Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

The role of de novo mutations in the genetics of autism spectrum disorders

Abstract

The identification of the genetic components of autism spectrum disorders (ASDs) has advanced rapidly in recent years, particularly with the demonstration of de novo mutations as an important source of causality. We review these developments in light of genetic models for ASDs. We consider the number of genetic loci that underlie ASDs and the relative contributions from different mutational classes, and we discuss possible mechanisms by which these mutations might lead to dysfunction. We update the two-class risk genetic model for autism, especially in regard to children with high intelligence quotients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A unified two-class risk model and its consequences for the composition of a simplex collection.
Figure 2: Differential signal of de novo mutations in affected and unaffected siblings.
Figure 3: Estimates of ASD gene target sizes.
Figure 4: Non-verbal IQ in SSC studies by gender and mutational type.

Similar content being viewed by others

References

  1. Fombonne, E. Epidemiology of pervasive developmental disorders. Pediatr. Res. 65, 591–598 (2009).

    Article  Google Scholar 

  2. Muhle, R., Trentacoste, S. V. & Rapin, I. The genetics of autism. Pediatrics 113, e472–e486 (2004).

    Article  Google Scholar 

  3. Newschaffer, C. J. et al. The epidemiology of autism spectrum disorders. Annu. Rev. Publ. Health 28, 235–258 (2007).

    Article  Google Scholar 

  4. Power, R. A. et al. Fecundity of patients with schizophrenia, autism, bipolar disorder, depression, anorexia nervosa, or substance abuse versus their unaffected siblings. JAMA Psychiatry 70, 22–30 (2013)

    Article  Google Scholar 

  5. Ku, C. S. et al. A new paradigm emerges from the study of de novo mutations in the context of neurodevelopmental disease. Mol. Psychiatry 18, 141–153 (2013).

    Article  CAS  Google Scholar 

  6. Bailey, A. et al. Autism as a strongly genetic disorder: evidence from a British twin study. Psych Med. 25, 63–77 (1995).

    Article  CAS  Google Scholar 

  7. Rosenberg, R. E. et al. Characteristics and concordance of autism spectrum disorders among 277 twin pairs. Arch. Pediatr. Adolesc. Med. 163, 907–914 (2009).

    Article  Google Scholar 

  8. Constantino, J. N., Zhang, Y., Frazier, T., Abbacchi, A. M. & Law, P. Sibling recurrence and the genetic epidemiology of autism. Am. J. Psychiatry 167, 1349–1356 (2010).

    Article  Google Scholar 

  9. Amir, R. E. et al. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nature Genet. 23, 185–188 (1999).

    Article  CAS  Google Scholar 

  10. Fu, Y. H. et al. Variation of the CGG repeat at the fragile X site results in genetic instability: resolution of the Sherman paradox. Cell 67, 1047–1058 (1991).

    Article  CAS  Google Scholar 

  11. Verkerk, A. J. et al. Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell 65, 905–914 (1991).

    Article  CAS  Google Scholar 

  12. Klei, L. et al. Common genetic variants, acting additively, are a major source of risk for autism. Mol. Autism 3, 9 (2012).

    Article  Google Scholar 

  13. Lee, S. H. et al. Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nature Genet. 45, 984–994 (2013).

    Article  CAS  Google Scholar 

  14. Devlin, B. & Scherer, S. W. Genetic architecture in autism spectrum disorder. Curr. Opin. Genet. Dev. 22, 229–237 (2012).

    Article  CAS  Google Scholar 

  15. Marshall, C. R. et al. Structural variation of chromosomes in autism spectrum disorder. Am. J. Hum. Genet. 82, 477–488 (2008).

    Article  CAS  Google Scholar 

  16. Sebat, J. et al. Strong association of de novo copy number mutations with autism. Science 316, 445–449 (2007).

    Article  CAS  Google Scholar 

  17. Veltman, J. A. & Brunner, H. G. De novo mutations in human genetic disease. Nature Rev. Genet. 13, 565–575 (2012).

    Article  CAS  Google Scholar 

  18. Ozonoff, S. et al. Recurrence risk for autism spectrum disorders: a Baby Siblings Research Consortium study. Pediatrics 128, e488–e495 (2011).

    PubMed  PubMed Central  Google Scholar 

  19. Jorde, L. B. et al. Complex segregation analysis of autism. Am. J. Hum. Genet. 49, 932–938 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Risch, N. et al. A genomic screen of autism: evidence for a multilocus etiology. Am. J. Hum. Genet. 65, 493–507 (1999).

    Article  CAS  Google Scholar 

  21. Zhao, X. et al. A unified genetic theory for sporadic and inherited autism. Proc. Natl Acad. Sci. USA 104, 12831–12836 (2007).

    Article  CAS  Google Scholar 

  22. Fischbach, G. D. & Lord, C. The Simons Simplex Collection: a resource for identification of autism genetic risk factors. Neuron 68, 192–195 (2010).

    Article  CAS  Google Scholar 

  23. Geschwind, D. H. et al. The autism genetic resource exchange: a resource for the study of autism and related neuropsychiatric conditions. Am. J. Hum. Genet. 69, 463–466 (2001).

    Article  CAS  Google Scholar 

  24. Robinson, E. B., Lichtenstein, P., Anckarsater, H., Happe, F. & Ronald, A. Examining and interpreting the female protective effect against autistic behavior. Proc. Natl Acad. Sci. USA 110, 5258–5262 (2013).

    Article  CAS  Google Scholar 

  25. Iafrate, A. J. et al. Detection of large-scale variation in the human genome. Nature Genet. 36, 949–951 (2004).

    Article  CAS  Google Scholar 

  26. Sebat, J. et al. Large-scale copy number polymorphism in the human genome. Science 305, 525–528 (2004).

    Article  CAS  Google Scholar 

  27. Levy, D. et al. Rare de novo and transmitted copy-number variation in autistic spectrum disorders. Neuron 70, 886–897 (2011).

    Article  CAS  Google Scholar 

  28. Pinto, D. et al. Functional impact of global rare copy number variation in autism spectrum disorders. Nature 466, 368–372 (2010).

    Article  CAS  Google Scholar 

  29. Sanders, S. J. et al. Multiple recurrent de novo CNVs, including duplications of the 7q11.23 Williams Syndrome region, are strongly associated with autism. Neuron 70, 863–885 (2011).

    Article  CAS  Google Scholar 

  30. Lee, Y. H. et al. Reducing system noise in copy number data using principal components of self–self hybridizations. Proc. Natl Acad. Sci. USA 109, E103–E110 (2012).

    Article  CAS  Google Scholar 

  31. Bamshad, M. J. et al. Exome sequencing as a tool for Mendelian disease gene discovery. Nature Rev. Genet. 12, 745–755 (2011).

    Article  CAS  Google Scholar 

  32. Hodges, E. et al. Genome-wide in situ exon capture for selective resequencing. Nature Genet. 39, 1522–1527 (2007).

    Article  CAS  Google Scholar 

  33. Ng, S. B. et al. Targeted capture and massively parallel sequencing of 12 human exomes. Nature 461, 272–276 (2009).

    Article  CAS  Google Scholar 

  34. Iossifov, I. et al. De novo gene disruptions in children on the autistic spectrum. Neuron 74, 285–299 (2012).

    Article  CAS  Google Scholar 

  35. Neale, B. M. et al. Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature 485, 242–245 (2012).

    Article  CAS  Google Scholar 

  36. O'Roak, B. J. et al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature 485, 246–250 (2012).

    Article  CAS  Google Scholar 

  37. Sanders, S. J. et al. De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature 485, 237–241 (2012).

    Article  CAS  Google Scholar 

  38. Lundstrom, S. et al. Trajectories leading to autism spectrum disorders are affected by paternal age: findings from two nationally representative twin studies. J. Child Psychol. Psychiatry 51, 850–856 (2010).

    Article  Google Scholar 

  39. Waller, D. K. et al. The population-based prevalence of achondroplasia and thanatophoric dysplasia in selected regions of the US. Am. J. Med. Genet. A 146A, 2385–2389 (2008).

    Article  CAS  Google Scholar 

  40. Zammit, S. et al. Paternal age and risk for schizophrenia. Br. J. Psychiatry 183, 405–408 (2003).

    Article  Google Scholar 

  41. Kong, A. et al. Rate of de novo mutations and the importance of father's age to disease risk. Nature 488, 471–475 (2012).

    Article  CAS  Google Scholar 

  42. Gilman, S. R. et al. Rare de novo variants associated with autism implicate a large functional network of genes involved in formation and function of synapses. Neuron 70, 898–907 (2011).

    Article  CAS  Google Scholar 

  43. O'Roak, B. J. et al. Multiplex targeted sequencing identifies recurrently mutated genes in autism spectrum disorders. Science 338, 1619–1622 (2012).

    Article  CAS  Google Scholar 

  44. Darnell, J. C. et al. FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell 146, 247–261 (2011).

    Article  CAS  Google Scholar 

  45. Auerbach, B. D., Osterweil, E. K. & Bear, M. F. Mutations causing syndromic autism define an axis of synaptic pathophysiology. Nature 480, 63–68 (2011).

    Article  CAS  Google Scholar 

  46. Bear, M. F., Huber, K. M. & Warren, S. T. The mGluR theory of fragile X mental retardation. Trends Neurol. 27, 370–377 (2004).

    Article  CAS  Google Scholar 

  47. Gregg, C., Zhang, J., Butler, J. E., Haig, D. & Dulac, C. Sex-specific parent-of-origin allelic expression in the mouse brain. Science 329, 682–685 (2010).

    Article  CAS  Google Scholar 

  48. DeVeale, B., van der Kooy, D. & Babak, T. Critical evaluation of imprinted gene expression by RNA-seq: a new perspective. PLoS Genet. 8, e1002600 (2012).

    Article  CAS  Google Scholar 

  49. Barlow, D. P. Genomic imprinting: a mammalian epigenetic discovery model. Ann. Rev. Genet. 45, 379–403 (2011).

    Article  CAS  Google Scholar 

  50. Cantor, R. M. et al. Replication of autism linkage: fine-mapping peak at 17q21. Am. J. Hum. Genet. 76, 1050–1056 (2005).

    Article  CAS  Google Scholar 

  51. Chen, G. K., Kono, N., Geschwind, D. H. & Cantor, R. M. Quantitative trait locus analysis of nonverbal communication in autism spectrum disorder. Mol. Psych 11, 214–220 (2006).

    Article  CAS  Google Scholar 

  52. McCauley, J. L. et al. Genome-wide and ordered-subset linkage analyses provide support for autism loci on 17q and 19p with evidence of phenotypic and interlocus genetic correlates. BMC Med. Genet. 6, 1 (2005).

    Article  Google Scholar 

  53. Ylisaukko-oja, T. et al. Search for autism loci by combined analysis of Autism Genetic Resource Exchange and Finnish families. Ann. Neurol. 59, 145–155 (2006).

    Article  Google Scholar 

  54. Anney, R. et al. A genomewide scan for common alleles affecting risk for autism. Hum. Mol. Genet. 19, 4072–4082 (2010).

    Article  CAS  Google Scholar 

  55. Wang, K. et al. Common genetic variants on 5p14.1 associate with autism spectrum disorders. Nature 459, 528–533 (2009).

    Article  CAS  Google Scholar 

  56. Weiss, L. A., Arking, D. E., Daly, M. J. & Chakravarti, A. A genome-wide linkage and association scan reveals novel loci for autism. Nature 461, 802–808 (2009).

    Article  CAS  Google Scholar 

  57. Murdoch, J. D. & State, M. W. Recent developments in the genetics of autism spectrum disorders. Curr. Opin. Genet. Dev. 23, 310–315 (2013).

    Article  CAS  Google Scholar 

  58. Davies, G. et al. Genome-wide association studies establish that human intelligence is highly heritable and polygenic. Mol. Psychiatry 16, 996–1005 (2011).

    Article  CAS  Google Scholar 

  59. Yang, J. et al. Common SNPs explain a large proportion of the heritability for human height. Nature Genet. 42, 565–569 (2010).

    Article  CAS  Google Scholar 

  60. Lim, E. T. et al. Rare complete knockouts in humans: population distribution and significant role in autism spectrum disorders. Neuron 77, 235–242 (2013).

    Article  CAS  Google Scholar 

  61. Girirajan, S. & Eichler, E. E. Phenotypic variability and genetic susceptibility to genomic disorders. Hum. Mol. Genet. 19, R176–R187 (2010).

    Article  CAS  Google Scholar 

  62. Hallmayer, J. et al. Genetic heritability and shared environmental factors among twin pairs with autism. Arch. Gen. Psychiatry 68, 1095–1102 (2011).

    Article  Google Scholar 

  63. Talkowski, M. E. et al. Sequencing chromosomal abnormalities reveals neurodevelopmental loci that confer risk across diagnostic boundaries. Cell 149, 525–537 (2012).

    Article  CAS  Google Scholar 

  64. Evrony, G. D. et al. Single-neuron sequencing analysis of L1 retrotransposition and somatic mutation in the human brain. Cell 151, 483–496 (2012).

    Article  CAS  Google Scholar 

  65. Hancks, D. C. & Kazazian, H. H. Jr. Active human retrotransposons: variation and disease. Curr. Opin. Genet. Dev. 22, 191–203 (2012).

    Article  CAS  Google Scholar 

  66. Dunham, I. et al. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

    Article  CAS  Google Scholar 

  67. Lindhurst, M. J. et al. A mosaic activating mutation in AKT1 associated with the Proteus syndrome. New Engl. J. Med. 365, 611–619 (2011).

    Article  CAS  Google Scholar 

  68. Feldman, I., Rzhetsky, A. & Vitkup, D. Network properties of genes harboring inherited disease mutations. Proc. Natl Acad. Sci. USA 105, 4323–4328 (2008).

    Article  CAS  Google Scholar 

  69. Blake, J. A., Bult, C. J., Kadin, J. A., Richardson, J. E. & Eppig, J. T. The Mouse Genome Database (MGD): premier model organism resource for mammalian genomics and genetics. Nucleic Acids Res. 39, D842–D848 (2011).

    Article  CAS  Google Scholar 

  70. Bayes, A. et al. Characterization of the proteome, diseases and evolution of the human postsynaptic density. Nature Neurosci. 14, 19–21 (2011).

    Article  CAS  Google Scholar 

  71. Voineagu, I. et al. Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature 474, 380–384 (2011).

    Article  CAS  Google Scholar 

  72. Ashburner, M. et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nature Genet. 25, 25–29 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Wigler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Coincident mutations

Mutations in both alleles at a given locus.

Comparative genomic hybridization

(CGH). A microarray-based technique for identifying large deletions or duplications in the genome.

Concordance

The probability that multiple siblings are affected given that one of them is already known to be affected.

Copy number variants

(CNVs). Large deletions or duplications that either alter the number of copies of genes or disrupt the function of genes.

De novo mutations

New mutations that arise either in the parental germ line or somatically.

Dosage sensitivity

A defining feature of phenotypes that result from heterozygous mutation.

Gender bias

The phenomenon whereby four times as many males are affected by autism spectrum disorders compared with females, with a male:female ratio of nearly 6:1 among individuals who are diagnosed as being high functioning.

High-risk families

Families that contain a highly penetrant segregating risk allele for autism spectrum disorders.

Insertions and deletions

(Indels). Small insertions or deletions in the genome that are generally <10 bp.

Loss-of-function mutations

In the context of this article, events that result in a nonsense allele or that change the reading frame.

Low-risk families

Families that do not contain a segregating risk allele for autism spectrum disorders (ASDs) and that are only at risk of ASDs in cases of de novo mutation.

Monoallelic

Pertaining to the expression of only one allele at a given locus.

Multiplex families

Families with multiple affected children.

Neuroplasticity

The dynamic state of the brain, which enables it to respond to changes in environment and development.

Penetrant

Pertaining to the probability that an individual with a given mutation will be affected by the corresponding condition.

Recurrence

Independent mutational 'hits' within a given gene in unrelated individuals.

Sibling risk

The probability that a sibling of an affected child will also be affected.

Simplex families

Families with only one affected child; all other children (if any) of these families are unaffected.

Transmitted

Inheritance of a mutant allele from a parent, who may be phenotypically normal owing to gender bias.

Trios

Family units that consist of both parents and one child in each unit.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ronemus, M., Iossifov, I., Levy, D. et al. The role of de novo mutations in the genetics of autism spectrum disorders. Nat Rev Genet 15, 133–141 (2014). https://doi.org/10.1038/nrg3585

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg3585

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing