Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Chromatin modification and epigenetic reprogramming in mammalian development

Key Points

  • The principal epigenetic mechanisms by which tissue-specific gene-expression patterns and global gene silencing are established and maintained are chromatin modification — including processes such as DNA methylation, histone modification (acetylation, phosphorylation, methylation and ubiquitylation) — and chromatin remodelling.

  • New data show how DNA methylation and histone modification integrate with each other in the epigenetic regulation of genomic imprinting, X inactivation and genome reprogramming.

  • DNA methylation is the heritable epigenetic mark for genomic imprinting, which is established in the developing oocyte and is essential for maintaining the mono-allelic expression of imprinted genes. DNA methyltransferase Dnmt3a and an associated protein Dnmt3l, and the histone methyltransferases Suv39h1 and Suv39h2, are required for spermatogenesis.

  • DNA methylation undergoes dynamic changes during early embryonic development, and genome-wide demethylation (after fertilization) and remethylation (after the implantation of a blastocyst) have an essential role in genome reprogramming.

  • X inactivation is regulated by several factors, including non-coding RNAs (Xist and Tsix), DNA methylation, histone acetylation and deacetylation, histone methylation and Polycomb-group proteins.

  • Reprogramming of somatic cell nuclei in enucleated oocytes by nuclear transfer resets the epigenetic programme for embryonic development.

  • Studies of the epigenetic regulation of chromatin and gene expression in development will help to elucidate the underlying causes of certain human diseases. A greater understanding of these processes will also aid research into the clinical application of pluripotent stem cells or progenitor cells in cell-replacement therapy and into new drugs that target epigenetic regulators for use in treating cancer and certain developmental disorders.

Abstract

The developmental programme of embryogenesis is controlled by both genetic and epigenetic mechanisms. An emerging theme from recent studies is that the regulation of higher-order chromatin structures by DNA methylation and histone modification is crucial for genome reprogramming during early embryogenesis and gametogenesis, and for tissue-specific gene expression and global gene silencing. Disruptions to chromatin modification can lead to the dysregulation of developmental processes, such as X-chromosome inactivation and genomic imprinting, and to various diseases. Understanding the process of epigenetic reprogramming in development is important for studies of cloning and the clinical application of stem-cell therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Links between DNA methylation, histone modification and chromatin remodelling.
Figure 2: Epigenetic reprogramming during gametogenesis.
Figure 3: DNA-methylation reprogramming during early mouse development.
Figure 4: Regulation of X inactivation.
Figure 5: Nuclear reprogramming.

Similar content being viewed by others

References

  1. Bird, A. DNA methylation patterns and epigenetic memory. Genes Dev. 16, 6–21 (2002).

    CAS  PubMed  Google Scholar 

  2. Jenuwein, T. & Allis, C. D. Translating the histone code. Science 293, 1074–1080 (2001).

    CAS  PubMed  Google Scholar 

  3. Zhang, Y. & Reinberg, D. Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev. 15, 2343–2360 (2001).

    CAS  PubMed  Google Scholar 

  4. Narlikar, G. J., Fan, H. Y. & Kingston, R. E. Cooperation between complexes that regulate chromatin structure and transcription. Cell 108, 475–487 (2002).

    CAS  PubMed  Google Scholar 

  5. Bestor, T. H. Activation of mammalian DNA methyltransferase by cleavage of a Zn binding regulatory domain. EMBO J. 11, 2611–2617 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Li, E., Bestor, T. H. & Jaenisch, R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69, 915–926 (1992).

    CAS  PubMed  Google Scholar 

  7. Okano, M., Bell, D. W., Haber, D. A. & Li, E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 247–257 (1999).This paper provided the first genetic evidence that the Dnmt3 family of methyltransferases is responsible for de novo methylation in mouse ES cells and during development.

    CAS  PubMed  Google Scholar 

  8. Lyko, F. et al. Mammalian (cytosine-5) methyltransferases cause genomic DNA methylation and lethality in Drosophila. Nature Genet. 23, 363–366 (1999).

    CAS  PubMed  Google Scholar 

  9. Hsieh, C. L. In vivo activity of murine de novo methyltransferases, Dnmt3a and Dnmt3b. Mol. Cell. Biol. 19, 8211–8218 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Burgers, W. A., Fuks, F. & Kouzarides, T. DNA methyltransferases get connected to chromatin. Trends Genet. 18, 275–277 (2002).

    CAS  PubMed  Google Scholar 

  11. Takizawa, T. et al. DNA methylation is a critical cell-intrinsic determinant of astrocyte differentiation in the fetal brain. Dev. Cell 1, 749–758 (2001).This paper shows that the demethylation of a promoter element induces tissue-specific gene expression during cellular differentiation.

    CAS  PubMed  Google Scholar 

  12. Nan, X. et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393, 386–389 (1998).

    CAS  PubMed  Google Scholar 

  13. Jones, P. L. et al. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nature Genet. 19, 187–191 (1998).References 12 and 13 provided the first molecular evidence linking DNA methylation to histone deacetylation in transcription repression.

    CAS  PubMed  Google Scholar 

  14. Zhang, Y. et al. Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes Dev. 13, 1924–1935 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Wade, P. A. et al. Mi-2 complex couples DNA methylation to chromatin remodelling and histone deacetylation. Nature Genet. 23, 62–66 (1999).

    CAS  PubMed  Google Scholar 

  16. Ng, H. H. et al. MBD2 is a transcriptional repressor belonging to the MeCP1 histone deacetylase complex. Nature Genet. 23, 58–61 (1999).

    CAS  PubMed  Google Scholar 

  17. Feng, Q. & Zhang, Y. The MeCP1 complex represses transcription through preferential binding, remodeling, and deacetylating methylated nucleosomes. Genes Dev. 15, 827–832 (2001).This study shows how MBD2 might recruit the NuRD remodelling complex to methylated chromatin to remodel the chromatin and to silence transcription.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Murrell, A. et al. An intragenic methylated region in the imprinted Igf2 gene augments transcription. EMBO Rep. 2, 1101–1106 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Eden, S. et al. An upstream repressor element plays a role in Igf2 imprinting. EMBO J. 20, 3518–3525 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Strahl, B. D. & Allis, C. D. The language of covalent histone modifications. Nature 403, 41–45 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Tamaru, H. & Selker, E. U. A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature 414, 277–283 (2001).

    CAS  PubMed  Google Scholar 

  22. Jackson, J. P., Lindroth, A. M., Cao, X. & Jacobsen, S. E. Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature 416, 556–560 (2002).References 21 and 22 provide molecular and genetic evidence that histone H3-K9 methylation is required for DNA methylation.

    CAS  PubMed  Google Scholar 

  23. Jeddeloh, J. A., Stokes, T. L. & Richards, E. J. Maintenance of genomic methylation requires a SWI2/SNF2-like protein. Nature Genet. 22, 94–97 (1999).

    CAS  PubMed  Google Scholar 

  24. Gendrel, A. V., Lippman, Z., Yordan, C., Colot, V. & Martienssen, R. Dependence of heterochromatic histone H3 methylation patterns on the Arabidopsis gene DDM1. Science 20 (in the press).

  25. Gibbons, R. J. et al. Mutations in ATRX, encoding a SWI/SNF-like protein, cause diverse changes in the pattern of DNA methylation. Nature Genet. 24, 368–371 (2000).

    CAS  PubMed  Google Scholar 

  26. Dennis, K., Fan, T., Geiman, T., Yan, Q. & Muegge, K. Lsh, a member of the SNF2 family, is required for genome-wide methylation. Genes Dev. 15, 2940–2944 (2001).References 23–26 show that SWI/SNF-like chromatin-remodelling proteins are intimately involved in regulating DNA methylation and histone methylation.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Bultman, S. et al. A Brg1 null mutation in the mouse reveals functional differences among mammalian SWI/SNF complexes. Mol. Cell 6, 1287–1295 (2000).

    CAS  PubMed  Google Scholar 

  28. Hendrich, B., Guy, J., Ramsahoye, B., Wilson, V. A. & Bird, A. Closely related proteins MBD2 and MBD3 play distinctive but interacting roles in mouse development. Genes Dev. 15, 710–723 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. O'Carroll, D. et al. The polycomb-group gene Ezh2 is required for early mouse development. Mol. Cell. Biol. 21, 4330–4336 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Donohoe, M. E. et al. Targeted disruption of mouse Yin Yang 1 transcription factor results in peri-implantation lethality. Mol. Cell. Biol. 19, 7237–7244 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Faust, C., Lawson, K. A., Schork, N. J., Thiel, B. & Magnuson, T. The Polycomb-group gene eed is required for normal morphogenetic movements during gastrulation in the mouse embryo. Development 125, 4495–4506 (1998).

    CAS  PubMed  Google Scholar 

  32. Lagger, G. et al. Essential function of histone deacetylase 1 in proliferation control and CDK inhibitor repression. EMBO J. 21, 2672–2681 (2002).This paper provides genetic evidence that histone deacetylation is essential for embryonic development.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Guy, J., Hendrich, B., Holmes, M., Martin, J. E. & Bird, A. A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome. Nature Genet. 27, 322–326 (2001).

    CAS  PubMed  Google Scholar 

  34. Chen, R. Z., Akbarian, S., Tudor, M. & Jaenisch, R. Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice. Nature Genet. 27, 327–331 (2001).

    CAS  PubMed  Google Scholar 

  35. Shahbazian, M. D. et al. Mice with truncated MeCP2 recapitulate many Rett syndrome features and display hyperacetylation of histone H3. Neuron 35, 243–254 (2002).

    CAS  PubMed  Google Scholar 

  36. Peters, A. H. et al. Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 107, 323–337 (2001).

    CAS  PubMed  Google Scholar 

  37. Tachibana, M. et al. G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. Genes Dev. 16, 1779–1791 (2002).References 36 and 37 show that two histone H3-K9 methyltransferases have distinct functions in mouse development. Suv39h methylates histones in heterochromatin and is dispensable for early development, whereas G9a methylates histones in euchromatin and is essential for early development.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Lachner, M., O'Carroll, D., Rea, S., Mechtler, K. & Jenuwein, T. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410, 116–120 (2001).

    CAS  PubMed  Google Scholar 

  39. Bannister, A. J. et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410, 120–124 (2001).

    CAS  PubMed  Google Scholar 

  40. Jones, D. O., Cowell, I. G. & Singh, P. B. Mammalian chromodomain proteins: their role in genome organisation and expression. Bioessays 22, 124–137 (2000).

    CAS  PubMed  Google Scholar 

  41. Surani, M. A., Barton, S. C. & Norris, M. L. Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature 308, 548–550 (1984).

    CAS  PubMed  Google Scholar 

  42. McGrath, J. & Solter, D. Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell 37, 179–183 (1984).

    CAS  PubMed  Google Scholar 

  43. Reik, W. & Walter, J. Genomic imprinting: parental influence on the genome. Nature Rev. Genet. 2, 21–32 (2001).

    CAS  PubMed  Google Scholar 

  44. Tremblay, K. D., Saam, J. R., Ingram, R. S., Tilghman, S. M. & Bartolomei, M. S. A paternal-specific methylation imprint marks the alleles of the mouse H19 gene. Nature Genet. 9, 407–413 (1995).

    CAS  PubMed  Google Scholar 

  45. Thorvaldsen, J. L., Duran, K. L. & Bartolomei, M. S. Deletion of the H19 differentially methylated domain results in loss of imprinted expression of H19 and Igf2. Genes Dev. 12, 3693–3702 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Yoon, B. J. et al. Regulation of DNA methylation of Rasgrf1. Nature Genet. 30, 92–96 (2002).

    CAS  PubMed  Google Scholar 

  47. Stoger, R. et al. Maternal-specific methylation of the imprinted mouse Igf2r locus identifies the expressed locus as carrying the imprinting signal. Cell 73, 61–71 (1993).

    CAS  PubMed  Google Scholar 

  48. Wutz, A. et al. Imprinted expression of the Igf2r gene depends on an intronic CpG island. Nature 389, 745–749 (1997).

    CAS  PubMed  Google Scholar 

  49. Shemer, R., Birger, Y., Riggs, A. D. & Razin, A. Structure of the imprinted mouse Snrpn gene and establishment of its parental-specific methylation pattern. Proc. Natl Acad. Sci. USA 94, 10267–10272 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Lee, J. et al. Erasing genomic imprinting memory in mouse clone embryos produced from day 11.5 primordial germ cells. Development 129, 1807–1817 (2002).

    CAS  PubMed  Google Scholar 

  51. Hajkova, P. et al. Epigenetic reprogramming in mouse primordial germ cells. Mech. Dev. (in the press).References 50 and 51 defined the embryonic stage when imprinting marks are erased in the germ cells.

  52. Bourc'his, D., Xu, G. L., Lin, C. S., Bollman, B. & Bestor, T. H. Dnmt3L and the establishment of maternal genomic imprints. Science 294, 2536–2539 (2001).

    CAS  PubMed  Google Scholar 

  53. Hata, K., Okano, M., Lei, H. & Li, E. Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice. Development 129, 1983–1993 (2002).

    CAS  PubMed  Google Scholar 

  54. Howell, C. Y. et al. Genomic imprinting disrupted by a maternal effect mutation in the Dnmt1 gene. Cell 104, 829–838 (2001).References 52 54 provide genetic evidence that Dnmt3a, Dnmt3b and Dnmt3l but not Dnmt1 are responsible for establishing the imprinting marks through de novo methylation in oocytes.

    CAS  PubMed  Google Scholar 

  55. Hazzouri, M. et al. Regulated hyperacetylation of core histones during mouse spermatogenesis: involvement of histone deacetylases. Eur. J. Cell Biol. 79, 950–960 (2000).

    CAS  PubMed  Google Scholar 

  56. Mayer, W., Niveleau, A., Walter, J., Fundele, R. & Haaf, T. Demethylation of the zygotic paternal genome. Nature 403, 501–502 (2000).

    CAS  PubMed  Google Scholar 

  57. Oswald, J. et al. Active demethylation of the paternal genome in the mouse zygote. Curr. Biol. 10, 475–478 (2000).

    CAS  PubMed  Google Scholar 

  58. Howlett, S. K. & Reik, W. Methylation levels of maternal and paternal genomes during preimplantation development. Development 113, 119–127 (1991).

    CAS  PubMed  Google Scholar 

  59. Kafri, T. et al. Developmental pattern of gene-specific DNA methylation in the mouse embryo and germ line. Genes Dev. 6, 705–714 (1992).

    CAS  PubMed  Google Scholar 

  60. Rougier, N. et al. Chromosome methylation patterns during mammalian preimplantation development. Genes Dev. 12, 2108–2113 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Santos, F., Hendrich, B., Reik, W. & Dean, W. Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev. Biol. 241, 172–182 (2002).

    CAS  PubMed  Google Scholar 

  62. Chapman, V., Forrester, L., Sanford, J., Hastie, N. & Rossant, J. Cell lineage-specific undermethylation of mouse repetitive DNA. Nature 307, 284–286 (1984).

    CAS  PubMed  Google Scholar 

  63. Rossant, J., Sanford, J. P., Chapman, V. M. & Andrews, G. K. Undermethylation of structural gene sequences in extraembryonic lineages of the mouse. Dev. Biol. 117, 567–573 (1986).

    CAS  PubMed  Google Scholar 

  64. Lei, H. et al. De novo DNA cytosine methyltransferase activities in mouse embryonic stem cells. Development 122, 3195–3205 (1996).

    CAS  PubMed  Google Scholar 

  65. Li, E., Beard, C. & Jaenisch, R. Role for DNA methylation in genomic imprinting. Nature 366, 362–365 (1993).

    CAS  PubMed  Google Scholar 

  66. Beard, C., Li, E. & Jaenisch, R. Loss of methylation activates Xist in somatic but not in embryonic cells. Genes Dev. 9, 2325–2334 (1995).

    CAS  PubMed  Google Scholar 

  67. Caspary, T., Cleary, M. A., Baker, C. C., Guan, X. J. & Tilghman, S. M. Multiple mechanisms regulate imprinting of the mouse distal chromosome 7 gene cluster. Mol. Cell. Biol. 18, 3466–3474 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Walsh, C. P., Chaillet, J. R. & Bestor, T. H. Transcription of IAP endogenous retroviruses is constrained by cytosine methylation. Nature Genet. 20, 116–117 (1998).

    CAS  PubMed  Google Scholar 

  69. Liang, G. et al. Cooperativity between DNA methyltransferases in the maintenance methylation of repetitive elements. Mol. Cell. Biol. 22, 480–491 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Rhee, I. et al. DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature 416, 552–556 (2002).

    CAS  PubMed  Google Scholar 

  71. McDowell, T. L. et al. Localization of a putative transcriptional regulator (ATRX) at pericentromeric heterochromatin and the short arms of acrocentric chromosomes. Proc. Natl Acad. Sci. USA 96, 13983–13988 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Gregory, R. I. et al. DNA methylation is linked to deacetylation of histone H3, but not H4, on the imprinted genes Snrpn and U2af1-rs1. Mol. Cell. Biol. 21, 5426–5436 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Grandjean, V., O'Neill, L., Sado, T., Turner, B. & Ferguson-Smith, A. Relationship between DNA methylation, histone H4 acetylation and gene expression in the mouse imprinted Igf2-H19 domain. FEBS Lett. 488, 165–169 (2001).

    CAS  PubMed  Google Scholar 

  74. Sleutels, F., Zwart, R. & Barlow, D. P. The non-coding Air RNA is required for silencing autosomal imprinted genes. Nature 415, 810–813 (2002).This study shows that a non-coding RNA is involved in regulating genomic imprinting.

    CAS  PubMed  Google Scholar 

  75. Avner, P. & Heard, E. X-chromosome inactivation: counting, choice and initiation. Nature Rev. Genet. 2, 59–67 (2001).

    CAS  PubMed  Google Scholar 

  76. Penny, G. D., Kay, G. F., Sheardown, S. A., Rastan, S. & Brockdorff, N. Requirement for Xist in X chromosome inactivation. Nature 379, 131–137 (1996).

    CAS  PubMed  Google Scholar 

  77. Marahrens, Y., Panning, B., Dausman, J., Strauss, W. & Jaenisch, R. Xist-deficient mice are defective in dosage compensation but not spermatogenesis. Genes Dev. 11, 156–166 (1997).

    CAS  PubMed  Google Scholar 

  78. Wutz, A. & Jaenisch, R. A shift from reversible to irreversible X inactivation is triggered during ES cell differentiation. Mol. Cell 5, 695–705 (2000).

    CAS  PubMed  Google Scholar 

  79. Lee, J. T., Davidow, L. S. & Warshawsky, D. Tsix, a gene antisense to Xist at the X-inactivation centre. Nature Genet. 21, 400–404 (1999).

    CAS  PubMed  Google Scholar 

  80. Luikenhuis, S., Wutz, A. & Jaenisch, R. Antisense transcription through the Xist locus mediates Tsix function in embryonic stem cells. Mol. Cell. Biol. 21, 8512–8520 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Sado, T., Wang, Z., Sasaki, H. & Li, E. Regulation of imprinted X-chromosome inactivation in mice by Tsix. Development 128, 1275–1286 (2001).

    CAS  PubMed  Google Scholar 

  82. Stavropoulos, N., Lu, N. & Lee, J. T. A functional role for Tsix transcription in blocking Xist RNA accumulation but not in X-chromosome choice. Proc. Natl Acad. Sci. USA 98, 10232–10237 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Lee, J. T. Disruption of imprinted X inactivation by parent-of-origin effects at Tsix. Cell 103, 17–27 (2000).

    CAS  PubMed  Google Scholar 

  84. Wutz, A., Rasmussen, T. P. & Jaenisch, R. Chromosomal silencing and localization are mediated by different domains of Xist RNA. Nature Genet. 30, 167–174 (2002).

    CAS  PubMed  Google Scholar 

  85. Beletskii, A., Hong, Y. K., Pehrson, J., Egholm, M. & Strauss, W. M. PNA interference mapping demonstrates functional domains in the noncoding RNA Xist. Proc. Natl Acad. Sci. USA 98, 9215–9220 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Boggs, B. A. et al. Differentially methylated forms of histone H3 show unique association patterns with inactive human X chromosomes. Nature Genet. 30, 73–76 (2002).

    CAS  PubMed  Google Scholar 

  87. Heard, E. et al. Methylation of histone H3 at Lys-9 is an early mark on the X chromosome during X inactivation. Cell 107, 727–738 (2001).References 86 and 87 show that H3-K9 methylation correlates with the inactive X, whereas H3-K4 methylation correlates with the active X. H3-K9 methylation is also an early event in the initiation of X inactivation.

    CAS  PubMed  Google Scholar 

  88. Sado, T. et al. X inactivation in the mouse embryo deficient for Dnmt1: distinct effect of hypomethylation on imprinted and random X inactivation. Dev. Biol. 225, 294–303 (2000).

    CAS  PubMed  Google Scholar 

  89. Brown, C. J. & Willard, H. F. The human X-inactivation centre is not required for maintenance of X-chromosome inactivation. Nature 368, 154–156 (1994).

    CAS  PubMed  Google Scholar 

  90. Csankovszki, G., Panning, B., Bates, B., Pehrson, J. R. & Jaenisch, R. Conditional deletion of Xist disrupts histone macroH2A localization but not maintenance of X inactivation. Nature Genet. 22, 323–324 (1999).

    CAS  PubMed  Google Scholar 

  91. Hansen, R. S. et al. Escape from gene silencing in ICF syndrome: evidence for advanced replication time as a major determinant. Hum. Mol. Genet. 9, 2575–2587 (2000).

    CAS  PubMed  Google Scholar 

  92. Jeppesen, P. & Turner, B. M. The inactive X chromosome in female mammals is distinguished by a lack of histone H4 acetylation, a cytogenetic marker for gene expression. Cell 74, 281–289 (1993).

    CAS  PubMed  Google Scholar 

  93. Csankovszki, G., Nagy, A. & Jaenisch, R. Synergism of Xist RNA, DNA methylation, and histone hypoacetylation in maintaining X chromosome inactivation. J. Cell Biol. 153, 773–784 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Wang, J. et al. Imprinted X inactivation maintained by a mouse Polycomb group gene. Nature Genet. 28, 371–375 (2001).This work shows that a Polycomb group gene is required for maintaining imprinted X inactivation.

    CAS  PubMed  Google Scholar 

  95. Wilmut, I., Schnieke, A. E., McWhir, J., Kind, A. J. & Campbell, K. H. Viable offspring derived from fetal and adult mammalian cells. Nature 385, 810–813 (1997).

    CAS  PubMed  Google Scholar 

  96. Wakayama, T., Perry, A. C., Zuccotti, M., Johnson, K. R. & Yanagimachi, R. Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 394, 369–374 (1998).

    CAS  PubMed  Google Scholar 

  97. Tanaka, S. et al. Placentomegaly in cloned mouse concepti caused by expansion of the spongiotrophoblast layer. Biol. Reprod. 65, 1813–1821 (2001).

    CAS  PubMed  Google Scholar 

  98. Tamashiro, K. L. et al. Cloned mice have an obese phenotype not transmitted to their offspring. Nature Med. 8, 262–267 (2002).

    CAS  PubMed  Google Scholar 

  99. Ogonuki, N. et al. Early death of mice cloned from somatic cells. Nature Genet. 30, 253–254 (2002).

    CAS  PubMed  Google Scholar 

  100. Tian, X. C., Xu, J. & Yang, X. Normal telomere lengths found in cloned cattle. Nature Genet. 26, 272–273 (2000).

    CAS  PubMed  Google Scholar 

  101. Kang, Y. K. et al. Aberrant methylation of donor genome in cloned bovine embryos. Nature Genet. 28, 173–177 (2001).

    CAS  PubMed  Google Scholar 

  102. Dean, W. et al. Conservation of methylation reprogramming in mammalian development: aberrant reprogramming in cloned embryos. Proc. Natl Acad. Sci. USA 98, 13734–13738 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Bourc'his, D. et al. Delayed and incomplete reprogramming of chromosome methylation patterns in bovine cloned embryos. Curr. Biol. 11, 1542–1546 (2001).

    CAS  PubMed  Google Scholar 

  104. Kang, Y. K. et al. Limited demethylation leaves mosaic-type methylation states in cloned bovine pre-implantation embryos. EMBO J. 21, 1092–1100 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Boiani, M., Eckardt, S., Scholer, H. R. & McLaughlin, K. J. Oct4 distribution and level in mouse clones: consequences for pluripotency. Genes Dev. 16, 1209–1219 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Niwa, H., Miyazaki, J. & Smith, A. G. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nature Genet. 24, 372–376 (2000).

    CAS  PubMed  Google Scholar 

  107. Inoue, K. et al. Faithful expression of imprinted genes in cloned mice. Science 295, 297 (2002).

    CAS  PubMed  Google Scholar 

  108. Rideout, W. M. III, Eggan, K. & Jaenisch, R. Nuclear cloning and epigenetic reprogramming of the genome. Science 293, 1093–1098 (2001).

    CAS  PubMed  Google Scholar 

  109. Hochedlinger, K. & Jaenisch, R. Monoclonal mice generated by nuclear transfer from mature B and T donor cells. Nature 415, 1035–1038 (2002).

    CAS  PubMed  Google Scholar 

  110. Rideout, W. M. III, Hochedlinger, K., Kyba, M., Daley, G. Q. & Jaenisch, R. Correction of a genetic defect by nuclear transplantation and combined cell and gene therapy. Cell 109, 17–27 (2002).This work shows the feasibility of therapeutic cloning in a mouse model.

    CAS  PubMed  Google Scholar 

  111. Tada, M., Takahama, Y., Abe, K., Nakatsuji, N. & Tada, T. Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Curr. Biol. 11, 1553–1558 (2001).

    CAS  PubMed  Google Scholar 

  112. Ying, Q. L., Nichols, J., Evans, E. P. & Smith, A. G. Changing potency by spontaneous fusion. Nature 416, 545–548 (2002).

    CAS  PubMed  Google Scholar 

  113. Jiang, Y. et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418, 41–49 (2002).

    CAS  PubMed  Google Scholar 

  114. Jones, P. A. & Baylin, S. B. The fundamental role of epigenetic events in cancer. Nature Rev. Genet. 3, 415–428 (2002).

    CAS  PubMed  Google Scholar 

  115. Okano, M., Xie, S. & Li, E. Dnmt2 is not required for de novo and maintenance methylation of viral DNA in embryonic stem cells. Nucleic Acids Res. 26, 2536–2540 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Hendrich, B., Hardeland, U., Ng, H. H., Jiricny, J. & Bird, A. The thymine glycosylase MBD4 can bind to the product of deamination at methylated CpG sites. Nature 401, 301–304 (1999).

    CAS  PubMed  Google Scholar 

  117. Riccio, A. et al. The DNA repair gene MBD4 (MED1) is mutated in human carcinomas with microsatellite instability. Nature Genet. 23, 266–268 (1999).

    CAS  PubMed  Google Scholar 

  118. Prokhortchouk, A. et al. The p120 catenin partner Kaiso is a DNA methylation-dependent transcriptional repressor. Genes Dev. 15, 1613–1618 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Wang, H. et al. Purification and functional characterization of a histone H3-lysine 4-specific methyltransferase. Mol. Cell 8, 1207–1217 (2001).

    CAS  PubMed  Google Scholar 

  120. Nishioka, K. et al. Set9, a novel histone H3 methyltransferase that facilitates transcription by precluding histone tail modifications required for heterochromatin formation. Genes Dev. 16, 479–489 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Rea, S. et al. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406, 593–599 (2000).

    CAS  PubMed  Google Scholar 

  122. Yang, L. et al. Molecular cloning of ESET, a novel histone H3-specific methyltransferase that interacts with ERG transcription factor. Oncogene 21, 148–152 (2002).

    CAS  PubMed  Google Scholar 

  123. Schultz, D. C., Ayyanathan, K., Negorev, D., Maul, G. G. & Rauscher, F. J. III . SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins. Genes Dev. 16, 919–932 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Ogawa, H., Ishiguro, K., Gaubatz, S., Livingston, D. M. & Nakatani, Y. A complex with chromatin modifiers that occupies E2F- and Myc-responsive genes in G0 cells. Science 296, 1132–1136 (2002).

    CAS  PubMed  Google Scholar 

  125. Peterson, C. L. Chromatin remodeling: nucleosomes bulging at the seams. Curr. Biol. 12, R245–R247 (2002).

    CAS  PubMed  Google Scholar 

  126. Reyes, J. C. et al. Altered control of cellular proliferation in the absence of mammalian brahma (SNF2α). EMBO J. 17, 6979–6991 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Roberts, C. W., Galusha, S. A., McMenamin, M. E., Fletcher, C. D. & Orkin, S. H. Haploinsufficiency of Snf5 (integrase interactor 1) predisposes to malignant rhabdoid tumors in mice. Proc. Natl Acad. Sci. USA 97, 13796–13800 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Kim, J. K. et al. Srg3, a mouse homolog of yeast SWI3, is essential for early embryogenesis and involved in brain development. Mol. Cell. Biol. 21, 7787–7795 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I am indebted to members of my lab for stimulating discussion and comments on the manuscript and to many colleagues in the field for discussion during the preparation of this review. Research in my laboratory is supported by the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

LocusLink

Air

ATRX

Brg1

Brm

CBP

DNMT1

Dnmt1

Dnmt2

Dnmt3a

DNMT3B

Dnmt3b

Dnmt3l

Eed

ESET

Ezh2

G9a

Gcn5

GFAP

H19

Hdac1

Igf2

Kaiso

Lsh

MBD1

MBD2

Mbd2

MBD3

Mbd3

MBD4

MECP2

Mecp2

Mi-2

Oct4

p160

p300

PCAF

Peg1

Peg3

Rasgrf1

SetDB1

Sin3a

STAT3

Suv39h1

Suv39h2

Tsix

U2af1-rs1

Ube3a

Xist

YY1

Yy1

OMIM

α-thalassaemia

ICF syndrome

Rett syndrome

The <i>Arabidopsis</i> Information Resource

DDM1

Glossary

HISTONES

Small, highly conserved basic proteins, found in the chromatin of all eukaryotic cells, which associate with DNA to form a nucleosome.

CORE HISTONES

These are histones H2A, H2B, H3 and H4. A nucleosome contains two copies of each of the core histones wrapped by 146-bp DNA.

EUCHROMATIN

The lightly staining regions of the nucleus that generally contain decondensed, transcriptionally active regions of the genome.

HETEROCHROMATIN

A cytologically defined genomic component that contains repetitive DNA (highly repetitive satellite DNA, transposable elements and ribosomal DNA gene clusters) and some protein-coding genes.

EPIGENETIC

Any heritable influence (in the progeny of cells or of individuals) on chromosome or gene function that is not accompanied by a change in DNA sequence. Examples of epigenetic events include mammalian X-chromosome inactivation, imprinting, centromere inactivation and position effect variegation.

CHROMATIN MODIFICATION

Includes processes such as DNA methylation and histone modification (acetylation, phosphorylation, methylation and ubiquitylation).

CHROMATIN REMODELLING

Transient changes in chromatin accessibility.

NUCLEOSOME

The fundamental unit into which DNA and histones are packaged in eukaryotic cells. It is the basic structural subunit of chromatin and consists of 200 bp of DNA and an octamer of histone proteins, comprising two of each core histone.

SET DOMAIN

(Suvar3–9, Enhancer-of-zeste, Trithorax) domain. An evolutionarily conserved sequence motif that was initially identified in the Drosophila position effect variegation suppressor Su(var)3–9, the Polycomb-group protein Enhancer-of-zeste, and the Trithorax-group protein Trithorax. It is present in many histone methyltransferases and is required for enzyme activity.

HETEROCHROMATIN PROTEIN 1

(HP1). A protein that binds to highly repetitive, heterochromatic satellite DNA at centromeres and telomeres.

CHROMODOMAIN

A highly conserved sequence motif that has been identified in various animal and plant species. Chromodomain proteins are often structural components of large macromolecular chromatin complexes or are involved in remodelling chromatin structure.

GASTRULATION

A morphogenetic process that leads to the formation of the mesoderm layer between the endoderm and ectoderm layers and to the formation of embryonic body patterns.

DIFFERENTIALLY METHYLATED REGION

(DMR). DNA segments in imprinted genes that show different methylation patterns between paternal and maternal alleles. Some DMRs acquire DNA methylation in the germ cells, whereas others acquire DNA methylation during embryogenesis.

PRONUCLEUS

The sperm nucleus or the egg nucleus in a fertilized egg before a single nucleus forms.

BLASTOCYST

A pre-implantation embryo that contains a fluid-filled cavity called a blastocoel.

INNER CELL MASS

(ICM). A small clump of apparently undifferentiated cells in the blastocyst, which gives rise to the entire fetus and some of its extra-embryonic membranes.

TROPHOBLAST

The post-implantation derivatives of the trophectoderm, which make up most of the fetal part of the placenta.

PRIMITIVE ENDODERM

An early differentiated cell type that lines the inner surface of the blastocyst cavity. It gives rise to the endoderm component of the extra-embryonic membranes.

YOLK SAC

An extra-embryonic membrane that consists of an outer endoderm layer and an inner mesoderm layer, which surrounds the developing embryo.

TROPHECTODERM

The outer epithelial layer of the blastocyst.

PLURIPOTENCY

The ability of a cell to contribute to several tissues in a developing organism. If a cell is able to contribute to all tissues, it is said to be totipotent.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, E. Chromatin modification and epigenetic reprogramming in mammalian development. Nat Rev Genet 3, 662–673 (2002). https://doi.org/10.1038/nrg887

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg887

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing