Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Network medicine: a network-based approach to human disease

Key Points

  • A disease phenotype is rarely a consequence of an abnormality in a single effector gene product, but reflects various pathobiological processes that interact in a complex network.

  • Here we present an overview of the organizing principles that govern cellular networks and the implications of these principles for understanding disease. Network-based approaches have potential biological and clinical applications, from the identification of disease genes to better drug targets.

  • Whereas essential genes tend to be associated with hubs, or highly connected proteins, disease genes tend to segregate at the network's functional periphery, avoiding hubs.

  • Disease genes have a high propensity to interact with each other, forming disease modules. The identification of these disease modules can help us to identify disease pathways and predict other disease genes.

  • The highly interconnected nature of the interactome means that, at the molecular level, it is difficult to consider diseases as being independent of one another. The mapping of network-based dependencies between pathophenotypes has culminated in the concept of the diseasome, which represents disease maps whose nodes are diseases and whose links represent various molecular relationships between the disease-associated cellular components.

  • Diseases linked at the molecular level tend to show detectable comorbidity.

  • Network medicine has important applications to drug design, leading to the emergence of network pharmacology, and also in disease classification.

Abstract

Given the functional interdependencies between the molecular components in a human cell, a disease is rarely a consequence of an abnormality in a single gene, but reflects the perturbations of the complex intracellular and intercellular network that links tissue and organ systems. The emerging tools of network medicine offer a platform to explore systematically not only the molecular complexity of a particular disease, leading to the identification of disease modules and pathways, but also the molecular relationships among apparently distinct (patho)phenotypes. Advances in this direction are essential for identifying new disease genes, for uncovering the biological significance of disease-associated mutations identified by genome-wide association studies and full-genome sequencing, and for identifying drug targets and biomarkers for complex diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Disease and essential genes in the interactome.
Figure 2: Disease modules.
Figure 3: Identifying and validating disease modules.
Figure 4: Identifying disease gene candidates.
Figure 5: Disease networks.

Similar content being viewed by others

References

  1. Zhao, Y. & Jensen, O. N. Modification-specific proteomics: strategies for characterization of post-translational modifications using enrichments techniques. Proteomics 9, 4632–4641 (2009).

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Venkatesan, K. et al. An empirical framework for binary interactome mapping. Nature Methods 6, 83–90 (2008).

    PubMed Central  PubMed  Google Scholar 

  3. Goldstein, D. B. Common genetic variation and human traits. N. Engl. J. Med. 360, 1696–1698 (2009).

    CAS  PubMed  Google Scholar 

  4. Schadt, E. E. Molecular networks as sensors and drivers of common human diseases. Nature 461, 218–223 (2009).

    CAS  PubMed  Google Scholar 

  5. Barabási, A.-L. Network medicine — from obesity to the “diseasome”. N. Engl. J. Med. 357, 404–407 (2007).

    PubMed  Google Scholar 

  6. Pawson, T. & Linding, R. Network medicine. FEBS Lett. 582, 1266–1270 (2008).

    CAS  PubMed  Google Scholar 

  7. Zanzoni, A., Soler- López, M. & Aloy, P. A network medicine approach to human disease. FEBS Lett. 583, 1759–1765 (2009).

    CAS  PubMed  Google Scholar 

  8. Ideker, T. & Sharan, R. Protein networks in disease. Genome Res. 18, 644–652 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Rual, J.-F. et al. Towards a proteome-scale map of the human protein–protein interaction network. Nature 437, 1173–1178 (2005).

    CAS  PubMed  Google Scholar 

  10. Stelzl, U. et al. A human protein-protein interaction network: a resource for annotating the proteome. Cell 122, 957–968 (2005).

    CAS  PubMed  Google Scholar 

  11. Jeong, H. et al. The large-scale organization of metabolic networks. Nature 407, 651–654 (2000).

    CAS  PubMed  Google Scholar 

  12. Fell, D. A. & Wagner, A. The small world of metabolism. Nature Biotech. 18, 1121–1122 (2000).

    CAS  Google Scholar 

  13. Duarte, N. C. et al. Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc. Natl Acad. Sci. USA 104, 1777–1782 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Carninci, P. et al. The transcriptional landscape of the mammalian genome. Science 309, 1559–1563 (2005).

    CAS  PubMed  Google Scholar 

  15. Linding, R. et al. NetworKIN: a resource for exploring cellular phosphorylation networks. Nucleic Acids Res. 36, D695–D699 (2008).

    CAS  PubMed  Google Scholar 

  16. Lewis, B. P., Burge, C. B. & Bartel, D. P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microrna targets. Cell 120, 15–20 (2005).

    CAS  PubMed  Google Scholar 

  17. Reynolds, A. et al. Rational siRNA design for RNA interference. Nature Biotech. 22, 326–330 (2004).

    CAS  Google Scholar 

  18. Stuart, J. M. et al. A Gene-coexpression network for global discovery of conserved genetic modules. Science 302, 249–255 (2003).

    CAS  PubMed  Google Scholar 

  19. Boone, C., Bussey, H. & Andrews, B. J. Exploring genetic interactions and networks with yeast. Nature Rev. Genet. 8, 437–449 (2007).

    CAS  PubMed  Google Scholar 

  20. Beltrao, P., Cagney, G. & Krogan, N. Quantitative genetic interactions reveal biological modularity. Cell 141, 739–745 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Reverter, A., Ingham, A. & Dalrymple, B. P. Mining tissue specificity, gene connectivity and disease association to reveal a set of genes that modify the action of disease causing genes. BioData Min. 1, 8 (2008).

    PubMed Central  PubMed  Google Scholar 

  22. Lage, K. et al. A large-scale analysis of tissue-specific pathology and gene expression of human disease genes and complexes. Proc. Natl Acad. Sci. USA 105, 20870–20875 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Lage, K. et al. Dissecting spatio-temporal protein networks driving human heart development and related disorders. Mol. Syst. Biol. 6, 381 (2010).

    PubMed Central  PubMed  Google Scholar 

  24. Schwartz, A. S., Yu, J., Gardenour, K. R., Finley, R. L. & Ideker, T. Cost-effective strategies for completing the interactome. Nature Methods 6, 55–61 (2009).

    CAS  PubMed  Google Scholar 

  25. Yu, H. et al. High-quality binary protein interaction map of the yeast interactome network. Science 322, 104–110 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Kirouac, D. et al. Dynamic interaction networks in a hierarchically organized tissue. Mol. Syst. Biol. 6, 417 (2010).

    PubMed Central  PubMed  Google Scholar 

  27. Barabási, A.-L. & Oltvai, Z. Network biology: understanding the cell's functional organization. Nature Rev. Genet. 5, 101–113 (2004).

    PubMed  Google Scholar 

  28. Albert, R. & Barabási, A.-L. Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2002).

    Google Scholar 

  29. Zhu, X., Gerstein, M. & Snyder, M. Getting connected: analysis and principles of biological networks. Genes Dev. 21, 1010–1024 (2007).

    CAS  PubMed  Google Scholar 

  30. Caldarelli, G. Scale Free Networks (Oxford Univ. Press, UK, 2007).

    Google Scholar 

  31. Albert, R. Scale-free networks in cell biology. J. Cell Sci. 118, 4947–4957 (2005).

    CAS  PubMed  Google Scholar 

  32. Newman, M., Barabási, A.-L. & Watts, D. J. The Structure and Dynamics of Networks (Princeton Univ. Press, USA, 2006).

    Google Scholar 

  33. Amberger, J., Bocchini, C. A., Scott, A. F. & Hamosh, A. McKusick's Online Mendelian Inheritance in Man (OMIM®). Nucleic Acids Res. 37, D793–D796 (2009).

    CAS  PubMed  Google Scholar 

  34. Jeong, H. et al. Lethality and centrality in protein networks. Nature 411, 41–42 (2001).

    CAS  PubMed  Google Scholar 

  35. Fraser, H. B. et al. Evolutionary rate in the protein interaction network. Science 296, 750–752 (2002).

    CAS  PubMed  Google Scholar 

  36. Eisenberg, E. & Levanon, E. Y. Preferential attachment in the protein network evolution. Phys. Rev. Lett. 91, 138701 (2003).

    PubMed  Google Scholar 

  37. Saeed, R. & Deane, C. M. Protein protein interactions, evolutionary rate, abundance and age. BMC Bioinformatics 7, 128 (2006).

    PubMed Central  PubMed  Google Scholar 

  38. Jordan, I. K., Wolf, Y. I. & Koonin, E. V. No simple dependence between protein evolution rate and the number of protein-protein interactions: only the most prolific interactors tend to evolve slowly. BMC Evol. Biol. 3, 5 (2003).

    PubMed Central  Google Scholar 

  39. Wachi, S., Yoneda, K. & Wu, R. Interactome-transcriptome analysis reveals the high centrality of genes differentially expressed in lung cancer tissues. Bioinformatics 21, 4205–4208 (2005).

    CAS  PubMed  Google Scholar 

  40. Jonsson, P. F. & Bates, P. A. Global topological features of cancer proteins in the human interactome. Bioinformatics 22, 2291–2297 (2006).

    CAS  PubMed  Google Scholar 

  41. Xu, J. & Li, Y. Discovering disease-genes by topological features in human protein–protein interaction network. Bioinformatics 22, 2800–2805 (2006). This paper shows that disease genes can be discovered by exploiting the topological features of the protein–protein interaction network.

    CAS  PubMed  Google Scholar 

  42. Goh, K.-I. et al. The human disease network. Proc. Natl Acad. Sci. USA 104, 8685–8690 (2007). This paper builds the first disease network by linking diseases that share disease genes, and it shows that most disease genes are non-essential and are not encoded by hub proteins.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Feldman, I., Rzhetsky, A. & Vitkup, D. Network properties of genes harboring inherited disease mutations. Proc. Natl Acad. Sci. USA 105, 4323–4328 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Hartwell, L. H., Hopfield, J. J. & Murray, A. W. From molecular to modular cell biology. Nature 402, C47–C52 (1999).

    CAS  PubMed  Google Scholar 

  45. Oti, M. et al. Predicting disease genes using protein-protein interactions. J. Med. Genet. 43, 691–698 (2006). This paper explores the degree to which proteins linked to known disease genes are also associated with the same phenotype.

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Gandhi, T. et al. Analysis of the human protein interactome and comparison with yeast, worm and fly interaction datasets. Nature Genet. 38, 285–293 (2006).

    CAS  PubMed  Google Scholar 

  47. Girvan, M. & Newman, M. E. Community structure in social and biological networks. Proc. Natl Acad. Sci. USA 99, 7821–7826 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Palla, G., Derényi, I., Farkas, I. & Vicsek, T. Uncovering the overlapping community structure of complex networks in nature and society. Nature 435, 814–818 (2005).

    CAS  PubMed  Google Scholar 

  49. Ahn, Y.-Y., Bagrow, J. P. & Lehmann, S. Link communities reveal multiscale complexity in networks. Nature 466, 761–764 (2010).

    CAS  PubMed  Google Scholar 

  50. Enright, A. J., Van Dongen, S. & Ouzounis, C. A. An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res. 30, 1575–1584 (2002).

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Ravasz, E., Somera, A. L., Mongru, D. A., Oltvai, Z. N. & Barabási, A.-L. Hierarchical organization of modularity in metabolic networks. Science 297, 1551–1555 (2002).

    CAS  PubMed  Google Scholar 

  52. Wood, L. D. et al. The genomic landscapes of human breast and colorectal cancers. Science 318, 1108–1113 (2007).

    CAS  PubMed  Google Scholar 

  53. Hirschhorn, J. N. Genomewide association studies — illuminating biologic pathways. N. Engl. J. Med. 360, 1699–1701 (2009).

    CAS  PubMed  Google Scholar 

  54. Krauthammer, M. et al. Molecular triangulation: bridging linkage and molecular-network information for identifying candidate genes in Alzheimer's disease. Proc. Natl Acad. Sci. USA 101, 15148–15153 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Franke, L. et al. Reconstruction of a functional human gene network, with an application for prioritizing positional candidate genes. Am. J. Hum. Genet. 78, 1011–1025 (2006).

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Iossifov, I., Zheng, T., Baron, M., Gilliam T. C. & Rzhetsky, A. Genetic-linkage mapping of complex hereditary disorders to a whole-genome molecular-interaction network. Genome Res. 18, 1150–1162 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Navlakha, S. & Kingsford, C. The power of protein interaction networks for associating genes with diseases. Bioinformatics 26, 1057–1063 (2010). This paper compares the available disease gene prediction methods, showing that random walk-based tools outperform clustering- and linkage-based approaches.

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Lage, K. et al. A human phenome-interactome network of protein complexes implicated in genetic disorders. Nature Biotech. 25, 309–316 (2007).

    CAS  Google Scholar 

  59. Lee, E. et al. Analysis of AML genes in dysregulated molecular networks. BMC Bioinformatics 10, S2 (2009).

    PubMed Central  PubMed  Google Scholar 

  60. Bonifaci, N. et al. Biological processes, properties and molecular wiring diagrams of candidate low-penetrance breast cancer susceptibility genes. BMC Med. Genomics 1, 62 (2008).

    PubMed Central  PubMed  Google Scholar 

  61. Heiser, L. M. et al. Integrated analysis of breast cancer cell lines reveals unique signaling pathways. Genome Biol. 10, R31 (2009).

    PubMed Central  PubMed  Google Scholar 

  62. Chuang, H.-Y. et al. Network-based classification of breast cancer metastasis. Mol. Syst. Biol. 3, 140 (2007).

    PubMed Central  PubMed  Google Scholar 

  63. Nibbe, R. K. et al. Discovery and scoring of protein interaction subnetworks discriminative of late stage human colon cancer. Mol. Cell. Proteomics 8, 827–845 (2009).

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Chang, W. et al. Identification of novel hub genes associated with liver metastasis of gastric cancer. Int. J. Cancer 125, 2844–2853 (2009).

    CAS  PubMed  Google Scholar 

  65. Ergün, A., Lawrence, C. A., Kohanski, M. A., Brennan, T. A. & Collins, J. J. A network biology approach to prostate cancer. Mol. Syst. Biol. 3, 82 (2007).

    PubMed Central  PubMed  Google Scholar 

  66. Taylor, I. W. et al. Dynamic modularity in protein interaction networks predicts breast cancer outcome. Nature Biotech. 27, 199–204 (2009). This paper examines whether the modular nature of the hubs can be used to predict patient outcome, with applications to breast cancer.

    CAS  Google Scholar 

  67. Moran, L. B. & Graeber, M. B. Towards a pathway definition of Parkinson's disease: a complex disorder with links to cancer, diabetes and inflammation. Neurogenetics 9, 1–13 (2008).

    PubMed Central  PubMed  Google Scholar 

  68. Ray, M., Ruan, J. & Zhang, W. Variations in the transcriptome of Alzheimer's disease reveal molecular networks involved in cardiovascular diseases. Genome Biol. 9, R148 (2008).

    PubMed Central  PubMed  Google Scholar 

  69. Hwang, D. et al. A systems approach to prion disease. Mol. Syst. Biol. 5, 252 (2009).

    PubMed Central  PubMed  Google Scholar 

  70. Wheelock, C. E. et al. Systems biology approaches and pathway tools for investigating cardiovascular disease. Mol. Biosyst. 5, 588–602 (2009).

    CAS  PubMed  Google Scholar 

  71. Calvano, S. E. et al. A network-based analysis of systemic inflammation. Nature 437, 1032–1037 (2005).

    CAS  PubMed  Google Scholar 

  72. Iliopoulos, D. et al. Integrative microRNA and proteomic approaches identify novel osteoarthritis genes and their collaborative metabolic and inflammatory networks. PLoS ONE 3, e3740 (2008).

    PubMed Central  PubMed  Google Scholar 

  73. Chen, Y. et al. Variations in DNA elucidate molecular networks that cause disease. Nature 452, 429–435 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Emilsson, V. et al. Genetics of gene expression and its effect on disease. Nature 452, 423–428 (2008).

    CAS  PubMed  Google Scholar 

  75. Dobrin, R. et al. Multi-tissue coexpression networks reveal unexpected subnetworks associated with disease. Genome Biol. 10, R55 (2009).

    PubMed Central  PubMed  Google Scholar 

  76. Hwang, S. et al. A protein interaction network associated with asthma. J. Theor. Biol. 252, 722–731 (2008).

    CAS  PubMed  Google Scholar 

  77. Liu, M. et al. Network-based analysis of affected biological processes in type 2 diabetes models. PLoS Genet. 3, e96 (2007).

    PubMed Central  PubMed  Google Scholar 

  78. Presson, A. P. et al. Integrated weighted gene co-expression network analysis with an application to chronic fatigue syndrome. BMC Syst. Biol. 2, 95 (2008).

    PubMed Central  PubMed  Google Scholar 

  79. Uetz, P. et al. Herpesviral protein networks and their interaction with the human proteome. Science 311, 239–242 (2006).

    CAS  PubMed  Google Scholar 

  80. Calderwood, M. A. et al. Epstein–Barr virus and virus human protein interaction maps. Proc. Natl Acad. Sci. USA 104, 7606–7611 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Bordbar, A., Lewis, N. E., Schellenberger, J., Palsson, B. Ø. & Jamshidi, N. Insight into human alveolar macrophage and M. tuberculosis interactions via metabolic reconstructions. Mol. Syst. Biol. 6, 422 (2010).

    PubMed Central  PubMed  Google Scholar 

  82. Turnbaugh, P. J. & Gordon, J. I. An invitation to the marriage of metagenomics and metabolomics. Cell 134, 708–713 (2008).

    CAS  PubMed  Google Scholar 

  83. Goehler, H. et al. A protein interaction network links GIT1, an enhancer of huntingtin aggregation, to Huntington's disease. Mol. Cell 15, 853–865 (2004).

    CAS  PubMed  Google Scholar 

  84. Lim, J. et al. A Protein–protein interaction network for human inherited ataxias and disorders of Purkinje cell degeneration. Cell 125, 801–814 (2006). This paper used yeast two-hybrid assays to map the interactions of spinocerebellar ataxia proteins with other human proteins to build the ataxia disease module.

    CAS  PubMed  Google Scholar 

  85. Pujana, M. A. et al. Network modeling links breast cancer susceptibility and centrosome dysfunction. Nature Genetics 39, 1338–1349 (2007).

    CAS  PubMed  Google Scholar 

  86. Camargo, L. M. et al. Disrupted in Schizophrenia 1 Interactome: evidence for the close connectivity of risk genes and a potential synaptic basis for schizophrenia. Mol. Psychiatry 12, 74–86 (2007).

    CAS  PubMed  Google Scholar 

  87. Amino, T. et al. Redefining the disease locus of 16q22.1-linked autosomal dominant cerebellar ataxia. J. Hum. Genet. 52, 643–649 (2007).

    CAS  PubMed  Google Scholar 

  88. Kohler, S. et al. Walking the interactome for prioritization of candidate disease genes. Am. J. Hum. Genet. 82, 949–958 (2008).

    PubMed Central  PubMed  Google Scholar 

  89. Vanunu, O. et al. Associating genes and protein complexes with disease via network propagation. PLoS Comput. Biol. 6, e1000641 (2010).

    PubMed Central  PubMed  Google Scholar 

  90. Park, J. et al. The impact of cellular networks on disease comorbidity. Mol. Syst. Biol. 5, 262 (2009). This paper shows that diseases that share genes or that involve proteins that interact with each other show elevated comorbidity, demonstrating correlations between the structure of cellular networks and disease patterns in the population.

    PubMed Central  PubMed  Google Scholar 

  91. Dudley, A. M., Janse, D. M., Tanay, A., Shamir, R. & Church, G. M. A global view of pleiotropy and phenotypically derived gene function in yeast. Mol. Syst. Biol. 1, 1 (2005).

    Google Scholar 

  92. Zhong, Q. et al. Edgetic perturbation models of human inherited disorders. Mol. Syst. Biol. 5, 321 (2009).

    PubMed Central  PubMed  Google Scholar 

  93. Lee, D.-S. et al. The implications of human metabolic network topology for disease comorbidity. Proc. Natl Acad. Sci. USA 105, 9880–9885 (2008). This paper constructs a metabolic disease association by linking diseases associated with adjacent metabolic reactions and finding elevated comorbidity for the linked diseases.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Lu, M. et al. An analysis of human microRNA and disease associations. PLoS ONE 3, e3420 (2008).

    PubMed Central  PubMed  Google Scholar 

  95. Rzhetsky, A. et al. Probing genetic overlap among complex human phenotypes. Proc. Natl Acad. Sci. USA 104, 11694–11699 (2007). This analysis of patient records indicated that disease phenotypes form a highly connected network of strong pairwise correlations, helping the researchers to estimate the size of putative genetic overlaps.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Hidalgo, C. et al. A dynamic network approach for the study of human phenotypes. PLoS Comput. Biol. 5, e1000353 (2009). This paper introduced a PDN by linking diseases with significant comorbidity using data obtained from the disease history of 30 million Medicare patients. From this, the researchers built an open-access comorbidity database.

    PubMed Central  PubMed  Google Scholar 

  97. van Driel, M. A. et al. A text-mining analysis of the human phenome. Eur. J. Hum. Genet. 14, 535–542 (2006).

    CAS  PubMed  Google Scholar 

  98. Suthram, S. et al. Network-based elucidation of human disease network-based elucidation of human disease enriched for pluripotent drug targets. PLoS Comput. Biol. 6, e1000662 (2010).

    PubMed Central  PubMed  Google Scholar 

  99. Liu, Y. I., Wise, P. H. & Butte, A. J. The “etiome”: identification and clustering of human disease etiological factors. BMC Bioinformatics 10, S14 (2009).

    PubMed Central  PubMed  Google Scholar 

  100. Campillos, M., Kuhn, M., Gavin, A.-C., Jensen, L. J. & Bork, P. Drug target identification using side-effect similarity. Science 321, 263–266 (2008).

    CAS  PubMed  Google Scholar 

  101. Kuhn, M., Campillos, M, Letunic, I, Jensen, L. J. & Bork, P. A side effect resource to capture phenotypic effects of drugs. Mol. Syst. Biol. 6, 343 (2010).

    PubMed Central  PubMed  Google Scholar 

  102. Audouze, K. et al. Deciphering diseases and biological targets. for environmental chemicals using toxicogenomics networks. PLoS Comput. Biol. 6, e1000788 (2010).

    PubMed Central  PubMed  Google Scholar 

  103. Schadt, E. E., Friend, S. H. & Shaywitz, D. A. A network view of disease and compound screening. Nature Rev. Drug Disc. 8, 286–295 (2009).

    CAS  Google Scholar 

  104. Hopkins, A. L. Drug discovery: predicting promiscuity. Nature 462, 167–168 (2009).

    CAS  PubMed  Google Scholar 

  105. Chu, L. & Chen, B. S. Construction of a cancer-perturbed protein-protein interaction network for discovery of apoptosis drug targets. BMC Syst. Biol. 2, 56 (2008).

    PubMed Central  PubMed  Google Scholar 

  106. Azmi, A., Wang, Z., Philip, P. A., Mohammad, R. M. & Sarkar, F. H. Proof of concept: a review on how network and systems biology approaches aid in the discovery of potent anticancer drug combinations. Mol. Cancer Ther. 1 Nov 2010 (doi: 10.1158/1535-7163.MCT-10-0642).

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Zhao, S. & Li, S. Network-based relating pharmacological and genomic spaces for drug target identification. PLoS ONE 5, e11764 (2010).

    PubMed Central  PubMed  Google Scholar 

  108. Fong, S. S. & Palsson, B. Ø. Metabolic gene-deletion strains of Escherichia coli evolve to computationally predicted growth phenotypes. Nature Genet. 36, 1056–1058 (2004).

    CAS  PubMed  Google Scholar 

  109. Segrè, D., Vitkup, D. & Church, G. M. Analysis of optimality in natural and perturbed metabolic networks. Proc. Natl Acad. Sci. USA 99, 15112–15117 (2002).

    PubMed  PubMed Central  Google Scholar 

  110. Shen, Y. et al. Blueprint for antimicrobial hit discovery targeting metabolic networks. Proc. Natl Acad. Sci. USA 107, 1082–1087 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Motter, A. E., Gulbahce, N., Almaas, E. & Barabási, A.-L. Predicting synthetic rescues in metabolic networks. Mol. Syst. Biol. 4, 168 (2008).

    PubMed Central  PubMed  Google Scholar 

  112. Nolan, G. P. What's wrong with drug screening today. Nature Chem. Biol. 3, 187–191 (2007).

    CAS  Google Scholar 

  113. Csermely, P., Agoston, V. & Pongor, S. The efficiency of multi-target drugs: the network approach might help drug design. Trends Pharmacol. Sci. 26, 178–182 (2005).

    CAS  PubMed  Google Scholar 

  114. Motter, A. E. Improved network performance via antagonism: from synthetic rescues to multi-drug combinations. Bioessays 32, 236–245 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Yang, K. et al. Finding multiple target optimal intervention in disease related molecular network. Mol. Syst. Biol. 4, 228 (2008).

    PubMed Central  PubMed  Google Scholar 

  116. Vazquez, A. Optimal drug combinations and minimal hitting sets. BMC Syst. Biol. 3, 81 (2009).

    PubMed Central  PubMed  Google Scholar 

  117. Yildirim, M. A. et al. Drug–target network. Nature Biotech. 25, 1119–1126 (2007).

    CAS  Google Scholar 

  118. Keiser, M. J. et al. Predicting new molecular targets for known drugs. Nature 462, 175–181 (2009).

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Ho, C. Y. & Seidman, C. E. A contemporary approach to hypertrophic cardiomyopathy. Circulation 113, e858–e862 (2006).

    PubMed  Google Scholar 

  120. Morita, Y. et al. Shared genetic causes of cadiac hypertrophy in children and adults. N. Engl. J. Med. 358, 1899–1908 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Loscalzo, J., Kohane, I., Barabási, A.-L. Human disease classification in the postgenomic era: a complex systems approach to human pathobiology. Mol. Syst. Biol. 3, 124 (2007).

    PubMed Central  PubMed  Google Scholar 

  122. Dreze, M. et al. High-quality binary interactome mapping. Meth. Enzymol. 470, 281–315 (2010).

    CAS  Google Scholar 

  123. Ewing, R. M. et al. Large-scale mapping of human protein–protein interactions by mass spectrometry. Mol. Syst. Biol. 3, 89 (2007).

    PubMed Central  PubMed  Google Scholar 

  124. Cusick, M. E. et al. Literature-curated protein interaction datasets. Nature Methods 6, 39–46 (2009).

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Ma, H. et al. The Edinburgh human metabolic network reconstruction and its functional analysis. Mol. Syst. Biol. 3, 135 (2007).

    PubMed Central  PubMed  Google Scholar 

  126. Barabási, A.-L. & Albert, R. Emergence of scaling in random networks. Science 286, 509–512 (1999).

    PubMed  Google Scholar 

  127. Han, J. D. et al. Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature 430, 88–93 (2004).

    CAS  PubMed  Google Scholar 

  128. Watts, D. J. & Strogatz, S. H. Collective dynamics of 'small-world' networks. Nature 393, 440–442 (1998).

    CAS  PubMed  Google Scholar 

  129. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D. & Alon, U. Network motifs: simple building blocks of complex networks. Science 298, 824–827 (2002).

    CAS  PubMed  Google Scholar 

  130. Yu, H., Kim, P. M., Sprecher, E., Trifonov, V. & Gerstein, M. The importance of bottlenecks in protein networks: correlation with gene essentiality and expression dynamics. PLoS Comput. Biol. 3, e59 (2007).

    PubMed Central  PubMed  Google Scholar 

  131. Wu, X., Jiang, R., Zhang, M. Q. & Li, S. Network-based global inference of human disease genes. Mol. Syst. Biol. 4, 189 (2008).

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Z. Oltvai, A. Sharma, D.-S. Lee and J. Park for useful discussions and suggestions. A.L.B. and N.G. were supported by the US National Institutes of Health (NIH) through the Center of Excellence in Genomic Sciences (CEGS), and J.L. was supported by NIH grants HL061795 (Merit Award), HL81587, HL70819 and HL48743.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert-László Barabási.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Albert-László Barabási's homepage

B-cell interactome (BCI)

Biochemical Genetic and Genomics knowledgebase (BIGG)

Biological General Repository for Interaction Datasets (BioGRID)

Biomolecular Interaction Network Database (BIND)

CBS prediction server

Database of Interacting Proteins (DIP)

Human Protein Reference Database (HPRD)

JASPAR

Kyoto Encyclopedia of Genes and Genomes (KEGG)

microRNA

miRBase

miRDB

miRecords

Molecular Interaction database (MINT)

Munich Information Center for Protein Sequence (MIPS) Mammalian Protein–Protein Interaction Database

NetPhorest

Phospho.ELM

Phosphorylation site database (PHOSIDA)

PhosphoSite

PicTar

Protein Interaction database (IntAct)

STRING

TarBase

TargetScan

TRANSFAC

Universal Protein Binding Microarray Resource for Oligonucleotide Binding Evaluation (UniPROBE)

Glossary

Node (or vertex)

A system component that, by interacting with other components, forms a network. In biological networks, nodes can denote proteins, genes, metabolites, RNA molecules or even diseases and phenotypes.

Link (or edge)

A link represents the interactions between the nodes of a network. In biological systems, interactions can correspond to protein–protein binding interactions or metabolic coupling, or they may represent connections between diseases based on a common genetic origin or shared phenotypic characteristics.

Degree

The degree of a node is the number of links that connect to it. The degree of a protein could represent the number of proteins with which it interacts with, whereas the degree of a disease may represent the number of other diseases that are associated with the same gene or that have a common phenotype.

Module (or community)

A dense subgraph on the network that often represents a set of nodes that have a joint role. In biology, a module could correspond to a group of molecules that interact with each other to achieve some common function.

Comorbidity

Comorbidity implies the presence of one or more disorders (or diseases) in addition to a primary disease or disorder that the patient has. Comorbidity may hide causal effects, when one disease enhances the emergence of some other disease, such as the much-studied comorbidity between diabetes and obesity.

Edgetic

Edgetic perturbations denote mutations that do not result in the complete loss of a gene product, but affect one or several interactions (and thus functions) of a protein. From a network perspective, an edgetic perturbation removes one or several links, but leaves the other links and the node unaffected.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barabási, AL., Gulbahce, N. & Loscalzo, J. Network medicine: a network-based approach to human disease. Nat Rev Genet 12, 56–68 (2011). https://doi.org/10.1038/nrg2918

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2918

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research