Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The metazoan Mediator co-activator complex as an integrative hub for transcriptional regulation

Key Points

  • The metazoan Mediator is a multiprotein complex of about 30 subunits that seems to have key roles in the regulation of essentially all genes. Many of the individual subunits and the overall structural organization of the complex, which consists of multiple modules ('head', 'middle', 'tail' and 'kinase') are evolutionarily conserved from yeast to human.

  • Numerous transcriptional activators and repressors, which carry signals from various physiological pathways, target distinct Mediator subunits. Most (although not all) of these subunits reside in the tail or the kinase modules.

  • Mediator also interacts with RNA polymerase II (Pol II). A primary mechanism whereby Mediator fulfils a co-activator role, therefore, is to recruit Pol II to the promoter on interaction with the appropriate activator.

  • Mediator can also modulate the functions of some of the components of the components of the Pol II general transcription machinery.

  • Beyond promoting recruitment of the initiation machinery to the promoter, evidence is mounting for post-recruitment roles for Mediator that might even regulate transcription elongation by Pol II.

  • Mediator is also involved in coordinating the function of other co-activators, especially those involved in establishing transcription complexes on chromatin templates.

  • In addition to its roles in promoting activated transcription, Mediator can repress transcription in some contexts, primarily through diverse mechanisms that entail the kinase module. In one documented case, this module is crucial for the establishment of a developmentally important silenced epigenetic state of a gene.

  • Overall, recent evidence suggests that Mediator is not simply a binary switch that turns transcription on or off but rather a centre for integrating the regulatory programmes of genes.

Abstract

The Mediator is an evolutionarily conserved, multiprotein complex that is a key regulator of protein-coding genes. In metazoan cells, multiple pathways that are responsible for homeostasis, cell growth and differentiation converge on the Mediator through transcriptional activators and repressors that target one or more of the almost 30 subunits of this complex. Besides interacting directly with RNA polymerase II, Mediator has multiple functions and can interact with and coordinate the action of numerous other co-activators and co-repressors, including those acting at the level of chromatin. These interactions ultimately allow the Mediator to deliver outputs that range from maximal activation of genes to modulation of basal transcription to long-term epigenetic silencing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Involvement of Mediator in multiple steps of transcription.
Figure 2: Modular structure of Mediator and interactions with diverse factors.
Figure 3: Modulation of Mediator function by ancillary factors: coordination of chromatin remodelling and PIC formation.
Figure 4: Modulation of Mediator function by ancillary factors: epigenetic silencing.

Similar content being viewed by others

References

  1. Roeder, R. G. Transcriptional regulation and the role of diverse coactivators in animal cells. FEBS Lett. 579, 909–915 (2005).

    CAS  PubMed  Google Scholar 

  2. Kornberg, R. D. Mediator and the mechanism of transcriptional activation. Trends Biochem. Sci. 30, 235–239 (2005).

    CAS  PubMed  Google Scholar 

  3. Malik, S. & Roeder, R. G. Dynamic regulation of Pol II transcription by the mammalian Mediator complex. Trends Biochem. Sci. 30, 256–263 (2005).

    CAS  PubMed  Google Scholar 

  4. Malik, S. & Roeder, R. G. Transcriptional regulation through Mediator-like coactivators in yeast and metazoan cells. Trends Biochem. Sci. 25, 277–283 (2000).

    CAS  PubMed  Google Scholar 

  5. Lee, T. I. & Young, R. A. Transcription of eukaryotic protein-coding genes. Annu. Rev. Genet. 34, 77–137 (2000).

    CAS  PubMed  Google Scholar 

  6. Myers, L. C. & Kornberg, R. D. Mediator of transcriptional regulation. Annu. Rev. Biochem. 69, 729–749 (2000). References 5 and 6 review seminal studies in yeast that identified the Mediator complex in this organism.

    CAS  PubMed  Google Scholar 

  7. Bourbon, H. M. Comparative genomics supports a deep evolutionary origin for the large, four-module transcriptional mediator complex. Nucleic Acids Res. 36, 3993–4008 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Sato, S. et al. A set of consensus mammalian mediator subunits identified by multidimensional protein identification technology. Mol. Cell 14, 685–691 (2004). This paper helped to resolve the problem of compositional heterogeneity that accompanied early studies reporting Mediator isolation. It also helped establish the near-final subunit composition of the mammalian Mediator complex.

    CAS  PubMed  Google Scholar 

  9. Backstrom, S., Elfving, N., Nilsson, R., Wingsle, G. & Bjorklund, S. Purification of a plant mediator from Arabidopsis thaliana identifies PFT1 as the Med25 subunit. Mol. Cell 26, 717–729 (2007).

    PubMed  Google Scholar 

  10. Guglielmi, B. et al. A high resolution protein interaction map of the yeast Mediator complex. Nucleic Acids Res. 32, 5379–5391 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Cai, G., Imasaki, T., Takagi, Y. & Asturias, F. J. Mediator structural conservation and implications for the regulation mechanism. Structure 17, 559–567 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Takagi, Y. et al. Head module control of Mediator interactions. Mol. Cell 23, 355–364 (2006).

    CAS  PubMed  Google Scholar 

  13. Fondell, J. D., Ge, H. & Roeder, R. G. Ligand induction of a transcriptionally active thyroid hormone receptor coactivator complex. Proc. Natl Acad. Sci. USA 93, 8329–8333 (1996). This paper first identified the human Mediator complex in association with ligand-bound thyroid hormone receptor and helped establish the paradigm of the Mediator as an interface between transcriptional activators and the Pol II machinery.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Malik, S., Gu, W., Wu, W., Qin, J. & Roeder, R. G. The USA-derived transcriptional coactivator PC2 is a submodule of TRAP/SMCC and acts synergistically with other PCs. Mol. Cell 5, 753–760 (2000).

    CAS  PubMed  Google Scholar 

  15. Malik, S., Baek, H. J., Wu, W. & Roeder, R. G. Structural and functional characterization of PC2 and RNA polymerase II-associated subpopulations of metazoan Mediator. Mol. Cell. Biol. 25, 2117–2129 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Elmlund, H. et al. The cyclin-dependent kinase 8 module sterically blocks Mediator interactions with RNA polymerase II. Proc. Natl Acad. Sci. USA 103, 15788–15793 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Knuesel, M. T., Meyer, K. D., Bernecky, C. & Taatjes, D. J. The human CDK8 subcomplex is a molecular switch that controls Mediator coactivator function. Genes Dev. 23, 439–451 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Tsutsui, T. et al. Human mediator kinase subunit CDK11 plays a negative role in viral activator VP16-dependent transcriptional regulation. Genes Cells 13, 817–826 (2008).

    CAS  PubMed  Google Scholar 

  19. Zhang, X. et al. MED1/TRAP220 exists predominantly in a TRAP/ Mediator subpopulation enriched in RNA polymerase II and is required for ER-mediated transcription. Mol. Cell 19, 89–100 (2005).

    CAS  PubMed  Google Scholar 

  20. Jiang, P. et al. Key roles for MED1 LxxLL motifs in pubertal mammary gland development and luminal-cell differentiation. Proc. Natl Acad. Sci. USA 107, 6765–6770 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Toth-Petroczy, A. et al. Malleable machines in transcription regulation: the Mediator complex. PLoS Comput. Biol. 4, e1000243 (2008).

    PubMed  PubMed Central  Google Scholar 

  22. Ryu, S., Zhou, S., Ladurner, A. G. & Tjian, R. The transcriptional cofactor complex CRSP is required for activity of the enhancer-binding protein Sp1. Nature 397, 446–450 (1999).

    CAS  PubMed  Google Scholar 

  23. Blazek, E., Mittler, G. & Meisterernst, M. The Mediator of RNA polymerase II. Chromosoma 113, 399–408 (2005).

    CAS  PubMed  Google Scholar 

  24. Mangelsdorf, D. J. et al. The nuclear receptor superfamily: the second decade. Cell 83, 835–839 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Glass, C. K. & Rosenfeld, M. G. The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev. 14, 121–141 (2000).

    CAS  PubMed  Google Scholar 

  26. Rachez, C. et al. Ligand-dependent transcription activation by nuclear receptors requires the DRIP complex. Nature 398, 824–828 (1999).

    CAS  PubMed  Google Scholar 

  27. Ge, K. et al. Transcription coactivator TRAP220 is required for PPAR γ 2-stimulated adipogenesis. Nature 417, 563–567 (2002). This physiological study showed how distinct subunits in the Mediator complex can control specific developmental and signalling pathways.

    CAS  PubMed  Google Scholar 

  28. Ge, K. et al. Alternative mechanisms by which Mediator subunit MED1/TRAP220 regulates peroxisome proliferator-activated receptor γ-stimulated adipogenesis and target gene expression. Mol. Cell. Biol. 28, 1081–1091 (2008).

    CAS  PubMed  Google Scholar 

  29. Malik, S., Wallberg, A. E., Kang, Y. K. & Roeder, R. G. TRAP/SMCC/Mediator-dependent transcriptional activation from DNA and chromatin templates by orphan nuclear receptor hepatocyte nuclear factor 4. Mol. Cell. Biol. 22, 5626–5637 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Hittelman, A. B., Burakov, D., Iniguez-Lluhi, J. A., Freedman, L. P. & Garabedian, M. J. Differential regulation of glucocorticoid receptor transcriptional activation via AF-1-associated proteins. EMBO J. 18, 5380–5388 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Kang, Y. K., Guermah, M., Yuan, C. X. & Roeder, R. G. The TRAP/Mediator coactivator complex interacts directly with estrogen receptors α and β through the TRAP220 subunit and directly enhances estrogen receptor function in vitro. Proc. Natl Acad. Sci. USA 99, 2642–2647 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Malik, S. et al. Structural and functional organization of TRAP220, the TRAP/Mediator subunit that is targeted by nuclear receptors. Mol. Cell. Biol. 24, 8244–8254 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Ito, M., Yuan, C. X., Okano, H. J., Darnell, R. B. & Roeder, R. G. Involvement of the TRAP220 component of the TRAP/SMCC coactivator complex in embryonic development and thyroid hormone action. Mol. Cell 5, 683–693 (2000). This mouse knockout study showed how distinct subunits in the Mediator complex can control specific developmental and signalling pathways.

    CAS  PubMed  Google Scholar 

  34. Grontved, L., Madsen, M. S., Boergesen, M., Roeder, R. G. & Mandrup, S. MED14 tethers Mediator to the N-terminal domain of peroxisome proliferator-activated receptor γ and is required for full transcriptional activity and adipogenesis. Mol. Cell. Biol. 30, 2155–2169 (2010).

    PubMed  PubMed Central  Google Scholar 

  35. Stumpf, M. et al. The Mediator complex functions as a coactivator for GATA-1 in erythropoiesis via subunit Med1/TRAP220. Proc. Natl Acad. Sci. USA 103, 18504–18509 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Boyer, T. G., Martin, M. E., Lees, E., Ricciardi, R. P. & Berk, A. J. Mammalian Srb/Mediator complex is targeted by adenovirus E1A protein. Nature 399, 276–279 (1999).

    CAS  PubMed  Google Scholar 

  37. Wang, G. et al. Mediator requirement for both recruitment and postrecruitment steps in transcription initiation. Mol. Cell 17, 683–694 (2005).

    CAS  PubMed  Google Scholar 

  38. Wang, W. et al. Mediator MED23 links insulin signaling to the adipogenesis transcription cascade. Dev. Cell 16, 764–771 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Yang, F. et al. An ARC/Mediator subunit required for SREBP control of cholesterol and lipid homeostasis. Nature 442, 700–704 (2006).

    CAS  PubMed  Google Scholar 

  40. Taubert, S., Van Gilst, M. R., Hansen, M. & Yamamoto, K. R. A Mediator subunit, MDT-15, integrates regulation of fatty acid metabolism by NHR-49-dependent and -independent pathways in C. elegans. Genes Dev. 20, 1137–1149 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Thakur, J. K. et al. Mediator subunit Gal11p/MED15 is required for fatty acid-dependent gene activation by yeast transcription factor Oaf1p. J. Biol. Chem. 284, 4422–4428 (2009).

    CAS  PubMed  Google Scholar 

  42. Kato, Y., Habas, R., Katsuyama, Y., Naar, A. M. & He, X. A component of the ARC/Mediator complex required for TGF β/Nodal signalling. Nature 418, 641–646 (2002).

    CAS  PubMed  Google Scholar 

  43. Ito, M., Okano, H. J., Darnell, R. B. & Roeder, R. G. The TRAP100 component of the TRAP/Mediator complex is essential in broad transcriptional events and development. EMBO J. 21, 3464–3475 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Stevens, J. L., Cantin, G. T., Wang, G., Shevchenko, A. & Berk, A. J. Transcription control by E1A and MAP kinase pathway via Sur2 Mediator subunit. Science 296, 755–758 (2002). This knockout study showed how distinct subunits in the Mediator complex can control specific developmental and signalling pathways.

    CAS  PubMed  Google Scholar 

  45. Carlson, M. Genetics of transcriptional regulation in yeast: connections to the RNA polymerase II CTD. Annu. Rev. Cell Dev. Biol. 13, 1–23 (1997).

    CAS  PubMed  Google Scholar 

  46. Ito, M. et al. Identity between TRAP and SMCC complexes indicates novel pathways for the function of nuclear receptors and diverse mammalian activators. Mol. Cell 3, 361–370 (1999).

    CAS  PubMed  Google Scholar 

  47. Park, J. M., Werner, J., Kim, J. M., Lis, J. T. & Kim, Y. J. Mediator, not holoenzyme, is directly recruited to the heat shock promoter by HSF upon heat shock. Mol. Cell 8, 9–19 (2001).

    CAS  PubMed  Google Scholar 

  48. Meyer, K. D., Lin, S. C., Bernecky, C., Gao, Y. & Taatjes, D. J. p53 activates transcription by directing structural shifts in Mediator. Nature Struct. Mol. Biol. 17, 753–760 (2010).

    CAS  Google Scholar 

  49. Mittler, G. et al. A novel docking site on Mediator is critical for activation by VP16 in mammalian cells. EMBO J. 22, 6494–6504 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Yang, F., DeBeaumont, R., Zhou, S. & Naar, A. M. The activator-recruited cofactor/Mediator coactivator subunit ARC92 is a functionally important target of the VP16 transcriptional activator. Proc. Natl Acad. Sci. USA 101, 2339–2344 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Kim, T. W. et al. MED16 and MED23 of Mediator are coactivators of lipopolysaccharide- and heat-shock-induced transcriptional activators. Proc. Natl Acad. Sci. USA 101, 12153–12158 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Belakavadi, M., Pandey, P. K., Vijayvargia, R. & Fondell, J. D. MED1 phosphorylation promotes its association with mediator: implications for nuclear receptor signaling. Mol. Cell. Biol. 28, 3932–3942 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Lehner, B., Crombie, C., Tischler, J., Fortunato, A. & Fraser, A. G. Systematic mapping of genetic interactions in Caenorhabditis elegans identifies common modifiers of diverse signaling pathways. Nature Genet. 38, 896–903 (2006).

    CAS  PubMed  Google Scholar 

  54. Carrera, I., Janody, F., Leeds, N., Duveau, F. & Treisman, J. E. Pygopus activates Wingless target gene transcription through the Mediator complex subunits Med12 and Med13. Proc. Natl Acad. Sci. USA 105, 6644–6649 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Kim, S., Xu, X., Hecht, A. & Boyer, T. G. Mediator is a transducer of Wnt/β-catenin signaling. J. Biol. Chem. 281, 14066–14075 (2006).

    CAS  PubMed  Google Scholar 

  56. Wang, X., Yang, N., Uno, E., Roeder, R. G. & Guo, S. A subunit of the mediator complex regulates vertebrate neuronal development. Proc. Natl Acad. Sci. USA 103, 17284–17289 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Ding, N. et al. Mediator links epigenetic silencing of neuronal gene expression with x-linked mental retardation. Mol. Cell 31, 347–359 (2008). This study extended the repressive functions of the kinase module of the Mediator to a role in establishing an epigenetically silenced state in differentiated neurons. It also provided insights into how defects in Mediator function can lead to human disease.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Loncle, N. et al. Distinct roles for Mediator Cdk8 module subunits in Drosophila development. EMBO J. 26, 1045–1054 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Donner, A. J., Ebmeier, C. C., Taatjes, D. J. & Espinosa, J. M. CDK8 is a positive regulator of transcriptional elongation within the serum response network. Nature Struct. Mol. Biol. 17, 194–201 (2010).

    CAS  Google Scholar 

  60. Belakavadi, M. & Fondell, J. D. Cyclin-dependent kinase 8 positively cooperates with Mediator to promote thyroid hormone receptor-dependent transcriptional activation. Mol. Cell. Biol. 30, 2437–2448 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Taatjes, D. J., Naar, A. M., Andel, F., Nogales, E. & Tjian, R. Structure, function, and activator-induced conformations of the CRSP coactivator. Science 295, 1058–1062 (2002).

    CAS  PubMed  Google Scholar 

  62. Benoff, B. et al. Structural basis of transcription activation: the CAP-α CTD–DNA complex. Science 297, 1562–1566 (2002).

    CAS  PubMed  Google Scholar 

  63. Taatjes, D. J., Schneider-Poetsch, T. & Tjian, R. Distinct conformational states of nuclear receptor-bound CRSP–Med complexes. Nature Struct. Mol. Biol. 11, 664–671 (2004).

    CAS  Google Scholar 

  64. Baek, H. J., Kang, Y. K. & Roeder, R. G. Human Mediator enhances basal transcription by facilitating recruitment of transcription factor IIB during preinitiation complex assembly. J. Biol. Chem. 281, 15172–15181 (2006).

    CAS  PubMed  Google Scholar 

  65. Pavri, R. et al. PARP-1 determines specificity in a retinoid signaling pathway via direct modulation of Mediator. Mol. Cell 18, 83–96 (2005).

    CAS  PubMed  Google Scholar 

  66. Esnault, C. et al. Mediator-dependent recruitment of TFIIH modules in preinitiation complex. Mol. Cell 31, 337–346 (2008).

    CAS  PubMed  Google Scholar 

  67. Kim, Y. J., Bjorklund, S., Li, Y., Sayre, M. H. & Kornberg, R. D. A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II. Cell 77, 599–608 (1994).

    CAS  PubMed  Google Scholar 

  68. Akoulitchev, S., Chuikov, S. & Reinberg, D. TFIIH is negatively regulated by cdk8-containing Mediator complexes. Nature 407, 102–106 (2000).

    CAS  PubMed  Google Scholar 

  69. Hengartner, C. J. et al. Temporal regulation of RNA polymerase II by Srb10 and Kin28 cyclin-dependent kinases. Mol. Cell 2, 43–53 (1998).

    CAS  PubMed  Google Scholar 

  70. Furumoto, T. et al. A kinase subunit of the human Mediator complex, CDK8, positively regulates transcriptional activation. Genes Cells 12, 119–132 (2007).

    CAS  PubMed  Google Scholar 

  71. Donner, A. J., Szostek, S., Hoover, J. M. & Espinosa, J. M. CDK8 is a stimulus-specific positive coregulator of p53 target genes. Mol. Cell 27, 121–133 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Li, B., Carey, M. & Workman, J. L. The role of chromatin during transcription. Cell 128, 707–719 (2007).

    CAS  PubMed  Google Scholar 

  73. Acevedo, M. L. & Kraus, W. L. Mediator and p300/CBP-steroid receptor coactivator complexes have distinct roles, but function synergistically, during estrogen receptor α-dependent transcription with chromatin templates. Mol. Cell. Biol. 23, 335–348 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Black, J. C., Choi, J. E., Lombardo, S. R. & Carey, M. A mechanism for coordinating chromatin modification and preinitiation complex assembly. Mol. Cell 23, 809–818 (2006). This paper exemplifies biochemical studies that have revealed how Mediator can work with chromatin co-activators.

    CAS  PubMed  Google Scholar 

  75. Fondell, J. D., Guermah, M., Malik, S. & Roeder, R. G. Thyroid hormone receptor-associated proteins and general positive cofactors mediate thyroid hormone receptor function in the absence of the TATA box-binding protein-associated factors of TFIID. Proc. Natl Acad. Sci. USA 96, 1959–1964 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Sharma, D. & Fondell, J. D. Ordered recruitment of histone acetyltransferases and the TRAP/Mediator complex to thyroid hormone-responsive promoters in vivo. Proc. Natl Acad. Sci. USA 99, 7934–7939 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Wallberg, A. E., Yamamura, S., Malik, S., Spiegelman, B. M. & Roeder, R. G. Coordination of p300-mediated chromatin remodeling and TRAP/Mediator function through coactivator PGC-1α. Mol. Cell 12, 1137–1149 (2003).

    CAS  PubMed  Google Scholar 

  78. Chen, W., Yang, Q. & Roeder, R. G. Dynamic interactions and cooperative functions of PGC-1α and MED1 in TRα-mediated activation of the brown-fat-specific UCP-1 gene. Mol. Cell 35, 755–768 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Rodriguez-Navarro, S. Insights into SAGA function during gene expression. EMBO Rep. 10, 843–850 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Qiu, H. et al. Interdependent recruitment of SAGA and Srb mediator by transcriptional activator Gcn4p. Mol. Cell. Biol. 25, 3461–3474 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Liu, X., Vorontchikhina, M., Wang, Y. L., Faiola, F. & Martinez, E. STAGA recruits Mediator to the MYC oncoprotein to stimulate transcription and cell proliferation. Mol. Cell. Biol. 28, 108–121 (2008).

    PubMed  Google Scholar 

  82. Meyer, K. D. et al. Cooperative activity of cdk8 and GCN5L within Mediator directs tandem phosphoacetylation of histone H3. EMBO J. 27, 1447–1457 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Krebs, A. R. et al. ATAC and Mediator coactivators form a stable complex and regulate a set of non-coding RNA genes. EMBO Rep. 11, 541–547 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Kouzarides, T. Chromatin modifications and their function. Cell 128, 693–705 (2007).

    CAS  PubMed  Google Scholar 

  85. Ooi, L. & Wood, I. C. Chromatin crosstalk in development and disease: lessons from REST. Nature Rev. Genet. 8, 544–554 (2007).

    CAS  PubMed  Google Scholar 

  86. Kuchin, S. & Carlson, M. Functional relationships of Srb10-Srb11 kinase, carboxy-terminal domain kinase CTDK-I, and transcriptional corepressor Ssn6-Tup1. Mol. Cell. Biol. 18, 1163–1171 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Bernstein, B. E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326 (2006).

    CAS  PubMed  Google Scholar 

  88. Tutter, A. V. et al. Role for Med12 in regulation of Nanog and Nanog target genes. J. Biol. Chem. 284, 3709–3718 (2009).

    CAS  PubMed  Google Scholar 

  89. Boyer, L. A. et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122, 947–956 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Venters, B. J. & Pugh, B. F. A canonical promoter organization of the transcription machinery and its regulators in the Saccharomyces genome. Genome Res. 19, 360–371 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Saunders, A., Core, L. J. & Lis, J. T. Breaking barriers to transcription elongation. Nature Rev. Mol. Cell Biol. 7, 557–567 (2006).

    CAS  Google Scholar 

  92. Guenther, M. G., Levine, S. S., Boyer, L. A., Jaenisch, R. & Young, R. A. A chromatin landmark and transcription initiation at most promoters in human cells. Cell 130, 77–88 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Margaritis, T. & Holstege, F. C. Poised RNA polymerase II gives pause for thought. Cell 133, 581–584 (2008).

    CAS  PubMed  Google Scholar 

  94. Malik, S., Barrero, M. J. & Jones, T. Identification of a regulator of transcription elongation as an accessory factor for the human Mediator coactivator. Proc. Natl Acad. Sci. USA 104, 6182–6187 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Yang, Z. et al. Recruitment of P-TEFb for stimulation of transcriptional elongation by the bromodomain protein Brd4. Mol. Cell 19, 535–545 (2005).

    CAS  PubMed  Google Scholar 

  96. Malagon, F., Tong, A. H., Shafer, B. K. & Strathern, J. N. Genetic interactions of DST1 in Saccharomyces cerevisiae suggest a role of TFIIS in the initiation–elongation transition. Genetics 166, 1215–1227 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Guglielmi, B., Soutourina, J., Esnault, C. & Werner, M. TFIIS elongation factor and Mediator act in conjunction during transcription initiation in vivo. Proc. Natl Acad. Sci. USA 104, 16062–16067 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Palangat, M., Renner, D. B., Price, D. H. & Landick, R. A negative elongation factor for human RNA polymerase II inhibits the anti-arrest transcript-cleavage factor TFIIS. Proc. Natl Acad. Sci. USA 102, 15036–15041 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Krogan, N. J. et al. Methylation of histone H3 by Set2 in Saccharomyces cerevisiae is linked to transcriptional elongation by RNA polymerase II. Mol. Cell. Biol. 23, 4207–4218 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Yudkovsky, N., Ranish, J. A. & Hahn, S. A transcription reinitiation intermediate that is stabilized by activator. Nature 408, 225–229 (2000).

    CAS  PubMed  Google Scholar 

  101. Kuras, L., Borggrefe, T. & Kornberg, R. D. Association of the Mediator complex with enhancers of active genes. Proc. Natl Acad. Sci. USA 100, 13887–13891 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Park, S. W. et al. Thyroid hormone-induced juxtaposition of regulatory elements/factors and chromatin remodeling of Crabp1 dependent on MED1/TRAP220. Mol. Cell 19, 643–653 (2005).

    CAS  PubMed  Google Scholar 

  103. Kagey, M. H. et al. Mediator and cohesin connect gene expression and chromatin architecture. Nature 18 Aug 2010 (doi:10.1038/nature09380). This recent study extends the role of the Mediator to enhancer–promoter communication, which is emerging as an important aspect of transcriptional control.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Hatzis, P. & Talianidis, I. Dynamics of enhancer–promoter communication during differentiation-induced gene activation. Mol. Cell 10, 1467–1477 (2002).

    CAS  PubMed  Google Scholar 

  105. Szutorisz, H., Dillon, N. & Tora, L. The role of enhancers as centres for general transcription factor recruitment. Trends Biochem. Sci. 30, 593–599 (2005).

    CAS  PubMed  Google Scholar 

  106. Butler, J. E. & Kadonaga, J. T. The RNA polymerase II core promoter: a key component in the regulation of gene expression. Genes Dev. 16, 2583–2592 (2002).

    CAS  PubMed  Google Scholar 

  107. Muncke, N. et al. Missense mutations and gene interruption in PROSIT240, a novel TRAP240-like gene, in patients with congenital heart defect (transposition of the great arteries). Circulation 108, 2843–2850 (2003).

    CAS  PubMed  Google Scholar 

  108. Philibert, R. A. & Madan, A. Role of MED12 in transcription and human behavior. Pharmacogenomics 8, 909–916 (2007).

    CAS  PubMed  Google Scholar 

  109. Firestein, R. et al. CDK8 is a colorectal cancer oncogene that regulates β-catenin activity. Nature 455, 547–551 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Morris, E. J. et al. E2F1 represses β-catenin transcription and is antagonized by both pRB and CDK8. Nature 455, 552–556 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Zhu, Y. et al. Amplification and overexpression of peroxisome proliferator-activated receptor binding protein (PBP/PPARBP) gene in breast cancer. Proc. Natl Acad. Sci. USA 96, 10848–10853 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Nonet, M. L. & Young, R. A. Intragenic and extragenic suppressors of mutations in the heptapeptide repeat domain of Saccharomyces cerevisiae RNA polymerase II. Genetics 123, 715–724 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Gu, W. et al. A novel human SRB/MED-containing cofactor complex, SMCC, involved in transcription regulation. Mol. Cell 3, 97–108 (1999).

    CAS  PubMed  Google Scholar 

  114. Holstege, F. C. et al. Dissecting the regulatory circuitry of a eukaryotic genome. Cell 95, 717–728 (1998).

    CAS  PubMed  Google Scholar 

  115. Andrau, J. C. et al. Genome-wide location of the coactivator Mediator: binding without activation and transient Cdk8 interaction on DNA. Mol. Cell 22, 179–192 (2006).

    CAS  PubMed  Google Scholar 

  116. Zhu, X. et al. Genome-wide occupancy profile of Mediator and the Srb8–11 module reveals interactions with coding regions. Mol. Cell 22, 169–178 (2006).

    CAS  PubMed  Google Scholar 

  117. Fan, X., Chou, D. M. & Struhl, K. Activator-specific recruitment of Mediator in vivo. Nature Struct. Mol. Biol. 13, 117–120 (2006).

    CAS  Google Scholar 

  118. Ansari, S. A., He, Q. & Morse, R. H. Mediator complex association with constitutively transcribed genes in yeast. Proc. Natl Acad. Sci. USA 106, 16734–16739 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Mittler, G., Kremmer, E., Timmers, H. T. & Meisterernst, M. Novel critical role of a human Mediator complex for basal RNA polymerase II transcription. EMBO Rep. 2, 808–813 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Baek, H. J., Malik, S., Qin, J. & Roeder, R. G. Requirement of TRAP/Mediator for both activator-independent and activator-dependent transcription in conjunction with TFIID-associated TAFIIs. Mol. Cell. Biol. 22, 2842–2852 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Takagi, Y. & Kornberg, R. D. Mediator as a general transcription factor. J. Biol. Chem. 281, 80–89 (2006).

    CAS  PubMed  Google Scholar 

  122. Hu, X. et al. A Mediator-responsive form of metazoan RNA polymerase II. Proc. Natl Acad. Sci. USA 103, 9506–9511 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Gazdag, E. et al. TBP2 is essential for germ cell development by regulating transcription and chromatin condensation in the oocyte. Genes Dev. 23, 2210–2223 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Deato, M. D. et al. MyoD targets TAF3/TRF3 to activate myogenin transcription. Mol. Cell 32, 96–105 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Baumli, S., Hoeppner, S. & Cramer, P. A conserved Mediator hinge revealed in the structure of the MED7.MED21 (Med7.Srb7) heterodimer. J. Biol. Chem. 280, 18171–18178 (2005).

    CAS  PubMed  Google Scholar 

  126. Lariviere, L. et al. Structure and TBP binding of the Mediator head subcomplex Med8–Med18–Med20. Nature Struct. Mol. Biol. 13, 895–901 (2006).

    CAS  Google Scholar 

  127. Bourbon, H. M. et al. A unified nomenclature for protein subunits of ediator complexes linking transcriptional regulators to RNA polymerase II. Mol. Cell 14, 553–557 (2004).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize to colleagues whose work could not be cited directly owing to limitations of scope and space. We thank members of our laboratory for their many contributions to our understanding of the Mediator. Our work on the Mediator is supported in part by NIH grant 1RC1GM09029 to S.M. and R.G.R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sohail Malik.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Glossary

Pre-initiation complex

The multiprotein assembly containing Pol II and the general transcription factors, TFIIA, TFIIB, TFIID, TFIIE, TFIIF and TFIIH, that forms at core promoter elements before the onset of transcription. It is formally analogous to the 'closed complex' described for the prokaryotic RNA polymerase.

Chromatin

The nucleoprotein structure that packages DNA in the nucleus of eukaryotic cells. The basic unit of chromatin is the nucleosome, a protein core made up of two molecules each of histones H2A, H2B, H3 and H4, around which 146 bp of DNA is wrapped. Different chromatin states are defined by a range of post-translational modifications of core histones and by the incorporation of various histone isoforms.

Basal transcription

Low levels of transcription that can occur in the absence of an activator, especially in in vitro systems.

Initiation

The step in the transcription cycle in which Pol II in the PIC synthesizes the first phophodiester bond. It takes place subsequent to promoter melting or open complex formation.

Chromatin remodelling

Typically an ATP-dependent enzymatic process that alters histone–DNA interactions or regulates the position of nucleosomes.

Chromatin modification

Includes covalent modification (acetylation, phosphorylation, methylation and ubiquitylation) of histones on discrete residues.

Elongation

Refers to the phase in the transcription cycle in which the polymerase that has escaped the promoter extends oligomeric RNA chains into full-length products.

Promoter escape

The events in the transcription cycle that lead to relinquishing of multiple interactions holding the PIC together and entry of Pol II into the elongation phase of transcription.

Capping

The process by which eukaryotic mRNA is modified by the addition of an m7G(5′)ppp(5′)N structure at the 5′ terminus. Capping is essential for several important steps of gene expression, including mRNA stabilization, splicing, mRNA export from the nucleus and initiation of translation.

Enhancer

A regulatory DNA element that usually binds several transcription factors and can activate transcription from a promoter at relatively large distances and in an orientation-independent manner.

Core promoter

The regulatory region of a gene that specifies the transcription start site and on to which Pol II and the general transcription factors assemble to initiate transcription. Depending on the promoter, core promoter sequence elements vary and may extend from approximately 40 bp upstream (for example, the TATA box) to more than 40 bp downstream of the transcription start site.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malik, S., Roeder, R. The metazoan Mediator co-activator complex as an integrative hub for transcriptional regulation. Nat Rev Genet 11, 761–772 (2010). https://doi.org/10.1038/nrg2901

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2901

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing