Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A guide to immunometabolism for immunologists

Key Points

  • Immunometabolism describes the changes that occur in intracellular metabolic pathways in immune cells during activation.

  • Six major pathways have been studied in immune cells in detail: glycolysis, the tricarboxylic acid (TCA) cycle, the pentose phosphate pathway, fatty acid oxidation, fatty acid synthesis and amino acid metabolism.

  • Glycolysis and fatty acid synthesis are key features of lipopolysaccharide (LPS)-activated macrophages; by contrast, interleukin-4 (IL-4)-activated macrophages mainly use oxidative phosphorylation and fatty acid oxidation to generate energy.

  • Effector T cells are highly glycolytic whereas memory T cells have an oxidative metabolism.

  • Metabolites, such as succinate and citrate, and enzymes, such as pyruvate kinase isoenzyme M2 (PKM2), glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and enolase, have roles outside of metabolism that promote specific events during immune cell activation.

  • Small molecules can target metabolic pathways and alter the phenotype of immune cells, raising the possibility of therapeutic intervention

Abstract

In recent years a substantial number of findings have been made in the area of immunometabolism, by which we mean the changes in intracellular metabolic pathways in immune cells that alter their function. Here, we provide a brief refresher course on six of the major metabolic pathways involved (specifically, glycolysis, the tricarboxylic acid (TCA) cycle, the pentose phosphate pathway, fatty acid oxidation, fatty acid synthesis and amino acid metabolism), giving specific examples of how precise changes in the metabolites of these pathways shape the immune cell response. What is emerging is a complex interplay between metabolic reprogramming and immunity, which is providing an extra dimension to our understanding of the immune system in health and disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Metabolic reprogramming by the immune system.
Figure 2: Six major metabolic pathways.
Figure 3: Glycolysis and the pentose phosphate pathway in immunity.
Figure 4: The TCA cycle in macrophages.
Figure 5: Fatty acid synthesis and oxidation in immunity.
Figure 6: Amino acid metabolism in immunity.
Figure 7: Metabolism of immune cell subtypes.

Similar content being viewed by others

References

  1. Newsholme, P., Curi, R., Gordon, S. & Newsholme, E. A. Metabolism of glucose, glutamine, long-chain fatty acids and ketone bodies by murine macrophages. Biochem. J. 239, 121–125 (1986). One of the key pioneering studies on macrophage metabolism.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Alonso, D. & Nungester, W. J. Comparative study of host resistance of guinea pigs and rats V. The effect of pneumococcal products on glycolysis and oxygen uptake by polymorphonuclear leucocytes. J. Infect. Dis. 99, 174–181 (1956).

    Article  CAS  PubMed  Google Scholar 

  3. Oren, R., Farnham, A. E., Saito, K., Milofsky, E. & Karnovsky, M. L. Metabolic patterns in three types of phagocytizing cells. J. Cell Biol. 17, 487–501 (1963). An important early study on metabolism in different types of macrophages.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fukuzumi, M., Shinomiya, H., Shimizu, Y., Ohishi, K. & Utsumi, S. Endotoxin-induced enhancement of glucose influx into murine peritoneal macrophages via GLUT1. Infect. Immun. 64, 108–112 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Liu, Y., Zhang, D. T. & Liu, X. G. mTOR signaling in T cell immunity and autoimmunity. Int. Rev. Immunol. 34, 50–66 (2015).

    Article  PubMed  CAS  Google Scholar 

  6. Weichhart, T., Hengstschlager, M. & Linke, M. Regulation of innate immune cell function by mTOR. Nat. Rev. Immunol. 15, 599–614 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. O'Neill, L. A. & Hardie, D. G. Metabolism of inflammation limited by AMPK and pseudo-starvation. Nature 493, 346–355 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Michl, J., Ohlbaum, D. J. & Silverstein, S. C. 2-Deoxyglucose selectively inhibits Fc and complement receptor-mediated phagocytosis in mouse peritoneal macrophages. I. Description of the inhibitory effect. J. Exp. Med. 144, 1465–1483 (1976).

    Article  CAS  PubMed  Google Scholar 

  9. Hamilton, J. A., Vairo, G. & Lingelbach, S. R. CSF-1 stimulates glucose uptake in murine bone marrow-derived macrophages. Biochem. Biophys. Res. Commun. 138, 445–454 (1986).

    Article  CAS  PubMed  Google Scholar 

  10. Rodriguez-Prados, J. C. et al. Substrate fate in activated macrophages: a comparison between innate, classic, and alternative activation. J. Immunol. 185, 605–614 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Krawczyk, C. M. et al. Toll-like receptor-induced changes in glycolytic metabolism regulate dendritic cell activation. Blood 115, 4742–4749 (2010). This was one of the first papers to analyse the Warburg effect in DCs activated by TLR4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Donnelly, R. P. et al. mTORC1-dependent metabolic reprogramming is a prerequisite for NK cell effector function. J. Immunol. 193, 4477–4484 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Michalek, R. D. et al. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J. Immunol. 186, 3299–3303 (2011). In this paper, we see one of the first reports of different metabolic processes occurring in T cell subsets, with glycolysis and fatty acid synthesis being a feature of T H 1 cells, and fatty acid oxidation being more prominent in T reg cells.

    Article  CAS  PubMed  Google Scholar 

  14. Doughty, C. A. et al. Antigen receptor-mediated changes in glucose metabolism in B lymphocytes: role of phosphatidylinositol 3-kinase signaling in the glycolytic control of growth. Blood 107, 4458–4465 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shi, L. Z. et al. HIF1α-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J. Exp. Med. 208, 1367–1376 (2011). This paper is notable for demonstrating that the phenotype of the T cell can change when glycolysis is inhibited, effectively turning from a T H 17 cell into a T reg cell. This study ushered in the concept of metabolic reprogramming.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gubser, P. M. et al. Rapid effector function of memory CD8+ T cells requires an immediate-early glycolytic switch. Nat. Immunol. 14, 1064–1072 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Shrestha, S. et al. Treg cells require the phosphatase PTEN to restrain TH1 and TFH cell responses. Nat. Immunol. 16, 178–187 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Huynh, A. et al. Control of PI(3) kinase in Treg cells maintains homeostasis and lineage stability. Nat. Immunol. 16, 188–196 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wei, J. et al. Autophagy enforces functional integrity of regulatory T cells by coupling environmental cues and metabolic homeostasis. Nat. Immunol. 17, 277–285 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Everts, B. et al. TLR-driven early glycolytic reprogramming via the kinases TBK1-IKKɛ supports the anabolic demands of dendritic cell activation. Nat. Immunol. 15, 323–332 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tannahill, G. M. et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 496, 238–242 (2013). This is the first report to show that a TCA cycle intermediate, succinate, can serve as an activation signal in macrophages and promote IL-1 β production by activating HIF1 α.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Palsson-McDermott, E. M. et al. Pyruvate kinase M2 regulates Hif-1α activity and IL-1β induction and is a critical determinant of the warburg effect in LPS-activated macrophages. Cell Metab. 21, 65–80 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Luo, W. et al. Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell 145, 732–744 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shirai, T. et al. The glycolytic enzyme PKM2 bridges metabolic and inflammatory dysfunction in coronary artery disease. J. Exp. Med. 213, 337–354 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jha, A. K. et al. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity 42, 419–430 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Gerriets, V. A. et al. Metabolic programming and PDHK1 control CD4+ T cell subsets and inflammation. J. Clin. Invest. 125, 194–207 (2015).

    Article  PubMed  Google Scholar 

  27. Beier, U. H. et al. Essential role of mitochondrial energy metabolism in Foxp3+ T-regulatory cell function and allograft survival. FASEB J. 29, 2315–2326 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Procaccini, C. et al. The proteomic landscape of human ex vivo regulatory and conventional T cells reveals specific metabolic requirements. Immunity 44, 406–421 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. De Rosa, V. et al. Glycolysis controls the induction of human regulatory T cells by modulating the expression of FOXP3 exon 2 splicing variants. Nat. Immunol. 16, 1174–1184 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mukhopadhyay, R., Jia, J., Arif, A., Ray, P. S. & Fox, P. L. The GAIT system: a gatekeeper of inflammatory gene expression. Trends Biochem. Sci. 34, 324–331 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chang, C. H. et al. Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell 153, 1239–1251 (2013). An important paper that demonstrates that GAPDH 'moonlights' — its other role being to repress expression of IFN γ in T H 1 cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Moon, J. S. et al. mTORC1-induced HK1-dependent glycolysis regulates NLRP3 inflammasome activation. Cell Rep. 12, 102–115 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Haschemi, A. et al. The sedoheptulose kinase CARKL directs macrophage polarization through control of glucose metabolism. Cell Metab. 15, 813–826 (2012). The pentose phosphate pathway is shown in this study to be crucial for macrophage polarization.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. O'Sullivan, D. et al. Memory CD8+ T cells use cell-intrinsic lipolysis to support the metabolic programming necessary for development. Immunity 41, 75–88 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Infantino, V. et al. The mitochondrial citrate carrier: a new player in inflammation. Biochem. J. 438, 433–436 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Michelucci, A. et al. Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production. Proc. Natl Acad. Sci. USA 110, 7820–7825 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Clementi, E., Brown, G. C., Feelisch, M. & Moncada, S. Persistent inhibition of cell respiration by nitric oxide: crucial role of S-nitrosylation of mitochondrial complex I and protective action of glutathione. Proc. Natl Acad. Sci. USA 95, 7631–7636 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Carpenter, K. L. et al. Macrophages, lipid oxidation, ceroid accumulation and alpha-tocopherol depletion in human atherosclerotic lesions. Gerontology 41, 53–67 (1995).

    Article  PubMed  Google Scholar 

  39. Lusis, A. J. Atherosclerosis. Nature 407, 233–241 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shoelson, S. E., Lee, J. & Goldfine, A. B. Inflammation and insulin resistance. J. Clin. Invest. 116, 1793–1801 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Freigang, S. et al. Fatty acid-induced mitochondrial uncoupling elicits inflammasome-independent IL-1α and sterile vascular inflammation in atherosclerosis. Nat. Immunol. 14, 1045–1053 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Malandrino, M. I. et al. Enhanced fatty acid oxidation in adipocytes and macrophages reduces lipid-induced triglyceride accumulation and inflammation. Am. J. Physiol. Endocrinol. Metab. 308, E756–E769 (2015).

    Article  PubMed  CAS  Google Scholar 

  43. Vats, D. et al. Oxidative metabolism and PGC-1β attenuate macrophage-mediated inflammation. Cell Metab. 4, 13–24 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Huang, S. C. et al. Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages. Nat. Immunol. 15, 846–855 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nomura, M. et al. Fatty acid oxidation in macrophage polarization. Nat. Immunol. 17, 216–217 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang, R. et al. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 35, 871–882 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Patsoukis, N. et al. PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation. Nat. Commun. 6, 6692 (2015).

    Article  CAS  PubMed  Google Scholar 

  48. Bruno, L., von Boehmer, H. & Kirberg, J. Cell division in the compartment of naive and memory T lymphocytes. Eur. J. Immunol. 26, 3179–3184 (1996).

    Article  CAS  PubMed  Google Scholar 

  49. van der Windt, G. J. et al. CD8 memory T cells have a bioenergetic advantage that underlies their rapid recall ability. Proc. Natl Acad. Sci. USA 110, 14336–14341 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. van der Windt, G. J. et al. Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. Immunity 36, 68–78 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Posokhova, E. N., Khoshchenko, O. M., Chasovskikh, M. I., Pivovarova, E. N. & Dushkin, M. I. Lipid synthesis in macrophages during inflammation in vivo: effect of agonists of peroxisome proliferator activated receptors α and γ and of retinoid X receptors. Biochem. (Mosc) 73, 296–304 (2008).

    Article  CAS  Google Scholar 

  52. Feingold, K. R. et al. Mechanisms of triglyceride accumulation in activated macrophages. J. Leukoc. Biol. 92, 829–839 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ecker, J. et al. Induction of fatty acid synthesis is a key requirement for phagocytic differentiation of human monocytes. Proc. Natl Acad. Sci. USA 107, 7817–7822 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Moon, J. S. et al. UCP2-induced fatty acid synthase promotes NLRP3 inflammasome activation during sepsis. J. Clin. Invest. 125, 665–680 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Chen, H. W., Heiniger, H. J. & Kandutsch, A. A. Relationship between sterol synthesis and DNA-synthesis in phytohemagglutinin-stimulated mouse lymphocytes. Proc. Natl Acad. Sci. USA 72, 1950–1954 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dufort, F. J. et al. Glucose-dependent de novo lipogenesis in B lymphocytes: a requirement for atp-citrate lyase in lipopolysaccharide-induced differentiation. J. Biol. Chem. 289, 7011–7024 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lee, J. et al. Regulator of fatty acid metabolism, acetyl coenzyme a carboxylase 1, controls T cell immunity. J. Immunol. 192, 3190–3199 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Berod, L. et al. De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells. Nat. Med. 20, 1327–1333 (2014). In this study, fatty acid metabolism is shown to govern the fate of T H cell subtypes.

    Article  CAS  PubMed  Google Scholar 

  59. Wang, C. et al. CD5L/AIM regulates lipid biosynthesis and restrains Th17 cell pathogenicity. Cell 163, 1413–1427 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Guglani, L. & Khader, S. A. Th17 cytokines in mucosal immunity and inflammation. Curr. Opin. HIV AIDS 5, 120–127 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Zielinski, C. E. et al. Pathogen-induced human TH17 cells produce IFN-γ or IL-10 and are regulated by IL-1β. Nature 484, 514–518 (2012).

    Article  CAS  PubMed  Google Scholar 

  62. Fessler, M. B. Regulation of adaptive immunity in health and disease by cholesterol metabolism. Curr. Allergy Asthma Rep. 15, 48 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Maceyka, M. & Spiegel, S. Sphingolipid metabolites in inflammatory disease. Nature 510, 58–67 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kelly, D. & Wischmeyer, P. E. Role of L-glutamine in critical illness: new insights. Curr. Opin. Clin. Nutr. Metab. Care 6, 217–222 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Parry-Billings, M., Evans, J., Calder, P. C. & Newsholme, E. A. Does glutamine contribute to immunosuppression after major burns? Lancet 336, 523–525 (1990).

    Article  CAS  PubMed  Google Scholar 

  66. Wallace, C. & Keast, D. Glutamine and macrophage function. Metabolism 41, 1016–1020 (1992).

    Article  CAS  PubMed  Google Scholar 

  67. Murphy, C. & Newsholme, P. Importance of glutamine metabolism in murine macrophages and human monocytes to L-arginine biosynthesis and rates of nitrite or urea production. Clin. Sci. (Lond.) 95, 397–407 (1998).

    Article  CAS  Google Scholar 

  68. Bellows, C. F. & Jaffe, B. M. Glutamine is essential for nitric oxide synthesis by murine macrophages. J. Surg. Res. 86, 213–219 (1999).

    Article  CAS  PubMed  Google Scholar 

  69. Carr, E. L. et al. Glutamine uptake and metabolism are coordinately regulated by ERK/MAPK during T lymphocyte activation. J. Immunol. 185, 1037–1044 (2010).

    Article  CAS  PubMed  Google Scholar 

  70. Crawford, J. & Cohen, H. J. The essential role of L-glutamine in lymphocyte differentiation in vitro. J. Cell. Physiol. 124, 275–282 (1985).

    Article  CAS  PubMed  Google Scholar 

  71. Le, A. et al. Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells. Cell Metab. 15, 110–121 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Nakaya, M. et al. Inflammatory T cell responses rely on amino acid transporter ASCT2 facilitation of glutamine uptake and mTORC1 kinase activation. Immunity 40, 692–705 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Rath, M., Muller, I., Kropf, P., Closs, E. I. & Munder, M. Metabolism via arginase or nitric oxide synthase: two competing arginine pathways in macrophages. Front. Immunol. 5, 532 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. MacMicking, J., Xie, Q. W. & Nathan, C. Nitric oxide and macrophage function. Annu. Rev. Immunol. 15, 323–350 (1997).

    Article  CAS  PubMed  Google Scholar 

  75. MacMicking, J. D. et al. Altered responses to bacterial infection and endotoxic shock in mice lacking inducible nitric oxide synthase. Cell 81, 641–650 (1995).

    Article  CAS  PubMed  Google Scholar 

  76. Albina, J. E. et al. Arginine metabolism in wounds. Am. J. Physiol. 254, E459–E467 (1988).

    Article  CAS  PubMed  Google Scholar 

  77. Pesce, J. T. et al. Arginase-1-expressing macrophages suppress Th2 cytokine-driven inflammation and fibrosis. PLoS Pathog. 5, e1000371 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Takele, Y. et al. Arginase activity in the blood of patients with visceral leishmaniasis and HIV infection. PLoS Negl. Trop. Dis. 7, e1977 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Rodriguez, P. C. et al. Regulation of T cell receptor CD3ζ chain expression by l-arginine. J. Biol. Chem. 277, 21123–21129 (2002).

    Article  CAS  PubMed  Google Scholar 

  80. Rodriguez, P. C., Quiceno, D. G. & Ochoa, A. C. l-arginine availability regulates T-lymphocyte cell-cycle progression. Blood 109, 1568–1573 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Cobbold, S. P. et al. Infectious tolerance via the consumption of essential amino acids and mTOR signaling. Proc. Natl Acad. Sci. USA 106, 12055–12060 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Silver, R. M. et al. Scleroderma, fasciitis, and eosinophilia associated with the ingestion of tryptophan. N. Engl. J. Med. 322, 874–881 (1990).

    Article  CAS  PubMed  Google Scholar 

  83. Stahl, J. L., Cook, E. B., Pariza, M. A., Cook, M. E. & Graziano, F. M. Effect of l-tryptophan supplementation on eosinophils and eotaxin in guinea pigs. Exp. Biol. Med. (Maywood) 226, 177–184 (2001).

    Article  CAS  Google Scholar 

  84. Yoshida, R. & Hayaishi, O. Induction of pulmonary indoleamine 2,3-dioxygenase by intraperitoneal injection of bacterial lipopolysaccharide. Proc. Natl Acad. Sci. USA 75, 3998–4000 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Yoshida, R., Imanishi, J., Oku, T., Kishida, T. & Hayaishi, O. Induction of pulmonary indoleamine 2,3-dioxygenase by interferon. Proc. Natl Acad. Sci. USA 78, 129–132 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Werner, E. R. et al. Parallel induction of tetrahydrobiopterin biosynthesis and indoleamine 2,3-dioxygenase activity in human cells and cell lines by interferon-γ. Biochem. J. 262, 861–866 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Pfefferkorn, E. R. Interferon γ blocks the growth of Toxoplasma gondii in human fibroblasts by inducing the host cells to degrade tryptophan. Proc. Natl Acad. Sci. USA 81, 908–912 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Schroten, H. et al. Potential role of human brain microvascular endothelial cells in the pathogenesis of brain abscess: inhibition of Staphylococcus aureus by activation of indoleamine 2,3-dioxygenase. Neuropediatrics 32, 206–210 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Lee, G. K. et al. Tryptophan deprivation sensitizes activated T cells to apoptosis prior to cell division. Immunology 107, 452–460 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Munn, D. H. et al. Inhibition of T cell proliferation by macrophage tryptophan catabolism. J. Exp. Med. 189, 1363–1372 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Liu, H. et al. GCN2-dependent metabolic stress is essential for endotoxemic cytokine induction and pathology. Mol. Cell. Biol. 34, 428–438 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Bessede, A. et al. Aryl hydrocarbon receptor control of a disease tolerance defence pathway. Nature 511, 184–190 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Uyttenhove, C. et al. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat. Med. 9, 1269–1274 (2003). Tryptophan metabolism by the enzyme IDO is shown here to be crucial for antitumour immunity.

    Article  CAS  PubMed  Google Scholar 

  94. Okamoto, A. et al. Indoleamine 2,3-dioxygenase serves as a marker of poor prognosis in gene expression profiles of serous ovarian cancer cells. Clin. Cancer Res. 11, 6030–6039 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Munn, D. H. et al. Expression of indoleamine 2,3-dioxygenase by plasmacytoid dendritic cells in tumor-draining lymph nodes. J. Clin. Invest. 114, 280–290 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Weinlich, G., Murr, C., Richardsen, L., Winkler, C. & Fuchs, D. Decreased serum tryptophan concentration predicts poor prognosis in malignant melanoma patients. Dermatology 214, 8–14 (2007).

    Article  PubMed  Google Scholar 

  97. Holmgaard, R. B., Zamarin, D., Munn, D. H., Wolchok, J. D. & Allison, J. P. Indoleamine 2,3-dioxygenase is a critical resistance mechanism in antitumor T cell immunotherapy targeting CTLA-4. J. Exp. Med. 210, 1389–1402 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Yin, Y. et al. Normalization of CD4+ T cell metabolism reverses lupus. Sci Transl Med. 7, 274ra18 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lee, C. F. et al. Preventing allograft rejection by targeting immune metabolism. Cell Rep. 13, 760–770 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

L.A.J.O. acknowledges Science Foundation Ireland, The European Research Council and The Wellcome Trust for research funding.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Luke A. J. O'Neill or Jeff Rathmell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Mechanistic target of rapamycin

(mTOR). An atypical serine/threonine kinase that is present in two distinct complexes. mTOR complex 1 (mTORC1), is composed of mTOR, Raptor, MLST8 (also known as GβL), PRAS40 and DEPTOR; it is inhibited by rapamycin.

Electron transport chain

The series of proteins in the inner mitochondrial membrane that transfer electrons in a series of redox reactions, leading to proton pumping across the membrane.

2-deoxyglucose

A derivative of glucose that inhibit hexokinase, thereby blocking the first step in glycolysis.

Aerobic glycolysis

Glycolysis occurring when oxygen is present.

Foam cells

Fat-laden macrophages commonly seen in the plaques occurring in atherosclerosis.

Futile cycle

Two metabolic pathways running in opposite directions that seem to cancel each other out metabolically.

Metabolic enzymes

Enzymes in metabolic pathways that convert substrates into products. Major classes are dehydrogenases (which remove hydrogen from a substrate in an oxidation–reduction reaction), isomerases (which convert a molecule from one isomer to another), synthases (which link two molecules together without using ATP as an energy source), carboxylases (which add a carboxyl group to a substrate) and kinases (which add a phosphate group to a molecule).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O'Neill, L., Kishton, R. & Rathmell, J. A guide to immunometabolism for immunologists. Nat Rev Immunol 16, 553–565 (2016). https://doi.org/10.1038/nri.2016.70

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri.2016.70

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing