Key Points
-
Large-scale mapping of chromatin features has emerged as a powerful tool to understand the global landscape of genome regulation. In particular, chromatin immunoprecipitation followed by sequencing (ChIP–seq) has generated vast amounts of data on the genome-wide distribution of histone modifications across various cell types.
-
Eukaryotic chromatin structure can be viewed as superimposed organizational layers, from DNA sequence, to nucleosomes, to histone modifications and variants and, finally, to higher-order structures.
-
Histone modifications demarcate functional elements, including promoters, gene bodies, enhancers and boundary elements, in the large expanse of the mammalian genome.
-
Promoters are subject to distinct chromatin patterns and regulation according to their CpG content. Namely, high CpG content promoters assume an active conformation by default and low CpG content promoters are inactive by default.
-
Histone modifications may fine-tune the activities of promoters, gene bodies and enhancers, and the stability of repressive domains.
-
Emerging evidence suggests that there are global correspondences between histone modification patterns, replication timing and higher-order nuclear structures.
Abstract
A succession of technological advances over the past decade have enabled researchers to chart maps of histone modifications and related chromatin structures with increasing accuracy, comprehensiveness and throughput. The resulting data sets highlight the interplay between chromatin and genome function, dynamic variations in chromatin structure across cellular conditions, and emerging roles for large-scale domains and higher-ordered chromatin organization. Here we review a selection of recent studies that have probed histone modifications and successive layers of chromatin structure in mammalian genomes, the patterns that have been identified and future directions for research.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Felsenfeld, G. & Groudine, M. Controlling the double helix. Nature 421, 448–453 (2003).
Schones, D. E. & Zhao, K. Genome-wide approaches to studying chromatin modifications. Nature Rev. Genet. 9, 179–191 (2008).
Law, J. A. & Jacobsen, S. E. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nature Rev. Genet. 11, 204–220 (2010).
Margueron, R. & Reinberg, D. Chromatin structure and the inheritance of epigenetic information. Nature Rev. Genet. 11, 285–296 (2010).
Bernstein, B. E., Meissner, A. & Lander, E. S. The mammalian epigenome. Cell 128, 669–681 (2007).
Simon, J. A. & Kingston, R. E. Mechanisms of polycomb gene silencing: knowns and unknowns. Nature Rev. Mol. Cell Biol. 10, 697–708 (2009).
Li, B., Carey, M. & Workman, J. L. The role of chromatin during transcription. Cell 128, 707–719 (2007).
Jirtle, R. L. & Skinner, M. K. Environmental epigenomics and disease susceptibility. Nature Rev. Genet. 8, 253–262 (2007).
Boyle, A. P. et al. High-resolution mapping and characterization of open chromatin across the genome. Cell 132, 311–322 (2008).
Hesselberth, J. R. et al. Global mapping of protein–DNA interactions in vivo by digital genomic footprinting. Nature Methods 6, 283–289 (2009).
Giresi, P. G., Kim, J., McDaniell, R. M., Iyer, V. R. & Lieb, J. D. FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) isolates active regulatory elements from human chromatin. Genome Res. 17, 877–885 (2007).
Auerbach, R. K. et al. Mapping accessible chromatin regions using Sono–Seq. Proc. Natl Acad. Sci. USA 106, 14926–14931 (2009).
Meissner, A. et al. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454, 766–770 (2008).
Lister, R. et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462, 315–322 (2009).
Down, T. A. et al. A Bayesian deconvolution strategy for immunoprecipitation-based DNA methylome analysis. Nature Biotech. 26, 779–785 (2008).
Schones, D. E. et al. Dynamic regulation of nucleosome positioning in the human genome. Cell 132, 887–898 (2008).
Kaplan, N. et al. The DNA-encoded nucleosome organization of a eukaryotic genome. Nature 458, 362–366 (2009).
Deal, R. B., Henikoff, J. G. & Henikoff, S. Genome-wide kinetics of nucleosome turnover determined by metabolic labeling of histones. Science 328, 1161–1164 (2010).
Hawkins, R. D., Hon, G. C. & Ren, B. Next-generation genomics: an integrative approach. Nature Rev. Genet. 11, 476–486 (2010).
Park, P. J. ChIP–seq: advantages and challenges of a maturing technology. Nature Rev. Genet. 10, 669–680 (2009).
Solomon, M. J., Larsen, P. L. & Varshavsky, A. Mapping protein–DNA interactions in vivo with formaldehyde: evidence that histone H4 is retained on a highly transcribed gene. Cell 53, 937–947 (1988).
Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell 129, 823–837 (2007). This pioneering study highlighted the value of comprehensive and high-throughput sequencing approaches to map histone modifications. The data generated have been extensively analysed by many other groups and used to generate hypotheses and models on chromatin function.
Wang, Z. et al. Combinatorial patterns of histone acetylations and methylations in the human genome. Nature Genet. 40, 897–903 (2008).
Guenther, M. G., Levine, S. S., Boyer, L. A., Jaenisch, R. & Young, R. A. A chromatin landmark and transcription initiation at most promoters in human cells. Cell 130, 77–88 (2007).
Heintzman, N. D. et al. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nature Genet. 39, 311–318 (2007).
Mikkelsen, T. S. et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448, 553–560 (2007). This was among the first studies to apply high-throughput sequencing to map chromatin. Maps for ES and differentiated cells provided broad views of the chromatin changes that accompany cellular commitment.
Birney, E. et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447, 799–816 (2007).
Hon, G., Wang, W. & Ren, B. Discovery and annotation of functional chromatin signatures in the human genome. PLoS Comput. Biol. 5, e1000566 (2009).
Ernst, J. & Kellis, M. Discovery and characterization of chromatin states for systematic annotation of the human genome. Nature Biotech. 28, 817–825 (2010). References 28 and 29 present innovative approaches for integrating genome-wide chromatin data sets. The algorithms described result in systematic insights into the roles of and interrelationships among histone modifications, and provide a framework for handling the increasing volumes of epigenomic data now being produced.
Dion, M. F. et al. Genomic characterization reveals a simple histone H4 acetylation code. Proc. Natl Acad. Sci. USA 102, 5501–5506 (2005).
Durrin, L. K., Mann, R. K., Kayne, P. S. & Grunstein, M. Yeast histone H4 N-terminal sequence is required for promoter activation in vivo. Cell 65, 1023–1031 (1991).
Filion, G. J. et al. Systematic protein location mapping reveals five principal chromatin types in Drosophila cells. Cell 143, 212–224 (2010).
Weber, M. et al. Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nature Genet. 39, 457–466 (2007).
Straussman, R. et al. Developmental programming of CpG island methylation profiles in the human genome. Nature Struct. Mol. Biol. 16, 564–571 (2009).
Bernstein, B. E. et al. Genomic maps and comparative analysis of histone modifications in human and mouse. Cell 120, 169–181 (2005).
Kim, T. H. et al. A high-resolution map of active promoters in the human genome. Nature 436, 876–880 (2005).
Goldberg, A. D. et al. Distinct factors control histone variant H3.3 localization at specific genomic regions. Cell 140, 678–691 (2010).
Ooi, S. K. et al. DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature 448, 714–717 (2007).
Zilberman, D., Coleman-Derr, D., Ballinger, T. & Henikoff, S. Histone H2A.Z and DNA methylation are mutually antagonistic chromatin marks. Nature 456, 125–129 (2008). This study suggests a direct role for H2A.Z. in protecting gene promoters from DNA methylation. In addition to the general exclusivity between sites of H2A.Z deposition and DNA methylation, it could be demonstrated that H2A.Z deficiency leads to broad DNA hypermethylation.
Shilatifard, A. Molecular implementation and physiological roles for histone H3 lysine 4 (H3K4) methylation. Curr. Opin. Cell Biol. 20, 341–348 (2008).
Lee, J. H. & Skalnik, D. G. CpG-binding protein (CXXC finger protein 1) is a component of the mammalian Set1 histone H3–Lys4 methyltransferase complex, the analogue of the yeast Set1/COMPASS complex. J. Biol. Chem. 280, 41725–41731 (2005).
Thomson, J. P. et al. CpG islands influence chromatin structure via the CpG-binding protein Cfp1. Nature 464, 1082–1086 (2010).
Blackledge, N. P. et al. CpG islands recruit a histone H3 lysine 36 demethylase. Mol. Cell 38, 179–190 (2010).
Ramirez-Carrozzi, V. R. et al. A unifying model for the selective regulation of inducible transcription by CpG islands and nucleosome remodeling. Cell 138, 114–128 (2009).
Hargreaves, D. C., Horng, T. & Medzhitov, R. Control of inducible gene expression by signal-dependent transcriptional elongation. Cell 138, 129–145 (2009).
Rahl, P. B. et al. c-Myc regulates transcriptional pause release. Cell 141, 432–445 (2010).
Orford, K. et al. Differential H3K4 methylation identifies developmentally poised hematopoietic genes. Dev. Cell 14, 798–809 (2008).
Ku, M. et al. Genomewide analysis of PRC1 and PRC2 occupancy identifies two classes of bivalent domains. PLoS Genet. 4, e1000242 (2008).
Lee, T. I. et al. Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 125, 301–313 (2006).
Boyer, L. A. et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441, 349–353 (2006).
Pan, G. et al. Whole-genome analysis of histone H3 lysine 4 and lysine 27 methylation in human embryonic stem cells. Cell Stem Cell 1, 299–312 (2007).
Zhao, X. D. et al. Whole-genome mapping of histone H3 Lys4 and 27 trimethylations reveals distinct genomic compartments in human embryonic stem cells. Cell Stem Cell 1, 286–298 (2007).
Azuara, V. et al. Chromatin signatures of pluripotent cell lines. Nature Cell Biol. 8, 532–538 (2006).
Bernstein, B. E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326 (2006).
Mohn, F. et al. Lineage-specific polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors. Mol. Cell 30, 755–766 (2008).
Adli, M., Zhu, J. & Bernstein, B. E. Genome-wide chromatin maps derived from limited numbers of hematopoietic progenitors. Nature Methods 7, 615–618 (2010).
Cui, K. et al. Chromatin signatures in multipotent human hematopoietic stem cells indicate the fate of bivalent genes during differentiation. Cell Stem Cell 4, 80–93 (2009).
Stock, J. K. et al. Ring1-mediated ubiquitination of H2A restrains poised RNA polymerase II at bivalent genes in mouse ES cells. Nature Cell Biol. 9, 1428–1435 (2007).
Seila, A. C. et al. Divergent transcription from active promoters. Science 322, 1849–1851 (2008).
Mendenhall, E. M. et al. GC-rich sequence elements recruit PRC2 in mammalian ES cells. PLoS Genet. (in the press).
Kim, H., Kang, K. & Kim, J. AEBP2 as a potential targeting protein for polycomb repression complex PRC2. Nucleic Acids Res. 37, 2940–2950 (2009).
Li, G. et al. Jarid2 and PRC2, partners in regulating gene expression. Genes Dev. 24, 368–380 (2010).
Pasini, D. et al. JARID2 regulates binding of the Polycomb repressive complex 2 to target genes in ES cells. Nature 464, 306–310 (2010).
Peng, J. C. et al. Jarid2/Jumonji coordinates control of PRC2 enzymatic activity and target gene occupancy in pluripotent cells. Cell 139, 1290–1302 (2009).
Shen, X. et al. Jumonji modulates polycomb activity and self-renewal versus differentiation of stem cells. Cell 139, 1303–1314 (2009).
Kim, T. G., Kraus, J. C., Chen, J. & Lee, Y. JUMONJI, a critical factor for cardiac development, functions as a transcriptional repressor. J. Biol. Chem. 278, 42247–42255 (2003).
Kanhere, A. et al. Short RNAs are transcribed from repressed polycomb target genes and interact with polycomb repressive complex-2. Mol. Cell 38, 675–688 (2010).
Zhao, J., Sun, B. K., Erwin, J. A., Song, J. J. & Lee, J. T. Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 322, 750–756 (2008).
Tsai, M. C. et al. Long noncoding RNA as modular scaffold of histone modification complexes. Science 329, 689–693 (2010).
Margueron, R. et al. Role of the polycomb protein EED in the propagation of repressive histone marks. Nature 461, 762–767 (2009).
Hansen, K. H. et al. A model for transmission of the H3K27me3 epigenetic mark. Nature Cell Biol. 10, 1291–1300 (2008).
Sing, A. et al. A vertebrate Polycomb response element governs segmentation of the posterior hindbrain. Cell 138, 885–897 (2009).
Woo, C. J., Kharchenko, P. V., Daheron, L., Park, P. J. & Kingston, R. E. A region of the human HOXD cluster that confers polycomb-group responsiveness. Cell 140, 99–110 (2010).
Hawkins, R. D. et al. Distinct epigenomic landscapes of pluripotent and lineage-committed human cells. Cell Stem Cell 6, 479–491 (2010).
Coolen, M. W. et al. Consolidation of the cancer genome into domains of repressive chromatin by long-range epigenetic silencing (LRES) reduces transcriptional plasticity. Nature Cell Biol. 12, 235–246 (2010).
Jones, P. A. & Baylin, S. B. The epigenomics of cancer. Cell 128, 683–692 (2007).
Irizarry, R. A. et al. The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nature Genet. 41, 178–186 (2009).
Ji, H. et al. Comprehensive methylome map of lineage commitment from haematopoietic progenitors. Nature 467, 338–342 (2010).
Mikkelsen, T. S. et al. Dissecting direct reprogramming through integrative genomic analysis. Nature 454, 49–55 (2008).
Fouse, S. D. et al. Promoter CpG methylation contributes to ES cell gene regulation in parallel with Oct4/Nanog, PcG complex, and histone H3 K4/K27 trimethylation. Cell Stem Cell 2, 160–169 (2008).
Nilsen, T. W. & Graveley, B. R. Expansion of the eukaryotic proteome by alternative splicing. Nature 463, 457–463 (2010).
Schwartz, S., Meshorer, E. & Ast, G. Chromatin organization marks exon–intron structure. Nature Struct. Mol. Biol. 16, 990–995 (2009).
Kolasinska-Zwierz, P. et al. Differential chromatin marking of introns and expressed exons by H3K36me3. Nature Genet. 41, 376–381 (2009).
Andersson, R., Enroth, S., Rada-Iglesias, A., Wadelius, C. & Komorowski, J. Nucleosomes are well positioned in exons and carry characteristic histone modifications. Genome Res. 19, 1732–1741 (2009).
Tilgner, H. et al. Nucleosome positioning as a determinant of exon recognition. Nature Struct. Mol. Biol. 16, 996–1001 (2009). References 82 and 85 describe computational analysis of published ChIP–seq data, and present evidence for higher nucleosome abundance at exons compared to introns.
Kornblihtt, A. R., Schor, I. E., Allo, M. & Blencowe, B. J. When chromatin meets splicing. Nature Struct. Mol. Biol. 16, 902–903 (2009).
Luco, R. F. et al. Regulation of alternative splicing by histone modifications. Science 327, 996–1000 (2010). This study was the first to directly link histone modifications at gene bodies with the splicing machinery. The authors show that distinct patterns of histone modifications across an alternatively spliced gene vary between cell types along with changes in its splice forms.
Visel, A., Rubin, E. M. & Pennacchio, L. A. Genomic views of distant-acting enhancers. Nature 461, 199–205 (2009).
Visel, A. et al. ChIP–seq accurately predicts tissue-specific activity of enhancers. Nature 457, 854–858 (2009).
Heintzman, N. D. et al. Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature 459, 108–112 (2009). Building on previous work that introduced the use of chromatin signatures to predict enhancers, this group showed that chromatin patterns at enhancers are more cell type specific than those at promoters.
Kim, T. K. et al. Widespread transcription at neuronal activity-regulated enhancers. Nature 465, 182–187 (2010).
De Santa, F. et al. A large fraction of extragenic RNA pol II transcription sites overlap enhancers. PLoS Biol. 8, e1000384 (2010).
Phillips, J. E. & Corces, V. G. CTCF: master weaver of the genome. Cell 137, 1194–1211 (2009).
Kim, T. H. et al. Analysis of the vertebrate insulator protein CTCF-binding sites in the human genome. Cell 128, 1231–1245 (2007).
Wendt, K. S. et al. Cohesin mediates transcriptional insulation by CCCTC-binding factor. Nature 451, 796–801 (2008).
Guelen, L. et al. Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453, 948–951 (2008). This was one of the first papers to provide a global view of higher-level genome organization by mapping megabase-scale regions associated with lamina.
Wen, B., Wu, H., Shinkai, Y., Irizarry, R. A. & Feinberg, A. P. Large histone H3 lysine 9 dimethylated chromatin blocks distinguish differentiated from embryonic stem cells. Nature Genet. 41, 246–250 (2009). This paper provided evidence that large domains of H3K9me2 organize inactive chromatin and are altered in differentiation.
Finlan, L. E. et al. Recruitment to the nuclear periphery can alter expression of genes in human cells. PLoS Genet. 4, e1000039 (2008).
Kumaran, R. I. & Spector, D. L. A genetic locus targeted to the nuclear periphery in living cells maintains its transcriptional competence. J. Cell Biol. 180, 51–65 (2008).
Reddy, K. L., Zullo, J. M., Bertolino, E. & Singh, H. Transcriptional repression mediated by repositioning of genes to the nuclear lamina. Nature 452, 243–247 (2008).
Filion, G. J. & van Steensel, B. Reassessing the abundance of H3K9me2 chromatin domains in embryonic stem cells. Nature Genet. 42, 4 (2010).
Pauler, F. M. et a. H3K27me3 forms BLOCs over silent genes and intergenic regions and specifies a histone banding pattern on a mouse autosomal chromosome. Genome Res. 19, 221–233 (2009).
Sexton, T., Schober, H., Fraser, P. & Gasser, S. M. Gene regulation through nuclear organization. Nature Struct. Mol. Biol. 14, 1049–1055 (2007).
Eskeland, R. et a. Ring1B compacts chromatin structure and represses gene expression independent of histone ubiquitination. Mol. Cell 38, 452–64 (2010).
Goren, A. & Cedar, H. Replicating by the clock. Nature Rev. Mol. Cell Biol. 4, 25–32 (2003).
Zhang, J., Xu, F., Hashimshony, T., Keshet, I. & Cedar, H. Establishment of transcriptional competence in early and late S phase. Nature 420, 198–202 (2002).
Ryba, T. et al. Evolutionarily conserved replication timing profiles predict long-range chromatin interactions and distinguish closely related cell types. Genome Res. 20, 761–770 (2010).
Karnani, N., Taylor, C., Malhotra, A. & Dutta, A. Pan-S replication patterns and chromosomal domains defined by genome-tiling arrays of ENCODE genomic areas. Genome Res. 17, 865–876 (2007).
Vogelauer, M., Rubbi, L., Lucas, I., Brewer, B. J. & Grunstein, M. Histone acetylation regulates the time of replication origin firing. Mol. Cell 10, 1223–1233 (2002).
Goren, A., Tabib, A., Hecht, M. & Cedar, H. DNA replication timing of the human β-globin domain is controlled by histone modification at the origin. Genes Dev. 22, 1319–1324 (2008).
Schoenfelder, S. et al. Preferential associations between co-regulated genes reveal a transcriptional interactome in erythroid cells. Nature Genet. 42, 53–61 (2010).
Nemeth, A. et al. Initial genomics of the human nucleolus. PLoS Genet. 6, e1000889 (2010).
Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009). This paper introduced a new technology for unbiased detection of genome interactions. The authors used the data generated to reconstruct the three-dimensional structure and organization of the genome.
Fullwood, M. J. et al. An oestrogen-receptor-a-bound human chromatin interactome. Nature 462, 58–64 (2009). This paper introduced a new technology for the unbiased genome-wide detection of chromatin interactions and focused on the regulatory targets of oestrogen receptor-α.
Goren, A. et al. Chromatin profiling by directly sequencing small quantities of immunoprecipitated DNA. Nature Methods 7, 47–49 (2010).
Bernstein, B. E. et al. The NIH Roadmap Epigenomics Mapping Consortium. Nature Biotech. 28, 1045–1048 (2010).
Satterlee, J. S., Schubeler, D. & Ng, H. H. Tackling the epigenome: challenges and opportunities for collaboration. Nature Biotech. 28, 1039–1044 (2010).
Acknowledgements
We thank E. Mendenhall, M. Ku, R. Koche and E. Rheinbay for critical reading of the manuscript. We also thank members of the Bernstein laboratory for insightful discussions. V.W.Z. was supported by a National Defense Science and Engineering Graduate Fellowship and a National Science Foundation Graduate Research Fellowship. A.G. was supported by an EMBO long-term postdoctoral fellowship. B.E.B. is an Early Career Scientist of the Howard Hughes Medical Institute. Research in the Bernstein laboratory is supported by funds from the Burroughs Wellcome Fund, Howard Hughes Medical Institute and the National Institutes of Health.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Related links
Related links
FURTHER INFORMATION
Nature Reviews Genetics article series on Applications of next-generation sequencing
Glossary
- CpG island
-
A genomic region enriched for CpG dinucleotides that often occurs near constitutively active promoters. Mammalian genomes are otherwise depleted of CpGs owing to the preferential deamination of methylated cytosines.
- ChIP-seq
-
Chromatin immunoprecipitation followed by sequencing. A method for mapping the distribution of histone modifications and chromatin-associated proteins genome wide that relies on immunoprecipitation with antibodies to modified histones or other chromatin proteins. The enriched DNA is sequenced to create genome-wide profiles.
- DNase I-seq
-
DNase I digestion followed by sequencing. A method that distinguishes open chromatin regions based on their hypersensitivity to DNase I digestion. Sequencing these genomic fragments can generate genome-wide maps of chromatin accessibility.
- FAIRE-seq
-
Formaldehyde Assisted Isolation of Regulatory Elements followed by sequencing exploits the solubility of open chromatin in the aqueous phase during phenol-chloroform extraction to generate genome-wide maps of soluble chromatin.
- Sono-seq
-
Sonication followed by sequencing. A technique that relies on the increased sonication efficiency of open crosslinked chromatin to identify regions of increased accessibility genome-wide.
- MNase-seq
-
Micrococcal nuclease digestion followed by sequencing. A method that distinguishes nucleosome positioning based on the ability of nucleosomes to protect associated DNA from digestion by micrococcal nuclease. Protected fragments are sequenced to produce genome-wide maps of nucleosome localization.
- CATCH-IT
-
Covalent Attachment of Tags to Capture Histones and Identify Turnover is an assay for measuring nucleosome turnover kinetics genome-wide by metabolically labelling histones and profiling labelled DNA using microarrays.
- Hidden Markov Model
-
A statistical model in which internal states are not visible but the outputs of these states are, and the outputs can therefore be used to infer the internal states. This model can be used to determine biologically relevant states from ChIP-seq data sets.
- DamID
-
A method for mapping the distribution of chromatin-associated proteins by fusing a protein of interest with E. coli DNA adenine methyltransferase (Dam), which methylates adenines proximal to the binding sites of a protein, thus circumventing the need for antibodies.
- Giemsa band
-
Also known as a Gband. A characteristic banding pattern is obtained by treating chromosomes with Giemsa stain. The intensity of Giemsa staining is correlated with genomic features. For instance, dark Giemsa bands usually are AT rich, have low gene density and have higher densities of repeat elements.
- Polycomb body
-
A discrete nuclear focus containing Polycomb proteins and their silenced target genes. Polycomb bodies have been observed in D. melanogaster and human cells by imaging and in situ hybridization.
- 3C
-
Chromosome conformation capture is a method to map chromosome interactions locally. It relies on an increased frequency of intramolecular ligation between fragments in close three-dimensional proximity in the nucleus.
Rights and permissions
About this article
Cite this article
Zhou, V., Goren, A. & Bernstein, B. Charting histone modifications and the functional organization of mammalian genomes. Nat Rev Genet 12, 7–18 (2011). https://doi.org/10.1038/nrg2905
Published:
Issue Date:
DOI: https://doi.org/10.1038/nrg2905
This article is cited by
-
Nuclear position and local acetyl-CoA production regulate chromatin state
Nature (2024)
-
Histone exchange sensors reveal variant specific dynamics in mouse embryonic stem cells
Nature Communications (2023)
-
Readout of histone methylation by Trim24 locally restricts chromatin opening by p53
Nature Structural & Molecular Biology (2023)
-
IKAROS: from chromatin organization to transcriptional elongation control
Cell Death & Differentiation (2023)
-
Loss of GLTSCR1 causes congenital heart defects by regulating NPPA transcription
Angiogenesis (2023)