Abstract
In patients with IBD, chronic colonic inflammation increases the risk of colorectal cancer, perhaps because inflammation predisposes these tissues to genomic instability. Carcinogenesis in the inflamed colon seems to follow a different sequence of genetic alterations than that observed in sporadic cancers in the uninflamed colon. In this Review, we focus on the genetic alterations in colitis-associated colorectal cancer that contribute to the acquisition of the essential hallmarks of cancer, and on how those alterations differ from sporadic colorectal cancers. Our intent is to provide a conceptual basis for categorizing carcinogenetic molecular abnormalities in IBD, and for understanding how cancer-preventive therapies might target reversal of acquired abnormalities in specific biochemical pathways.
Key Points
-
Chronic colonic inflammation, as occurs in IBD, increases the risk of colorectal cancer, perhaps because inflammation predisposes to genomic instability
-
Carcinogenesis in IBD seems to follow a different sequence of genetic alterations to that observed in sporadic colorectal cancers
-
The molecular alterations that occur in colitis-related carcinogenesis can generally be categorized as endowing cells in the gastrointestinal tract, with one of six hallmarks of cancer cells
-
The essential hallmarks of cancer cells are: proliferation self-sufficiency; resistance to growth-inhibitory signals; avoidance of apoptosis; resisting senescence; belonging to tissues with sustained angiogenesis; and tissue invasion and metastasis
-
An important, emerging concept in colorectal carcinogenesis is that cancers arise from tissue-specific stem cells
-
Understanding the molecular mechanisms of carcinogenesis in IBD-related colorectal cancers will aid in the prevention and treatment of these cancers
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Eaden, J. A., Abrams, K. R. & Mayberry, J. F. The risk of colorectal cancer in ulcerative colitis: a meta-analysis. Gut 48, 526–535 (2001).
Ekbom, A., Helmickm, C., Zack, M. & Adami, H. O. Ulcerative colitis and colorectal cancer. A population-based study. N. Engl. J. Med. 323, 1228–1233 (1990).
Weedon, D. D., Shorter, R. G., Ilstrup, D. M., Huizenga, K. A. & Taylor, W. F. Crohn's disease and cancer. N. Engl. J. Med. 289, 1099–1103 (1973).
Gyde, S. N. et al. Malignancy in Crohn's disease. Gut 21, 1024–1029 (1980).
Bernstein, C. N., Blanchard, J. F., Kliewer, E. & Wajda, A. Cancer risk in patients with inflammatory bowel disease: a population-based study. Cancer 91, 854–862 (2001).
Canavan, C., Abrams, K. R. & Mayberry, J. Meta-analysis: colorectal and small bowel cancer risk in patients with Crohn's disease. Aliment. Pharmacol. Ther. 23, 1097–1104 (2006).
Freeman, H. J. Colorectal cancer risk in Crohn's disease. World J. Gastroenterol. 14, 1810–1811 (2008).
Rutter, M. et al. Severity of inflammation is a risk factor for colorectal neoplasia in ulcerative colitis. Gastroenterology 126, 451–459 (2004).
Gupta, R. B. et al. Histologic inflammation is a risk factor for progression to colorectal neoplasia in ulcerative colitis: a cohort study. Gastroenterology 133, 1099–1105 (2007).
Macdougall, I. P. The cancer risk in ulcerative colitis. Lancet 2, 655–658 (1964).
Farmer, R. G. & Brown, C. H. Ulcerative proctitis: course and prognosis. Gastroenterology 51, 219–223 (1966).
Kvist, N. et al. Malignancy in ulcerative colitis. Scand. J. Gastroenterol. 24, 497–506 (1989).
Brentnall, T. A. et al. Risk and natural history of colonic neoplasia in patients with primary sclerosing cholangitis and ulcerative colitis. Gastroenterology 110, 331–338 (1996).
Askling, J. et al. Family history as a risk factor for colorectal cancer in inflammatory bowel disease. Gastroenterology 120, 1356–1362 (2001).
Nuako, K. W. et al. Familial predisposition for colorectal cancer in chronic ulcerative colitis: a case-control study. Gastroenterology 115, 1079–1083 (1998).
Kornbluth, A. & Sachar, D. B. Ulcerative colitis practice guidelines in adults (update): American College of Gastroenterology, Practice Parameters Committee. Am. J. Gastroenterol. 99, 1371–1385 (2004).
Fenoglio-Preiser, C. M. Gastrointestinal Pathology: An Atlas and Text (Lippincott Williams & Wilkins, Philadelphia, 1999).
Rubin, D. T. & Turner, J. R. Surveillance of dysplasia in inflammatory bowel disease: the gastroenterologist–pathologist partnership. Clin. Gastroenterol. Hepatol. 4, 1309–1313 (2006).
Rutter, M. D. et al. Thirty-year analysis of a colonoscopic surveillance program for neoplasia in ulcerative colitis. Gastroenterology 130, 1030–1038 (2006).
Ullman, T., Croog, V., Harpaz, N., Sachar, D. & Itzkowitz, S. Progression of flat low-grade dysplasia to advanced neoplasia in patients with ulcerative colitis. Gastroenterology 125, 1311–1319 (2003).
Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).
Zhang, H. Y., Spechler, S. J. & Souza, R. F. Esophageal adenocarcinoma arising in Barrett esophagus. Cancer Lett. 275, 170–177 (2008).
McKay, C. J., Glen, P. & McMillan, D. C. Chronic inflammation and pancreatic cancer. Best Pract. Res. Clin. Gastroenterol. 22, 65–73 (2008).
Genta, R. M. The gastritis connection: prevention and early detection of gastric neoplasms. J. Clin. Gastroenterol. 36 (Suppl. 5), 44–49 (2003).
Kawanishi, S., Hiraku, Y., Pinlaor, S. & Ma, N. Oxidative and nitrative DNA damage in animals and patients with inflammatory diseases in relation to inflammation-related carcinogenesis. Biol. Chem. 387, 365–372 (2006).
Meira, L. B. et al. DNA damage induced by chronic inflammation contributes to colon carcinogenesis in mice. J. Clin. Invest. 118, 2516–2525 (2008).
Liao, J. et al. Increased susceptibility of chronic ulcerative colitis-induced carcinoma development in DNA repair enzyme Ogg1 deficient mice. Mol. Carcinog. 47, 638–646 (2008).
Garrity-Park, M. M., Loftus, E. V. Jr, Bryant, S. C., Sandborn, W. J. & Smyrk, T. C. Tumor necrosis factor-alpha polymorphisms in ulcerative colitis-associated colorectal cancer. Am. J. Gastroenterol. 103, 407–415 (2008).
Suchy, J. et al. Inflammatory response gene polymorphisms and their relationship with colorectal cancer risk. BMC Cancer 8, 112 (2008).
Crivello, A. et al. Regulatory cytokine gene polymorphisms and risk of colorectal carcinoma. Ann. NY Acad. Sci. 1089, 98–103 (2006).
Norris, S. et al. Mapping MHC-encoded susceptibility and resistance in primary sclerosing cholangitis: the role of MICA polymorphism. Gastroenterology 120, 1475–1482 (2001).
Maggs, J. R. & Chapman, R. W. An update on primary sclerosing cholangitis. Curr. Opin. Gastroenterol. 24, 377–383 (2008).
Elias, E. & Mills, C. O. Co-ordinated defence and the liver. Clin. Med. 7, 180–184 (2007).
Siviero, I., Ferrante, S. M., Meio, I. B., Madi, K. & Chagas, V. L. Hepatobiliary effects of cholic and lithocholic acids: experimental study in hamsters. Pediatr. Surg. Int. 24, 325–331 (2008).
Hofmann, A. F. Detoxification of lithocholic acid, a toxic bile acid: relevance to drug hepatotoxicity. Drug Metab. Rev. 36, 703–722 (2004).
van Dieren, J. M. et al. Chromosomal and microsatellite instability of adenocarcinomas and dysplastic lesions (DALM) in ulcerative colitis. Diagn. Mol. Pathol. 15, 216–222 (2006).
Willenbucher, R. F. et al. Genomic instability is an early event during the progression pathway of ulcerative-colitis-related neoplasia. Am. J. Pathol. 154, 1825–1830 (1999).
Rabinovitch, P. S. et al. Pancolonic chromosomal instability precedes dysplasia and cancer in ulcerative colitis. Cancer Res. 59, 5148–5153 (1999).
Rubin, C. E. et al. DNA aneuploidy in colonic biopsies predicts future development of dysplasia in ulcerative colitis. Gastroenterology 103, 1611–1620 (1992).
Lindberg, J. O., Stenling, R. B. & Rutegård, J. N. DNA aneuploidy as a marker of premalignancy in surveillance of patients with ulcerative colitis. Br. J. Surg. 86, 947–950 (1999).
Befrits, R., Hammarberg, C., Rubio, C., Jaramillo, E. & Tribukait, B. DNA aneuploidy and histologic dysplasia in long-standing ulcerative colitis. A 10-year follow-up study. Dis. Colon Rectum 37, 313–319 (1994).
Löfberg, R., Broström, O., Karlén, P., Ost, A. & Tribukait, B. DNA aneuploidy in ulcerative colitis: reproducibility, topographic distribution, and relation to dysplasia. Gastroenterology 102, 1149–1154 (1992).
Löfberg, R., Tribukait, B., Ost. A., Broström, O. & Reichard, H. Flow cytometric DNA analysis in longstanding ulcerative colitis: a method of prediction of dysplasia and carcinoma development? Gut 28, 1100–1106 (1987).
Yamada, S., Yashiro, M., Maeda, K., Nishiguchi, Y. & Hirakawa, K. A novel high-specificity approach for colorectal neoplasia: detection of K-ras2 oncogene mutation in normal mucosa. Int. J. Cancer 113, 1015–1021 (2005).
Chen, J., Compton, C., Cheng, E., Fromowitz, F. & Viola, M. V. c-Ki-ras mutations in dysplastic fields and cancers in ulcerative colitis. Gastroenterology 102, 1983–1987 (1992).
Umetani, N. et al. Genetic alterations in ulcerative colitis-associated neoplasia focusing on APC., K-ras gene and microsatellite instability. Jpn J. Cancer Res. 90, 1081–1087 (1999).
Tyner, A. L. & Omary, M. B. Signal transduction pathways during oncogenesis. In Gastrointestinal Cancers ed. Rustgi, A. K. 61 (Saunders, Edinburgh, 2003).
Cartwright, C. A., Coad, C. A. & Egbert, B. M. Elevated c-Src tyrosine kinase activity in premalignant epithelia of ulcerative colitis. J. Clin. Invest. 93, 509–515 (1994).
Ewen, M. E. The mammalian cell cycle. In Gastrointestinal Cancers ed. Rustgi, A. K. 3–12 (Saunders, Edinburgh, 2003).
Wong, N. A. et al. Cyclin D1 and p21 in ulcerative colitis-related inflammation and epithelial neoplasia: a study of aberrant expression and underlying mechanisms. Hum. Pathol. 34, 580–588 (2003).
Maeda, K. et al. Overexpression of cyclin D1 and p53 associated with disease recurrence in colorectal adenocarcinoma. Int. J. Cancer 74, 310–315 (1997).
Beck, P. L. & Podolsky, D. K. Growth factors in inflammatory bowel disease. Inflamm. Bowel Dis. 5, 44–60 (1999).
Sinha, A., Nightingale, J., West, K. P., Berlanga-Acosta, J. & Playford, R. J. Epidermal growth factor enemas with oral mesalamine for mild-to-moderate left-sided ulcerative colitis or proctitis. N. Engl. J. Med. 349, 350–357 (2003).
Makiyama, K., Takeshima, F. & Hamamoto, T. Efficacy of rebamipide enemas in active distal ulcerative colitis and proctitis: a prospective study report. Dig. Dis. Sci. 50, 2323–2329 (2005).
Ponz-Sarvise, M. et al. Epidermal growth factor receptor inhibitors in colorectal cancer treatment: what's new? World J. Gastroenterol. 13, 5877–5887 (2007).
Alexander, R. J., Panja, A., Kaplan-Liss, E., Mayer, L. & Raicht, R. F. Expression of growth factor receptor-encoded mRNA by colonic epithelial cells is altered in inflammatory bowel disease. Dig. Dis. Sci. 40, 485–494 (1995).
Alberts, B. et al. Finding the cancer-critical genes. In Molecular Biology of the Cell eds Alberts, B. et al. 1333–1340 (Garland Science, New York, 2002).
Lewin, B. Oncogenes and cancer. In Genes VII, 875–912 (Oxford Press, New York, 2002).
Itzkowitz, S. H. Molecular biology of dysplasia and cancer in inflammatory bowel disease. Gastroenterol. Clin. N. Am. 35, 553–571 (2006).
Powell, S. M. et al. APC mutations occur early during colorectal tumorigenesis. Nature 359, 235–237 (1992).
Carethers, J. M. Biology and genetics of colorectal cancer. In Gastrointestinal Cancers ed. Rustgi, A. K. 407–417 (Saunders, Edinburgh, 2003).
Brentnall, T. A. et al. Mutations in the p53 gene: an early marker of neoplastic progression in ulcerative colitis. Gastroenterology 107, 369–378 (1994).
Burmer, G. C. et al. Neoplastic progression in ulcerative colitis: histology, DNA content, and loss of a p53 allele. Gastroenterology 103, 1602–1610 (1992).
Harpaz, N. et al. p53 protein expression in ulcerative colitis-associated colorectal dysplasia and carcinoma. Hum. Pathol. 25, 1069–1074 (1994).
Holzmann, K. et al. Comparative analysis of histology, DNA content, p53 and Ki-ras mutations in colectomy specimens with long-standing ulcerative colitis. Int. J. Cancer 76, 1–6 (1998).
Hussain, S. P. et al. Increased p53 mutation load in noncancerous colon tissue from ulcerative colitis: a cancer-prone chronic inflammatory disease. Cancer Res. 60, 3333–3337 (2000).
Aust, D. E. et al. Chromosomal alterations in ulcerative colitis-related and sporadic colorectal cancers by comparative genomic hybridization. Hum. Pathol. 31, 109–114 (2000).
Willenbucher, R. F., Zelman, S. J., Ferrell, L. D., Moore, D. H. Jr & Waldman, F. M. Chromosomal alterations in ulcerative colitis-related neoplastic progression. Gastroenterology 113, 791–801 (1997).
Hsieh, C. J. et al. Hypermethylation of the p16INK4a promoter in colectomy specimens of patients with long-standing and extensive ulcerative colitis. Cancer Res. 58, 3942–3945 (1998).
Sato, F. et al. Hypermethylation of the p14(ARF) gene in ulcerative colitis-associated colorectal carcinogenesis. Cancer Res. 62, 1148–1151 (2002).
Moriyama, T. et al. Hypermethylation of p14 (ARF) may be predictive of colitic cancer in patients with ulcerative colitis. Dis. Colon Rectum 50, 1384–1392 (2007).
Barnard, J. A. Peptide growth factors. In Gastrointestinal Cancers ed. Rustgi, A. K. 36 (Saunders, Edinburgh, 2003).
Souza, R. F. et al. A transforming growth factor β1 receptor type II mutation in ulcerative colitis-associated neoplasms. Gastroenterology 112, 40–45 (1997).
Liu, X. H., Yao, S., Kirschenbaum, A. & Levine, A. C. NS398, a selective cyclooxygenase-2 inhibitor, induces apoptosis and downregulates bcl-2 expression in LNCaP cells. Cancer Res. 58, 4245–4249 (1998).
Elder, D. J., Halton, D. E., Hague, A. & Paraskeva, C. Induction of apoptotic cell death in human colorectal carcinoma cell lines by a cyclooxygenase-2 (COX-2)-selective nonsteroidal anti-inflammatory drug: independence from COX-2 protein expression. Clin. Cancer Res. 3, 1679–1683 (1997).
Fukata, M. et al. Toll-like receptor-4 promotes the development of colitis-associated colorectal tumors. Gastroenterology 133, 1869–1881 (2007).
Agoff, S. N. et al. The role of cyclooxygenase 2 in ulcerative colitis-associated neoplasia. Am. J. Pathol. 157, 737–745 (2000).
Eberhart, C. E. et al. Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology 107, 1183–1188 (1994).
Oshima, M. et al. Suppression of intestinal polyposis in Apc δ716 knockout mice by inhibition of cyclooxygenase 2 (COX-2). Cell 87, 803–809 (1996).
Kohno, H., Suzuki, R., Sugie, S. & Tanaka, T. Suppression of colitis-related mouse colon carcinogenesis by a COX-2 inhibitor and PPAR ligands. BMC Cancer 5, 46 (2005).
Inoue, T. et al. Therapeutic effect of nimesulide on colorectal carcinogenesis in experimental murine ulcerative colitis. J. Gastroenterol. Hepatol. 22, 1474–1481 (2007).
Mukawa, K. et al. Inhibitory effects of the cyclooxygenase-2 inhibitor, etodolac, on colitis-associated tumorigenesis in p53-deficient mice treated with dextran sulfate sodium. Oncol. Rep. 19, 393–399 (2008).
Bresalier, R. S. et al. Cardiovascular events associated with rofecoxib in a colorectal adenoma chemoprevention trial. N. Engl. J. Med. 352, 1092–1102 (2005).
Osborn, N. K. et al. Aberrant methylation of the eyes absent 4 gene in ulcerative colitis-associated dysplasia. Clin. Gastroenterol. Hepatol. 4, 212–218 (2006).
Holzmann, K. et al. Telomerase activity in long-standing ulcerative colitis. Anticancer Res. 20, 3951–3955 (2000).
Sipos, F. et al. Elevated insulin-like growth factor 1 receptor, hepatocyte growth factor receptor and telomerase protein expression in mild ulcerative colitis. Scand. J. Gastroenterol. 43, 289–298 (2008).
Griga, T., May, B., Pfisterer, O., Müller, K. M. & Brasch, F. Immunohistochemical localization of vascular endothelial growth factor in colonic mucosa of patients with inflammatory bowel disease. Hepatogastroenterology 49, 116–123 (2002).
Tsiolakidou, G., Koutroubakis, I. E., Tzardi, M. & Kouroumalis, E. A. Increased expression of VEGF and CD146 in patients with inflammatory bowel disease. Dig. Liver Dis. 40, 673–679 (2008).
Hurwitz, H. et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N. Engl. J. Med. 350, 2335–2342 (2004).
Klein, B. & Gottfried, M. Targeted agents to improve treatment results in colon cancer: bevacizumab and cetuximab. J. BUON 12 (Suppl. 1), 127–136 (2007).
Dorudi, S., Sheffield, J. P., Poulsom, R., Northover, J. M. & Hart, I. R. E-cadherin expression in colorectal cancer. An immunocytochemical and in situ hybridization study. Am. J. Pathol. 142, 981–986 (1993).
Hill, K. A. et al. Comparative analysis of cell adhesion molecules, cell cycle regulatory proteins, mismatch repair genes, cyclooxygenase-2, and DPC4 in carcinomas arising in inflammatory bowel disease and sporadic colon cancer. Oncol. Rep. 11, 951–956 (2004).
van Dekken, H. et al. Wnt pathway-related gene expression during malignant progression in ulcerative colitis. Acta Histochem. 109, 266–272 (2007).
Itoh, F., Yamamoto, H., Hinoda, Y. & Imai, K. Enhanced secretion and activation of matrilysin during malignant conversion of human colorectal epithelium and its relationship with invasive potential of colon cancer cells. Cancer 77 (Suppl. 8), 1717–1721 (1996).
Newell, K. J., Matrisian, L. M. & Driman, D. K. Matrilysin (matrix metalloproteinase-7) expression in ulcerative colitis-related tumorigenesis. Mol. Carcinog. 34, 59–63 (2002).
Bresalier, R. S. et al. Liver metastasis and adhesion to the sinusoidal endothelium by human colon cancer cells is related to mucin carbohydrate chain length. Int. J. Cancer 76, 556–562 (1998).
Itzkowitz, S. H. et al. Sialosyl-Tn antigen: initial report of a new marker of malignant progression in long-standing ulcerative colitis. Gastroenterology 109, 490–497 (1995).
Bresalier, R. S. et al. Enhanced sialylation of mucin-associated carbohydrate structures in human colon cancer metastasis. Gastroenterology 11, 1354–1167 (1996).
Al-Hajj, M. & Clarke, M. F. Self-renewal and solid tumor stem cells. Oncogene 23, 7274–7282 (2004).
Collins, A. T., Berry, P. A., Hyde, C., Stower, M. J. & Maitland, N. J. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res. 65, 10946–10951 (2005).
Fang, D. et al. A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res. 65, 9328–9337 (2005).
Li, C. et al. Identification of pancreatic cancer stem cells. Cancer Res. 67, 1030–1037 (2007).
Ma, S. et al. Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology 132, 2542–2556 (2007).
Prince, M. E. et al. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc. Natl Acad. Sci. USA 104, 973–978 (2007).
Ricci-Vitiani, L. et al. Identification and expansion of human colon cancer-initiating cells. Nature 445, 111–115 (2007).
O'Brien, C. A., Pollett, A., Gallinger, S. & Dick, J. E. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445, 106–110 (2007).
Horst, D., Krieg, L., Engel, J., Kirchner, T. & Jung, A. CD133 expression is an independent prognostic marker for low survival in colorectal cancer. Br. J. Cancer 99, 1285–1289 (2008).
Ricci-Vitiani, L., Pagliuca, A., Palio, E., Zeuner, A. & De Maria, R. Colon cancer stem cells. Gut 57, 538–548 (2008).
Dalerba, P. et al. Phenotypic characterization of human colorectal cancer stem cells. Proc. Natl Acad. Sci. USA 104, 10158–10163 (2007).
May, R. et al. Identification of a novel putative gastrointestinal stem cell and adenoma stem cell marker, doublecortin and CaM kinase-like-1, following radiation injury and in adenomatous polyposis coli/multiple intestinal neoplasia mice. Stem Cells 26, 630–637 (2008).
Barker, N. et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449, 1003–1007 (2007).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
L. A. Feagins declared association with the following company: Centocor, as recipient of grant/research support. RF Souza declared associations with the following companies: AstraZeneca, as consultant and recipient of grant/research support, and TAP Pharmaceutical Products, as consultant. SJ Spechler declared associations with the following companies: AstraZeneca, as consultant and recipient of grant/research support, Takeda, as recipient of grant/research support, and Bârrx Medical as recipient of grant/research support.
Rights and permissions
About this article
Cite this article
Feagins, L., Souza, R. & Spechler, S. Carcinogenesis in IBD: potential targets for the prevention of colorectal cancer. Nat Rev Gastroenterol Hepatol 6, 297–305 (2009). https://doi.org/10.1038/nrgastro.2009.44
Issue Date:
DOI: https://doi.org/10.1038/nrgastro.2009.44
This article is cited by
-
Pou3f1 mediates the effect of Nfatc3 on ulcerative colitis-associated colorectal cancer by regulating inflammation
Cellular & Molecular Biology Letters (2022)
-
Neuropeptide Y, a paracrine factor secreted by cancer cells, is an independent regulator of angiogenesis in colon cancer
British Journal of Cancer (2022)
-
Colitis-associated intestinal microbiota regulates brain glycine and host behavior in mice
Scientific Reports (2022)
-
Does Surveillance Increase Survival? Benefits of Periodic Colonoscopy in Patients with Ulcerative Colitis and Colorectal Cancer
Digestive Diseases and Sciences (2022)
-
Whole exome sequencing identifies novel germline variants of SLC15A4 gene as potentially cancer predisposing in familial colorectal cancer
Molecular Genetics and Genomics (2022)