. Paul, W. E.) (Lippincott Williams & Wilkins, 2003).

    Google Scholar 

  53. Jonsson, F. & Daeron, M. Mast cells and company. Front. Immunol. 3, 16 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Garred, P., Larsen, F., Seyfarth, J., Fujita, R. & Madsen, H. O. Mannose-binding lectin and its genetic variants. Genes Immun. 7, 85–94 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Ehrenstein, M. R. & Notley, C. A. The importance of natural IgM: scavenger, protector and regulator. Nat. Rev. Immunol. 10, 778–786 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. McEwan, W. A. et al. Intracellular antibody-bound pathogens stimulate immune signaling via the Fc receptor TRIM21. Nat. Immunol. 14, 327–336 (2013). This paper introduces a cytoplasmic FcR to the repertoire of Fc domain sensors that had to this point consisted of transmembrane receptors or components of the complement system.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Roopenian, D. C. & Akilesh, S. FcRn: the neonatal Fc receptor comes of age. Nat. Rev. Immunol. 7, 715–725 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Johansen, F. E. & Kaetzel, C. S. Regulation of the polymeric immunoglobulin receptor and IgA transport: new advances in environmental factors that stimulate pIgR expression and its role in mucosal immunity. Mucosal Immunol. 4, 598–602 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Parren, P. W. et al. On the interaction of IgG subclasses with the low affinity FcγRIIa (CD32) on human monocytes, neutrophils, and platelets. Analysis of a functional polymorphism to human IgG2. J. Clin. Invest. 90, 1537–1546 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cheung, N. K. et al. FCGR2A polymorphism is correlated with clinical outcome after immunotherapy of neuroblastoma with anti-GD2 antibody and granulocyte macrophage colony-stimulating factor. J. Clin. Oncol. 24, 2885–2890 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Zhang, W. et al. FCGR2A and FCGR3A polymorphisms associated with clinical outcome of epidermal growth factor receptor expressing metastatic colorectal cancer patients treated with single-agent cetuximab. J. Clin. Oncol. 25, 3712–3718 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Sinha, S. et al. Polymorphisms of TNF-enhancer and gene for FcγRIIa correlate with the severity of falciparum malaria in the ethnically diverse Indian population. Malar. J. 7, 13 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Esposito, S. et al. Role of polymorphisms of toll-like receptor (TLR) 4, TLR9, toll-interleukin 1 receptor domain containing adaptor protein (TIRAP) and FCGR2A genes in malaria susceptibility and severity in Burundian children. Malar J. 11, 196 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Forthal, D. N. et al. FcγRIIa genotype predicts progression of HIV infection. J. Immunol. 179, 7916–7923 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Yende, S. & Wunderink, R. Conflicting roles of FcγRIIa H131R polymorphism in pneumonia. Crit. Care Med. 39, 1577–1579 (2011).

    Article  PubMed  Google Scholar 

  66. Sole-Violan, J. et al. The Fcγ receptor IIA-H/H131 genotype is associated with bacteremia in pneumococcal community-acquired pneumonia. Crit. Care Med. 39, 1388–1393 (2011).

    Article  CAS  PubMed  Google Scholar 

  67. Garcia, G. et al. Asymptomatic dengue infection in a Cuban population confirms the protective role of the RR variant of the FcγRIIa polymorphism. Am. J. Trop. Med. Hyg. 82, 1153–1156 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Wu, J. et al. A novel polymorphism of FcγRIIIa (CD16) alters receptor function and predisposes to autoimmune disease. J. Clin. Invest. 100, 1059–1070 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Rekand, T., Langeland, N., Aarli, J. A. & Vedeler, C. A. Fcγ receptor IIIA polymorphism as a risk factor for acute poliomyelitis. J. Infect. Dis. 186, 1840–1843 (2002).

    Article  CAS  PubMed  Google Scholar 

  70. Forthal, D. N., Gabriel, E. E., Wang, A., Landucci, G. & Phan, T. B. Association of Fcγ receptor IIIa genotype with the rate of HIV infection after gp120 vaccination. Blood 120, 2836–2842 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Poonia, B., Kijak, G. H. & Pauza, C. D. High affinity allele for the gene of FCGR3A is risk factor for HIV infection and progression. PLoS ONE 5, e15562 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Daeron, M. Fc receptors as adaptive immunoreceptors. Curr. Top. Microbiol. Immunol. 382, 131–164 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Metzger, H. Transmembrane signaling: the joy of aggregation. J. Immunol. 149, 1477–1487 (1992).

    CAS  PubMed  Google Scholar 

  74. Mitchell, A. J., Edwards, M. R. & Collins, A. M. Valency or wahlency: is the epitope diversity of the B-cell response regulated or chemically determined? Immunol. Cell Biol. 79, 507–511 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Nimmerjahn, F. & Ravetch, J. V. Divergent immunoglobulin G subclass activity through selective Fc receptor binding. Science 310, 1510–1512 (2005). The authors show that significant differences in the ratios of activating to inhibitory receptor binding predict in vivo activity of antitumour monoclonal antibodies, forming a model of Fc domain effector function regulation through the simultaneous engagement of multiple receptors that collectively contribute to the induction of signalling.

    Article  CAS  PubMed  Google Scholar 

  76. Abboud, N. et al. A requirement for FcγR in antibody-mediated bacterial toxin neutralization. J. Exp. Med. 207, 2395–2405 (2010). The authors show here that neutralization of anthrax toxin by passive immunization of monoclonal antibodies, up to this point thought to be dependent primarily on antigen specificity and thus direct blockade of the toxin, requires the presence of FcγR and specific isotypes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. DiLillo, D. J., Tan, G. S., Palese, P. & Ravetch, J. V. Broadly neutralizing hemagglutinin stalk-specific antibodies require FcγR interactions for protection against influenza virus in vivo. Nat. Med. 20, 143–151 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Yuan, R., Clynes, R., Oh, J., Ravetch, J. V. & Scharff, M. D. Antibody-mediated modulation of Cryptococcus neoformans infection is dependent on distinct Fc receptor functions and IgG subclasses. J. Exp. Med. 187, 641–648 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lux, A., Yu, X., Scanlan, C. N. & Nimmerjahn, F. Impact of immune complex size and glycosylation on IgG binding to human FcγRs. J. Immunol. 190, 4315–4323 (2013). This study provides evidence that immune complex size significantly impacts binding to FcR and thus potentially impacts effector functions.

    Article  CAS  PubMed  Google Scholar 

  80. Pierson, T. C. et al. The stoichiometry of antibody-mediated neutralization and enhancement of West Nile virus infection. Cell Host Microbe 1, 135–145 (2007). In vitro work here using monoclonal antibodies against West Nile virus explores the quantitative relationships between antigen and antibody in both the direct neutralization and enhancement of disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Taborda, C. P., Rivera, J., Zaragoza, O. & Casadevall, A. More is not necessarily better: prozone-like effects in passive immunization with IgG. J. Immunol. 170, 3621–3630 (2003). In a mouse model of Cryptococcus neoformans infection, the authors demonstrate the challenges of passive immune therapy against a microorganism, as the overall impact of a monoclonal antibody is protective, non-protective or disease-enhancing depending on the pathogen inoculum.

    Article  CAS  PubMed  Google Scholar 

  82. Kammanadiminti, S. et al. Combination therapy with antibiotics and anthrax immune globulin intravenous (AIGIV) is potentially more effective than antibiotics alone in rabbit model of inhalational anthrax. PLoS ONE 9, e106393 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Maynard, J. A. et al. Protection against anthrax toxin by recombinant antibody fragments correlates with antigen affinity. Nat. Biotechnol. 20, 597–601 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. Little, S. F., Leppla, S. H. & Cora, E. Production and characterization of monoclonal antibodies to the protective antigen component of Bacillus anthracis toxin. Infection Immun. 56, 1807–1813 (1988).

    Article  CAS  Google Scholar 

  85. Mabry, R. et al. Passive protection against anthrax by using a high-affinity antitoxin antibody fragment lacking an Fc region. Infection Immun. 73, 8362–8368 (2005).

    Article  CAS  Google Scholar 

  86. Harvill, E. T. et al. Anamnestic protective immunity to Bacillus anthracis is antibody mediated but independent of complement and Fc receptors. Infection Immun. 76, 2177–2182 (2008).

    Article  CAS  Google Scholar 

  87. Verma, A. et al. Analysis of the Fc gamma receptor-dependent component of neutralization measured by anthrax toxin neutralization assays. Clin. Vaccine Immunol.: CVI16, 1405–1412 (2009).

    Article  CAS  Google Scholar 

  88. Bournazos, S., Chow, S. K., Abboud, N., Casadevall, A. & Ravetch, J. V. Human IgG Fc domain engineering enhances antitoxin neutralizing antibody activity. J. Clin. Invest. 124, 725–729 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. He, X. et al. Antibody-enhanced, Fc gamma receptor-mediated endocytosis of Clostridium difficile toxin A. Infection Immun. 77, 2294–2303 (2009).

    Article  CAS  Google Scholar 

  90. Akiyoshi, D. E. et al. Evaluation of Fab and F(ab')2 fragments and isotype variants of a recombinant human monoclonal antibody against Shiga toxin 2. Infection Immun. 78, 1376–1382 (2010).

    Article  CAS  Google Scholar 

  91. Richman, D. D., Wrin, T., Little, S. J. & Petropoulos, C. J. Rapid evolution of the neutralizing antibody response to HIV type 1 infection. Proc. Natl Acad. Sci. USA 100, 4144–4149 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Walker, L. M. et al. Broad and potent neutralizing antibodies from an African donor reveal a new HIV-1 vaccine target. Science 326, 285–289 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Gautam, R. et al. A single injection of anti-HIV-1 antibodies protects against repeated SHIV challenges. Nature 533, 105–109 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Moldt, B. et al. Highly potent HIV-specific antibody neutralization in vitro translates into effective protection against mucosal SHIV challenge in vivo. Proc. Natl Acad. Sci. USA 109, 18921–18925 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Law, M. et al. Broadly neutralizing antibodies protect against hepatitis C virus quasispecies challenge. Nat. Med. 14, 25–27 (2008).

    Article  CAS  PubMed  Google Scholar 

  96. Kong, L. et al. Hepatitis C virus E2 envelope glycoprotein core structure. Science 342, 1090–1094 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Zhao, H. et al. Structural basis of Zika virus-specific antibody protection. Cell 166, 1016–1027 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Nybakken, G. E. et al. Structural basis of West Nile virus neutralization by a therapeutic antibody. Nature 437, 764–769 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Cockburn, J. J. et al. Structural insights into the neutralization mechanism of a higher primate antibody against dengue virus. EMBO J. 31, 767–779 (2012).

    Article  CAS  PubMed  Google Scholar 

  100. Irani, V. et al. Acquisition of functional antibodies that block the binding of erythrocyte-binding antigen 175 and protection against Plasmodium falciparum malaria in children. Clin. Infect. Dis. 1, 1244–1252 (2015).

    Article  CAS  Google Scholar 

  101. Dutta, S., Haynes, J. D., Moch, J. K., Barbosa, A. & Lanar, D. E. Invasion-inhibitory antibodies inhibit proteolytic processing of apical membrane antigen 1 of Plasmodium falciparum merozoites. Proc. Natl Acad. Sci. USA 100, 12295–12300 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Varghese, R., Mikyas, Y., Stewart, P. L. & Ralston, R. Postentry neutralization of adenovirus type 5 by an antihexon antibody. J. Virol. 78, 12320–12332 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ishii, Y. et al. Inhibition of nuclear entry of HPV16 pseudovirus-packaged DNA by an anti-HPV16 L2 neutralizing antibody. Virology 406, 181–188 (2010).

    Article  CAS  PubMed  Google Scholar 

  104. Aiyegbo, M. S. et al. Human rotavirus VP6-specific antibodies mediate intracellular neutralization by binding to a quaternary structure in the transcriptional pore. PLoS ONE 8, e61101 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Zhou, D. et al. Matrix protein-specific IgA antibody inhibits measles virus replication by intracellular neutralization. J. Virol. 85, 11090–11097 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Edelson, B. T. & Unanue, E. R. Intracellular antibody neutralizes Listeria growth. Immunity 14, 503–512 (2001).

    Article  CAS  PubMed  Google Scholar 

  107. Wang, X., Kikuchi, T. & Rikihisa, Y. Two monoclonal antibodies with defined epitopes of P44 major surface proteins neutralize Anaplasma phagocytophilum by distinct mechanisms. Infection Immun. 74, 1873–1882 (2006).

    Article  CAS  Google Scholar 

  108. Hessell, A. J. et al. Fc receptor but not complement binding is important in antibody protection against HIV. Nature 449, 101–104 (2007). Using Fc domain-modified antibodies that exhibit diminished binding to FcRs, the authors demonstrate the role of Fc domain function in protection against simian–HIV in a macaque model of HIV.

    Article  CAS  PubMed  Google Scholar 

  109. Mullarkey, C. E. et al. Broadly neutralizing hemagglutinin stalk-specific antibodies induce potent phagocytosis of immune complexes by neutrophils in an Fc-dependent manner. mBio 7, e01624-16 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Kaur, R., Surendran, N., Ochs, M. & Pichichero, M. E. Human antibodies to PhtD, PcpA, and Ply reduce adherence to human lung epithelial cells and murine nasopharyngeal colonization by Streptococcus pneumoniae. Infection Immun. 82, 5069–5075 (2014).

    Article  CAS  Google Scholar 

  111. Lam, H., Kesselly, A., Stegalkina, S., Kleanthous, H. & Yethon, J. A. Antibodies to PhnD inhibit staphylococcal biofilms. Infection Immun. 82, 3764–3774 (2014).

    Article  CAS  Google Scholar 

  112. Gunn, B. M. et al. Enhanced binding of antibodies generated during chronic HIV infection to mucus component MUC16. Mucosal Immunol. 9, 1549–1558 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Wang, Y. Y. et al. IgG in cervicovaginal mucus traps HSV and prevents vaginal herpes infections. Mucosal Immunol. 7, 1036–1044 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Yauch, L. E., Lam, J. S. & Levitz, S. M. Direct inhibition of T-cell responses by the Cryptococcus capsular polysaccharide glucuronoxylomannan. PLoS Pathog. 2, e120 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Rodrigues, M. L. et al. Human antibodies against a purified glucosylceramide from Cryptococcus neoformans inhibit cell budding and fungal growth. Infection Immun. 68, 7049–7060 (2000).

    Article  CAS  Google Scholar 

  116. McLean, G. R., Torres, M., Elguezabal, N., Nakouzi, A. & Casadevall, A. Isotype can affect the fine specificity of an antibody for a polysaccharide antigen. J. Immunol. 169, 1379–1386 (2002). The impact of the antibody Fc domain on the Fab domain is shown in this study, with isotype changes that alter antibody specificity to the Cryptococcus polysaccharide capsule.

    Article  CAS  PubMed  Google Scholar 

  117. Diebolder, C. A. et al. Complement is activated by IgG hexamers assembled at the cell surface. Science 343, 1260–1263 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Merle, N. S., Noe, R., Halbwachs-Mecarelli, L., Fremeaux-Bacchi, V. & Roumenina, L. T. Complement system part II: role in immunity. Front. Immunol. 6, 257 (2015).

    PubMed  PubMed Central  Google Scholar 

  119. Merle, N. S., Church, S. E., Fremeaux-Bacchi, V. & Roumenina, L. T. Complement system part I: molecular mechanisms of activation and regulation. Front. Immunol. 6, 262 (2015).

    PubMed  PubMed Central  Google Scholar 

  120. Ram, S., Lewis, L. A. & Rice, P. A. Infections of people with complement deficiencies and patients who have undergone splenectomy. Clin. Microbiol. Rev. 23, 740–780 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Benamu, E. & Montoya, J. G. Infections associated with the use of eculizumab: recommendations for prevention and prophylaxis. Curr. Opin. Infect. Dis. 29, 319–329 (2016).

    Article  CAS  PubMed  Google Scholar 

  122. Borrow, R. et al. Neisseria meningitidis group B correlates of protection and assay standardization — international meeting report Emory University, Atlanta, Georgia, United States, 16–17 March 2005. Vaccine 24, 5093–5107 (2006).

    Article  CAS  PubMed  Google Scholar 

  123. Goldschneider, I., Gotschlich, E. C. & Artenstein, M. S. Human immunity to the meningococcus. I. The role of humoral antibodies. J. Exp. Med. 129, 1307–1326 (1969).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Goldschneider, I., Gotschlich, E. C. & Artenstein, M. S. Human immunity to the meningococcus. II. Development of natural immunity. J. Exp. Med. 129, 1327–1348 (1969).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Wu, Y. et al. A potent broad-spectrum protective human monoclonal antibody crosslinking two haemagglutinin monomers of influenza A virus. Nat. Commun. 6, 7708 (2015).

    Article  CAS  PubMed  Google Scholar 

  126. Vogt, M. R. et al. Poorly neutralizing cross-reactive antibodies against the fusion loop of West Nile virus envelope protein protect in vivo via Fcγ receptor and complement-dependent effector mechanisms. J. Virol. 85, 11567–11580 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Benhnia, M. R. et al. Heavily isotype-dependent protective activities of human antibodies against vaccinia virus extracellular virion antigen B5. J. Virol. 83, 12355–12367 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Boyle, M. J. et al. Human antibodies fix complement to inhibit Plasmodium falciparum invasion of erythrocytes and are associated with protection against malaria. Immunity 42, 580–590 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Zaragoza, O. & Casadevall, A. Monoclonal antibodies can affect complement deposition on the capsule of the pathogenic fungus Cryptococcus neoformans by both classical pathway activation and steric hindrance. Cell. Microbiol. 8, 1862–1876 (2006).

    Article  CAS  PubMed  Google Scholar 

  130. Taborda, C. P. & Casadevall, A. CR3 (CD11b/CD18) and CR4 (CD11c/CD18) are involved in complement-independent antibody-mediated phagocytosis of Cryptococcus neoformans. Immunity 16, 791–802 (2002).

    Article  CAS  PubMed  Google Scholar 

  131. Gonzalez, S. F. et al. Complement-dependent transport of antigen into B cell follicles. J. Immunol. 185, 2659–2664 (2010).

    Article  CAS  PubMed  Google Scholar 

  132. McCloskey, M. L., Curotto de Lafaille, M. A., Carroll, M. C. & Erlebacher, A. Acquisition and presentation of follicular dendritic cell-bound antigen by lymph node-resident dendritic cells. J. Exp. Med. 208, 135–148 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Phan, T. G., Grigorova, I., Okada, T. & Cyster, J. G. Subcapsular encounter and complement-dependent transport of immune complexes by lymph node B cells. Nat. Immunol. 8, 992–1000 (2007).

    Article  CAS  PubMed  Google Scholar 

  134. Croix, D. A. et al. Antibody response to a T-dependent antigen requires B cell expression of complement receptors. J. Exp. Med. 183, 1857–1864 (1996).

    Article  CAS  PubMed  Google Scholar 

  135. Zeitlin, L. et al. Enhanced potency of a fucose-free monoclonal antibody being developed as an Ebola virus immunoprotectant. Proc. Natl Acad. Sci. USA 108, 20690–20694 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Umana, P., Jean-Mairet, J., Moudry, R., Amstutz, H. & Bailey, J. E. Engineered glycoforms of an antineuroblastoma IgG1 with optimized antibody-dependent cellular cytotoxic activity. Nat. Biotechnol. 17, 176–180 (1999).

    Article  CAS  PubMed  Google Scholar 

  137. Weiskopf, K. & Weissman, I. L. Macrophages are critical effectors of antibody therapies for cancer. mAbs 7, 303–310 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Biburger, M., Lux, A. & Nimmerjahn, F. How immunoglobulin G antibodies kill target cells: revisiting an old paradigm. Adv. Immunol. 124, 67–94 (2014).

    Article  PubMed  Google Scholar 

  139. Bournazos, S., Wang, T. T. & Ravetch, J. V. The role and function of Fcγ receptors on myeloid cells. Microbiol. Spectr. 4, http://dx.doi.org/10.1128/microbiolspec.MCHD-0045-2016 (2016).

  140. Peipp, M. et al. Antibody fucosylation differentially impacts cytotoxicity mediated by NK and PMN effector cells. Blood 112, 2390–2399 (2008).

    Article  CAS  PubMed  Google Scholar 

  141. Nimmerjahn, F. & Ravetch, J. V. Fcγ receptors as regulators of immune responses. Nat. Rev. Immunol. 8, 34–47 (2008).

    Article  CAS  PubMed  Google Scholar 

  142. Ackerman, M. E. et al. Polyfunctional HIV-specific antibody responses are associated with spontaneous HIV control. PLoS Pathog. 12, e1005315 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Barouch, D. H. et al. Protective efficacy of a global HIV-1 mosaic vaccine against heterologous SHIV challenges in rhesus monkeys. Cell 155, 531–539 (2013).

    Article  CAS  PubMed  Google Scholar 

  144. Chung, A. W. et al. Polyfunctional Fc-effector profiles mediated by IgG subclass selection distinguish RV144 and VAX003 vaccines. Sci. Transl Med. 6, 228ra38 (2014).

    PubMed  Google Scholar 

  145. He, W. et al. Epitope specificity plays a critical role in regulating antibody-dependent cell-mediated cytotoxicity against influenza A virus. Proc. Natl Acad. Sci. USA 113, 11931–11936 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Tiendrebeogo, R. W. et al. Antibody-dependent cellular inhibition is associated with reduced risk against febrile malaria in a longitudinal cohort study involving Ghanaian children. Open Forum Infect. Dis. 2, ofv044 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Jafarshad, A. et al. A novel antibody-dependent cellular cytotoxicity mechanism involved in defense against malaria requires costimulation of monocytes FcγRII and FcγRIII. J. Immunol. 178, 3099–3106 (2007).

    Article  CAS  PubMed  Google Scholar 

  148. Moore, T. et al. Fc receptor regulation of protective immunity against Chlamydia trachomatis. Immunology 105, 213–221 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Lu, L. L. et al. A functional role for antibodies in tuberculosis. Cell 167, 433–443.e414 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Gounni, A. S. et al. High-affinity IgE receptor on eosinophils is involved in defence against parasites. Nature 367, 183–186 (1994).

    Article  CAS  PubMed  Google Scholar 

  151. Joseph, M., Auriault, C., Capron, A., Vorng, H. & Viens, P. A new function for platelets: IgE-dependent killing of schistosomes. Nature 303, 810–812 (1983).

    Article  CAS  PubMed  Google Scholar 

  152. Bruel, T. et al. Elimination of HIV-1-infected cells by broadly neutralizing antibodies. Nat. Commun. 7, 10844 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Lee, W. S., Parsons, M. S., Kent, S. J. & Lichtfuss, M. Can HIV-1-specific ADCC assist the clearance of reactivated latently infected cells? Front. Immunol. 6, 265 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Lee, W. S. et al. Antibody-dependent cellular cytotoxicity against reactivated HIV-1-infected cells. J. Virol. 90, 2021–2030 (2015).

    Article  PubMed  CAS  Google Scholar 

  155. Scheid, J. F. et al. HIV-1 antibody 3BNC117 suppresses viral rebound in humans during treatment interruption. Nature 535, 556–560 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Caskey, M. et al. Antibody 10–1074 suppresses viremia in HIV-1-infected individuals. Nat. Med. 23, 185–191 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Lu, C. L. et al. Enhanced clearance of HIV-1-infected cells by broadly neutralizing antibodies against HIV-1 in vivo. Science 352, 1001–1004 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Lynch, R. M. et al. Virologic effects of broadly neutralizing antibody VRC01 administration during chronic HIV-1 infection. Sci. Transl Med. 7, 319ra206 (2015).

    Article  PubMed  CAS  Google Scholar 

  159. Barouch, D. H. et al. Therapeutic efficacy of potent neutralizing HIV-1-specific monoclonal antibodies in SHIV-infected rhesus monkeys. Nature 503, 224–228 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Shingai, M. et al. Antibody-mediated immunotherapy of macaques chronically infected with SHIV suppresses viraemia. Nature 503, 277–280 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Bolton, D. L. et al. Human immunodeficiency virus type 1 monoclonal antibodies suppress acute simian-human immunodeficiency virus viremia and limit seeding of cell-associated viral reservoirs. J. Virol. 90, 1321–1332 (2015).

    Article  PubMed  CAS  Google Scholar 

  162. Weber, S. S. & Oxenius, A. in Antibody Fc (eds Ackerman, M. & Nimmerjahn, F.) 29–47 (Academic Press, 2013).

    Google Scholar 

  163. Boross, P. et al. FcRγ-chain ITAM signaling is critically required for cross-presentation of soluble antibody-antigen complexes by dendritic cells. J. Immunol. 193, 5506–5514 (2014).

    Article  CAS  PubMed  Google Scholar 

  164. Bergtold, A., Desai, D. D., Gavhane, A. & Clynes, R. Cell surface recycling of internalized antigen permits dendritic cell priming of B cells. Immunity 23, 503–514 (2005).

    Article  CAS  PubMed  Google Scholar 

  165. Rittirsch, D. et al. Cross-talk between TLR4 and FcγReceptorIII (CD16) pathways. PLoS Pathog. 5, e1000464 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Anthony, R. M., Wermeling, F., Karlsson, M. C. & Ravetch, J. V. Identification of a receptor required for the anti-inflammatory activity of IVIG. Proc. Natl Acad. Sci. USA 105, 19571–19578 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. van Egmond, M., Vidarsson, G. & Bakema, J. E. Cross-talk between pathogen recognizing Toll-like receptors and immunoglobulin Fc receptors in immunity. Immunol. Rev. 268, 311–327 (2015).

    Article  CAS  PubMed  Google Scholar 

  168. Hoving, J. C., Wilson, G. J. & Brown, G. D. Signalling C-type lectin receptors, microbial recognition and immunity. Cell. Microbiol. 16, 185–194 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Joller, N. et al. Antibodies protect against intracellular bacteria by Fc receptor-mediated lysosomal targeting. Proc. Natl Acad. Sci. USA 107, 20441–20446 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Herrada, A. A., Contreras, F. J., Tobar, J. A., Pacheco, R. & Kalergis, A. M. Immune complex-induced enhancement of bacterial antigen presentation requires Fcγ receptor III expression on dendritic cells. Proc. Natl Acad. Sci. USA 104, 13402–13407 (2007). References 169 and 170 provide evidence of antibody-controlled trafficking of bacteria within a cell, directing opsonized microorganisms to lysosomes for direct destruction and further antigen processing and presentation to induce innate and adaptive immune responses.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Guilliams, M., Bruhns, P., Saeys, Y., Hammad, H. & Lambrecht, B. N. The function of Fcγ receptors in dendritic cells and macrophages. Nat. Rev. Immunol. 14, 94–108 (2014).

    Article  CAS  PubMed  Google Scholar 

  172. van Kessel, K. P., Bestebroer, J. & van Strijp, J. A. Neutrophil-mediated phagocytosis of Staphylococcus aureus. Front. Immunol. 5, 467 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Sylvestre, D. L. & Ravetch, J. V. Fc receptors initiate the Arthus reaction: redefining the inflammatory cascade. Science 265, 1095–1098 (1994).

    Article  CAS  PubMed  Google Scholar 

  174. Hawkes, R. A. Enhancement of the Infectivity of arboviruses by specific antisera produced in domestic fowls. Aust. J. Exp. Biol. Med. Sci. 42, 465–482 (1964).

    Article  CAS  PubMed  Google Scholar 

  175. Ayala-Nunez, N. V. et al. How antibodies alter the cell entry pathway of dengue virus particles in macrophages. Sci. Rep. 6, 28768 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Goncalvez, A. P., Engle, R. E., St Claire, M., Purcell, R. H. & Lai, C. J. Monoclonal antibody-mediated enhancement of dengue virus infection in vitro and in vivo and strategies for prevention. Proc. Natl Acad. Sci. USA 104, 9422–9427 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Beltramello, M. et al. The human immune response to Dengue virus is dominated by highly cross-reactive antibodies endowed with neutralizing and enhancing activity. Cell Host Microbe 8, 271–283 (2010).

    Article  CAS  PubMed  Google Scholar 

  178. Dejnirattisai, W. et al. Dengue virus sero-cross-reactivity drives antibody-dependent enhancement of infection with Zika virus. Nat. Immunol. 17, 1102–1108 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Polack, F. P. et al. A role for immune complexes in enhanced respiratory syncytial virus disease. J. Exp. Med. 196, 859–865 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Ponnuraj, E. M., Springer, J., Hayward, A. R., Wilson, H. & Simoes, E. A. Antibody-dependent enhancement, a possible mechanism in augmented pulmonary disease of respiratory syncytial virus in the Bonnet monkey model. J. Infecti. Diseases 187, 1257–1263 (2003).

    Article  CAS  Google Scholar 

  181. Kane, M. M. & Mosser, D. M. The role of IL-10 in promoting disease progression in leishmaniasis. J. Immunol. 166, 1141–1147 (2001).

    Article  CAS  PubMed  Google Scholar 

  182. Buxbaum, L. U. & Scott, P. Interleukin 10- and Fcγ receptor-deficient mice resolve Leishmania mexicana lesions. Infection Immun. 73, 2101–2108 (2005).

    Article  CAS  Google Scholar 

  183. Sutterwala, F. S., Noel, G. J., Salgame, P. & Mosser, D. M. Reversal of proinflammatory responses by ligating the macrophage Fcγ receptor type I. J. Exp. Med. 188, 217–222 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Nowakowski, A. et al. Potent neutralization of botulinum neurotoxin by recombinant oligoclonal antibody. Proc. Natl Acad. Sci. USA 99, 11346–11350 (2002). Multiple non-overlapping monoclonal antibodies are used in this paper to demonstrate synergism. Here, the combination of three antibodies drives more effective neutralization against botulinum toxin compared with the lack of any protection seen when used individually.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Qiu, X. et al. Reversion of advanced Ebola virus disease in nonhuman primates with ZMapp. Nature 514, 47–53 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Lyon, G. M. et al. Clinical care of two patients with Ebola virus disease in the United States. N. Engl. J. Med. 371, 2402–2409 (2014).

    Article  CAS  PubMed  Google Scholar 

  187. Howell, K. A. et al. Cooperativity enables non-neutralizing antibodies to neutralize Ebolavirus. Cell Rep. 19, 413–424 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Chung, A. W. et al. Dissecting polyclonal vaccine-induced humoral immunity against HIV using systems serology. Cell 163, 988–998 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Nakaya, H. I. et al. Systems biology of vaccination for seasonal influenza in humans. Nat. Immunol. 12, 786–795 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Kazmin, D. et al. Systems analysis of protective immune responses to RTS,S malaria vaccination in humans. Proc. Natl Acad. Sci. USA 114, 2425–2430 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Kasturi, S. P. et al. Programming the magnitude and persistence of antibody responses with innate immunity. Nature 470, 543–547 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Horton, R. E. & Vidarsson, G. Antibodies and their receptors: different potential roles in mucosal defense. Front. Immunol. 4, 200 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. Engelhardt, B., Vajkoczy, P. & Weller, R. O. The movers and shapers in immune privilege of the CNS. Nat. Immunol. 18, 123–131 (2017).

    Article  CAS  PubMed  Google Scholar 

  194. DiLillo, D. J. & Ravetch, J. V. Differential Fc-receptor engagement drives an anti-tumor vaccinal effect. Cell 161, 1035–1045 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Abes, R., Gelize, E., Fridman, W. H. & Teillaud, J. L. Long-lasting antitumor protection by anti-CD20 antibody through cellular immune response. Blood 116, 926–934 (2010). Using antitumour monoclonal antibodies, references 194 and 195 show that in addition to the short-term FcR-mediated ADCC observed upon passive immunization in human FcR-transgenic mice, antibodies can drive adaptive cellular immunity to the tumour, resulting in long-term antitumour activity.

    Article  CAS  PubMed  Google Scholar 

  196. Stavenhagen, K., Plomp, R. & Wuhrer, M. Site-specific protein N- and O-glycosylation analysis by a C18-porous graphitized carbon-liquid chromatography-electrospray ionization mass spectrometry approach using pronase treated glycopeptides. Anal. Chem. 87, 11691–11699 (2015).

    Article  CAS  PubMed  Google Scholar 

  197. Plomp, R. et al. Hinge-region O-glycosylation of human immunoglobulin G3 (IgG3). Mol. Cell. Proteom. 14, 1373–1384 (2015).

    Article  CAS  Google Scholar 

  198. Boehm, M. K., Woof, J. M., Kerr, M. A. & Perkins, S. J. The Fab and Fc fragments of IgA1 exhibit a different arrangement from that in IgG: a study by x-ray and neutron solution scattering and homology modelling. J. Mol. Biol. 286, 1421–1447 (1999).

    Article  CAS  PubMed  Google Scholar 

  199. Kubo, S., Nakayama, T., Matsuoka, K., Yonekawa, H. & Karasuyama, H. Long term maintenance of IgE-mediated memory in mast cells in the absence of detectable serum IgE. J. Immunol. 170, 775–780 (2003).

    Article  CAS  PubMed  Google Scholar 

  200. Shade, K. T. et al. A single glycan on IgE is indispensable for initiation of anaphylaxis. J. Exp. Med. 212, 457–467 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Karsten, C. M. et al. Anti-inflammatory activity of IgG1 mediated by Fc galactosylation and association of FcγRIIB and dectin-1. Nat. Med. 18, 1401–1406 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Sondermann, P., Pincetic, A., Maamary, J., Lammens, K. & Ravetch, J. V. General mechanism for modulating immunoglobulin effector function. Proc. Natl Acad. Sci. USA 110, 9868–9872 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Anthony, R. M., Kobayashi, T., Wermeling, F. & Ravetch, J. V. Intravenous gammaglobulin suppresses inflammation through a novel TH2 pathway. Nature 475, 110–113 (2011). This work supports two mechanisms of action for the anti-inflammatory effects of intravenous immunoglobulin used clinically in severe inflammatory conditions based on the presence of sialic acid residues on a subset of IgG Fc domains that can bind to the CLR DC-SIGN to initiate a T helper 2 cell response and upregulate the inhibitory FcγRIIb.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Gala, F. A. & Morrison, S. L. The role of constant region carbohydrate in the assembly and secretion of human IgD and IgA1. J. Biol. Chem. 277, 29005–29011 (2002).

    Article  CAS  PubMed  Google Scholar 

  205. Phalipon, A. et al. Secretory component: a new role in secretory IgA-mediated immune exclusion in vivo. Immunity 17, 107–115 (2002).

    Article  CAS  PubMed  Google Scholar 

  206. Basset, C. et al. Glycosylation of immunoglobulin A influences its receptor binding. Scand. J. Immunol. 50, 572–579 (1999).

    Article  CAS  PubMed  Google Scholar 

  207. Saji, F., Samejima Y., Kamiura S., & Koyama M. Dynamics of immunoglobulins at the feto-maternal interface. Rev. Reprod. 4, 81–89 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the US National Institutes of Health (R01AI10266, AI080289, R33AI110165, K08AI130357), DARPA and the Ragon Institute of MGH, MIT and Harvard.

Author information

Authors and Affiliations

Authors

Contributions

L.L.L., T.J.S., S.M.F. and G.A. all contributed to researching data for the article, discussing the content and writing, reviewing and editing the manuscript before submission.

Corresponding author

Correspondence to Galit Alter.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Monoclonal therapeutics

Treatments utilizing immunoglobulins that are engineered with a single antigenic specificity. Current monoclonal therapeutics approved by the US Food and Drug Administration (FDA) involve a range of immune targets, which are important in cancer and autoimmune diseases, as well as three infectious disease targets.

Affinity

The strength of the interaction between an antigen and antibody. Ka, the affinity constant, is influenced by pH, temperature and buffer and ranges from below 105 mol−1 to above 1012 mol−1. Affinity and Kd, the equilibrium dissociation constant, are inversely related.

Avidity

The overall strength of the antibody–antigen complex. It is dependent on affinity, valency of the antibody and antigen, and structural arrangements of the interacting parts.

Complement

A system that consists of a large number of plasma proteins that follow a cascade of reactions, which induce antimicrobial and inflammatory responses.

Immune complex

An aggregate complex formed from the binding of several antibodies to an antigen that can exist as a solitary unit and/or further multimerize to induce antibody effector function.

Glycoforms

Isoforms of glycans that can exist on proteins in a set of specific states. For example, 36 distinct glycoforms can theoretically be attached at a single conserved residue (asparagine 297) on the crystallizable fragment (Fc) domain of an IgG1 antibody.

Antibody-dependent enhancement

A phenomenon where pre-existing cross-reactive antibodies bind to cells and enhance host cell entry of a pathogen, its replication and the host inflammatory response to infection, thus exacerbating pathogenesis and disease.

Direct neutralization

Inhibition of a pathogen or microbial component by direct binding of antibody to the antigen in the absence of a target host cell. By contrast, non-neutralizing antibody functions involve additional host immune factors to generate antimicrobial functions.

Biofilms

Collections of microorganisms that adhere to each other and produce an extracellular matrix on living or non-living surfaces. Biofilms can be found in the natural and humanized environment, with uniquely resilient growth phenotypes not observed in single cells.

Membrane attack complex

A complex formed by terminal complement components that create transmembrane channels directly on the surface of bacteria or an infected host cell, which disrupt the cell membrane, leading to membrane destabilization and death.

Metalloproteinases

Protease enzymes that contain a catalytic metal ion in their active site and that cleave and inactivate proteins. Matrix metalloproteinases can degrade extracellular matrix proteins and act on pro-inflammatory cytokines, chemokines and other proteins to modulate inflammation and immunity.

Neutrophil extracellular traps

(NETs). Extracellular chromatin studded with granular and selected cytoplasmic proteins that bind to pathogens. NETs are produced through a process called NETosis in neutrophils, which is induced in response to microbial components, antibodies and reactive oxygen species.

Leishmania amastigotes

Leishmaniasis is a vector-borne disease caused by an obligate intracellular protozoa of the genus Leishmania. Sandfly-to-human transmission occurs at the promastigote stage; the promastigotes then transform into amastigotes that replicate in human cells, to be taken up by the sandfly and complete the life cycle.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, L., Suscovich, T., Fortune, S. et al. Beyond binding: antibody effector functions in infectious diseases. Nat Rev Immunol 18, 46–61 (2018). https://doi.org/10.1038/nri.2017.106

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri.2017.106

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing