Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Highly parallel genomic assays

Key Points

  • Highly parallel genomic assays have two fundamental characteristics: a highly parallel array-based read-out and an intrinsically scalable, multiplexing sample preparation.

  • The power of highly parallel genomic assays is that they tend to follow the principle behind Moore's law: the amount of information extracted from a sample increases linearly with the number of probes on the array, whereas the overall cost of the assay tends to increase at a much slower rate.

  • These general concepts are being applied successfully to an increasing variety of assays, including gene-expression profiling, SNP genotyping, genomic copy-number analysis, measurement of allele-specific expression levels, and methylation status.

  • Early genomic assays, such as gene-expression profiling, relied only on sequence-specific probe hybridization to confer specificity. The next generation of assays have made use of enzymatic discrimination in addition to hybridization to increase specificity and to enable assay designs that extract more information.

  • Data quality, reproducibility and robustness of intrinsically parallel assays that use enzymatic discrimination have been shown to be high, defying the conventional wisdom that increasing sample complexity automatically results in lower data quality.

  • The technology of highly parallel assays is enabling a revolution in genomics that has far-reaching implications for molecular biology and human health. Increasingly, ambitious projects that aim to be more comprehensive in their approach to genomic analysis, such as the International HapMap Project, the ENCODE Project, and the Cancer Genome Atlas, are reliant on new, highly parallel assay technologies.

  • The orders of magnitude decrease in cost and increased speed and accuracy that are provided by highly parallel assays have brought us to the dawn of a potentially revolutionary new era of discovery in human genetics that will be based on comprehensive, high-resolution genetic mapping.

  • Such studies might require about a billion or more genotypes, and were impractical prior to the advent of the assays that are described in this Review. A few years ago, the genotyping costs for such a study would have been in the hundreds of millions of dollars. Today, the costs would be a few million dollars, with far higher data quality and completeness, and genotyping can be carried out in a few weeks instead of many years.

  • Parallel assay systems are assisting a similar revolution in the field of DNA sequencing, and will probably enable powerful new comprehensive studies that are prohibitively costly today.

Abstract

Recent developments in highly parallel genome-wide assays are transforming the study of human health and disease. High-resolution whole-genome association studies of complex diseases are finally being undertaken after much hypothesizing about their merit for finding disease loci. The availability of inexpensive high-density SNP-genotyping arrays has made this feasible. Cancer biology will also be transformed by high-resolution genomic and epigenomic analysis. In the future, most cancers might be staged by high-resolution molecular profiling rather than by gross cytological analysis. Here, we describe the key developments that enable highly parallel genomic assays.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Multiplex PCR.
Figure 2: Highly parallel genotyping assays.
Figure 3: High-resolution genomic profiling on SNP-CGH arrays.
Figure 4: Highly parallel sequencing on clonal arrays.
Figure 5: Digital analysis of gene expression using serial analysis of gene expression (SAGE).

Similar content being viewed by others

References

  1. Golub, T. R. et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999). This paper demonstrates the utility and power of whole-genome gene-expression profiling for cancer classification.

    Article  CAS  PubMed  Google Scholar 

  2. van't Veer, L. J. et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 415, 530–536 (2002).

    Article  CAS  Google Scholar 

  3. Ramaswamy, S., Ross, K. N., Lander, E. S. & Golub, T. R. A molecular signature of metastasis in primary solid tumors. Nature Genet. 33, 49–54 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Kildal, W. et al. Evaluation of genomic changes in a large series of malignant ovarian germ cell tumors — relation to clinicopathologic variables. Cancer Genet. Cytogenet. 155, 25–32 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Sanchez-Carbayo, M., Socci, N. D., Lozano, J., Saint, F. & Cordon-Cardo, C. Defining molecular profiles of poor outcome in patients with invasive bladder cancer using oligonucleotide microarrays. J. Clin. Oncol. 24, 778–789 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Southern, E. M., Maskos, U. & Elder, J. K. Analyzing and comparing nucleic acid sequences by hybridization to arrays of oligonucleotides: evaluation using experimental models. Genomics 13, 1008–1017 (1992).

    Article  CAS  PubMed  Google Scholar 

  7. Pease, A. C. et al. Light-generated oligonucleotide arrays for rapid DNA sequence analysis. Proc. Natl Acad. Sci. USA 91, 5022–5026 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Schena, M., Shalon, D., Davis, R. W. & Brown, P. O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Lockhart, D. J. et al. Expression monitoring by hybridization to high-density oligonucleotide arrays. Nature Biotechnol. 14, 1675–1680 (1996). The landmark paper that described high-density oligonucleotide arrays for gene-expression profiling.

    Article  CAS  Google Scholar 

  10. Syvanen, A. C. Toward genome-wide SNP genotyping. Nature Genet. 37, S5–S10 (2005). This article provides an excellent background on genotyping technologies.

    Article  CAS  PubMed  Google Scholar 

  11. Shendure, J., Mitra, R. D., Varma, C. & Church, G. M. Advanced sequencing technologies: methods and goals. Nature Rev. Genet. 5, 335–344 (2004). This article provides an excellent background on novel sequencing technologies.

    Article  CAS  PubMed  Google Scholar 

  12. Zondervan, K. T. & Cardon, L. R. The complex interplay among factors that influence allelic association. Nature Rev. Genet. 5, 89–100 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Hirschhorn, J. N. & Daly, M. J. Genome-wide association studies for common diseases and complex traits. Nature Rev. Genet. 6, 95–108 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Mockler, T. C. et al. Applications of DNA tiling arrays for whole-genome analysis. Genomics 85, 1–15 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Van Gelder, R. N. et al. Amplified RNA synthesized from limited quantities of heterogeneous cDNA. Proc. Natl Acad. Sci. USA 87, 1663–1667 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Phillips, J. & Eberwine, J. H. Antisense RNA amplification: a linear amplification method for analyzing the mRNA population from single living cells. Methods 10, 283–288 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Barany, F. The ligase chain reaction in a PCR world. PCR Methods Appl. 1, 5–16 (1991).

    Article  CAS  PubMed  Google Scholar 

  18. Nilsson, M. et al. Padlock probes: circularizing oligonucleotides for localized DNA detection. Science 265, 2085–2088 (1994).

    Article  CAS  PubMed  Google Scholar 

  19. Landegren, U., Samiotaki, M., Nilsson, M., Malmgren, H. & Kwiatkowski, M. Detecting genes with ligases. Methods 9, 84–90 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Baner, J., Nilsson, M., Mendel-Hartvig, M. & Landegren, U. Signal amplification of padlock probes by rolling circle replication. Nucleic Acids Res. 26, 5073–5078 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Qi, X., Bakht, S., Devos, K. M., Gale, M. D. & Osbourn, A. L-RCA (ligation-rolling circle amplification): a general method for genotyping of single nucleotide polymorphisms (SNPs). Nucleic Acids Res. 29, E116 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Faruqi, A. F. et al. High-throughput genotyping of single nucleotide polymorphisms with rolling circle amplification. BMC Genomics 2, 4 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Edwards, M. C. & Gibbs, R. A. Multiplex PCR: advantages, development, and applications. PCR Methods Appl. 3, S65–S75 (1994).

    Article  CAS  PubMed  Google Scholar 

  24. Rychlik, W. Selection of primers for polymerase chain reaction. Mol. Biotechnol. 3, 129–134 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Schoske, R., Vallone, P. M., Ruitberg, C. M. & Butler, J. M. Multiplex PCR design strategy used for the simultaneous amplification of 10 Y chromosome short tandem repeat (STR) loci. Anal. Bioanal. Chem. 375, 333–343 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Vallone, P. M. & Butler, J. M. AutoDimer: a screening tool for primer-dimer and hairpin structures. Biotechniques 37, 226–31 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Lin, Z., Cui, X. & Li, H. Multiplex genotype determination at a large number of gene loci. Proc. Natl Acad. Sci. USA 93, 2582–2587 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Brownie, J. et al. The elimination of primer–dimer accumulation in PCR. Nucleic Acids Res. 25, 3235–3241 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chee, M. et al. Accessing genetic information with high-density DNA arrays. Science 274, 610–614 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Wang, D. G. et al. Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science 280, 1077–1082 (1998). References 29 and 30 represent the first application of high-density oligonucleotide arrays for large-scale genomic resequencing, SNP identification and genotyping.

    Article  CAS  PubMed  Google Scholar 

  31. Fan, J. B. et al. Parallel genotyping of human SNPs using generic high-density oligonucleotide tag arrays. Genome Res. 10, 853–860 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Adams, C. P. & Kron, S. J. Method for performing amplification of nucleic acid with two primers bound to a single solid support. US Patent 5,641,658 (1997).

  33. Adessi, C. et al. Solid phase DNA amplification: characterisation of primer attachment and amplification mechanisms. Nucleic Acids Res. 28, E87 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shapero, M. H., Leuther, K. K., Nguyen, A., Scott, M. & Jones, K. W. SNP genotyping by multiplexed solid-phase amplification and fluorescent minisequencing. Genome Res. 11, 1926–1934 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Andreadis, J. D. & Chrisey, L. A. Use of immobilized PCR primers to generate covalently immobilized DNAs for in vitro transcription/translation reactions. Nucleic Acids Res. 28, e5 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang, H. Y. et al. A genotyping system capable of simultaneously analyzing >1000 single nucleotide polymorphisms in a haploid genome. Genome Res. 15, 276–283 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hardenbol, P. et al. Multiplexed genotyping with sequence-tagged molecular inversion probes. Nature Biotechnol. 21, 673–678 (2003).

    Article  CAS  Google Scholar 

  38. Fan, J. B. et al. Highly parallel SNP genotyping. Cold Spring Harb. Symp. Quant. Biol. 68, 69–78 (2003). References 37 and 38 describe two highly multiplexed SNP genotyping assays.

    Article  CAS  PubMed  Google Scholar 

  39. Altshuler, D. et al. A haplotype map of the human genome. Nature 437, 1299–1320 (2005). The seminal paper that described the results of the International HapMap Project.

    Article  CAS  Google Scholar 

  40. Hardenbol, P. et al. Highly multiplexed molecular inversion probe genotyping: over 10,000 targeted SNPs genotyped in a single tube assay. Genome Res. 15, 269–275 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hinds, D. A. et al. Whole-genome patterns of common DNA variation in three human populations. Science 307, 1072–1079 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Patil, N. et al. Blocks of limited haplotype diversity revealed by high-resolution scanning of human chromosome 21. Science 294, 1719–1723 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Kinzler, K. W. & Vogelstein, B. Whole genome PCR: application to the identification of sequences bound by gene regulatory proteins. Nucleic Acids Res. 17, 3645–3653 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lisitsyn, N. & Wigler, M. Cloning the differences between two complex genomes. Science 259, 946–951 (1993).

    Article  CAS  PubMed  Google Scholar 

  45. Lucito, R. et al. Genetic analysis using genomic representations. Proc. Natl Acad. Sci. USA 95, 4487–4492 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lucito, R. et al. Representational oligonucleotide microarray analysis: a high-resolution method to detect genome copy number variation. Genome Res. 13, 2291–2305 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sebat, J. et al. Large-scale copy number polymorphism in the human genome. Science 305, 525–528 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Kennedy, G. C. et al. Large-scale genotyping of complex DNA. Nature Biotechnol. 21, 1233–1237 (2003).

    Article  CAS  Google Scholar 

  49. Matsuzaki, H. et al. Parallel genotyping of over 10,000 SNPs using a one-primer assay on a high-density oligonucleotide array. Genome Res. 14, 414–425 (2004). References 48 and 49 describe the original development of whole genome sampling analysis (WGSA), which allows high-density genome-wide SNP analysis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Matsuzaki, H. et al. Genotyping over 100,000 SNPs on a pair of oligonucleotide arrays. Nature Methods 1, 109–111 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Herbert, A. et al. A common genetic variant is associated with adult and childhood obesity. Science 312, 279–283 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Klein, R. J. et al. Complement factor H polymorphism in age-related macular degeneration. Science 308, 385–389 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gunderson, K. L., Steemers, F. J., Lee, G., Mendoza, L. G. & Chee, M. S. A genome-wide scalable SNP genotyping assay using microarray technology. Nature Genet. 37, 549–554 (2005). This is the first paper that demonstrated the ability to conduct whole-genome genotyping on whole-genome amplified samples of full genome complexity.

    Article  CAS  PubMed  Google Scholar 

  54. Steemers, F. J. et al. Whole-genome genotyping with the single-base extension assay. Nature Methods 3, 31–33 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Langmore, J. P. Rubicon Genomics, Inc. Pharmacogenomics 3, 557–560 (2002).

    Article  PubMed  Google Scholar 

  56. Dean, F. B. et al. Comprehensive human genome amplification using multiple displacement amplification. Proc. Natl Acad. Sci. USA 99, 5261–5266 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gunderson, K. L. et al. Whole-genome genotyping of haplotype tag single nucleotide polymorphisms. Pharmacogenomics 7, 641–648 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Kallioniemi, A. et al. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 258, 818–821 (1992).

    Article  CAS  PubMed  Google Scholar 

  59. Pinkel, D. et al. High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nature Genet. 20, 207–211 (1998). The first demonstration of array technology applied to high-resolution comparative genomic hybridization (CGH) applications.

    Article  CAS  PubMed  Google Scholar 

  60. Pollack, J. R. et al. Genome-wide analysis of DNA copy-number changes using cDNA microarrays. Nature Genet. 23, 41–46 (1999).

    Article  CAS  PubMed  Google Scholar 

  61. Ishkanian, A. S. et al. A tiling resolution DNA microarray with complete coverage of the human genome. Nature Genet. 36, 299–303 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Barrett, M. T. et al. Comparative genomic hybridization using oligonucleotide microarrays and total genomic DNA. Proc. Natl Acad. Sci. USA 101, 17765–17770 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Carvalho, B., Ouwerkerk, E., Meijer, G. A. & Ylstra, B. High resolution microarray comparative genomic hybridisation analysis using spotted oligonucleotides. J. Clin. Pathol. 57, 644–646 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Selzer, R. R. et al. Analysis of chromosome breakpoints in neuroblastoma at sub-kilobase resolution using fine-tiling oligonucleotide array CGH. Genes Chromosomes Cancer 44, 305–319 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Ylstra, B., van den Ijssel, P., Carvalho, B., Brakenhoff, R. H. & Meijer, G. A. BAC to the future! or oligonucleotides: a perspective for micro array comparative genomic hybridization (array CGH). Nucleic Acids Res. 34, 445–450 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bignell, G. R. et al. High-resolution analysis of DNA copy number using oligonucleotide microarrays. Genome Res. 14, 287–295 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Huang, J. et al. Whole genome DNA copy number changes identified by high density oligonucleotide arrays. Hum. Genomics 1, 287–299 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Rauch, A. et al. Molecular karyotyping using an SNP array for genomewide genotyping. J. Med. Genet. 41, 916–922 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhao, X. et al. An integrated view of copy number and allelic alterations in the cancer genome using single nucleotide polymorphism arrays. Cancer Res. 64, 3060–3071 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Zhao, X. et al. Homozygous deletions and chromosome amplifications in human lung carcinomas revealed by single nucleotide polymorphism array analysis. Cancer Res. 65, 5561–5570 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Bruce, S. et al. Global analysis of uniparental disomy using high density genotyping arrays. J. Med. Genet. 42, 847–851 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Teh, M. T. et al. Genomewide single nucleotide polymorphism microarray mapping in basal cell carcinomas unveils uniparental disomy as a key somatic event. Cancer Res. 65, 8597–8603 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. LaFramboise, T. et al. Allele-specific amplification in cancer revealed by SNP array analysis. PLoS Comput. Biol. 1, e65 (2005). This paper highlights the effects of high-level allele-specific amplification in cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lips, E. H. et al. Reliable high-throughput genotyping and loss-of-heterozygosity detection in formalin-fixed, paraffin-embedded tumors using single nucleotide polymorphism arrays. Cancer Res. 65, 10188–10191 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Little, S. E. et al. Array CGH using whole genome amplification of fresh-frozen and formalin-fixed, paraffin-embedded tumor DNA. Genomics 87, 298–306 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Bredel, M. et al. Amplification of whole tumor genomes and gene-by-gene mapping of genomic aberrations from limited sources of fresh-frozen and paraffin-embedded DNA. J. Mol. Diagn. 7, 171–182 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Yan, H., Yuan, W., Velculescu, V. E., Vogelstein, B. & Kinzler, K. W. Allelic variation in human gene expression. Science 297, 1143 (2002). The first systematic cataloguing of allele-specific expression in human genes.

    Article  CAS  PubMed  Google Scholar 

  78. Bray, N. J., Buckland, P. R., Owen, M. J. & O'Donovan, M. C. Cis-acting variation in the expression of a high proportion of genes in human brain. Hum. Genet. 113, 149–153 (2003).

    PubMed  Google Scholar 

  79. Knight, J. C., Keating, B. J., Rockett, K. A. & Kwiatkowski, D. P. In vivo characterization of regulatory polymorphisms by allele-specific quantification of RNA polymerase loading. Nature Genet. 33, 469–475 (2003).

    Article  CAS  PubMed  Google Scholar 

  80. Pastinen, T. & Hudson, T. J. Cis-acting regulatory variation in the human genome. Science 306, 647–650 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Ronald, J. et al. Simultaneous genotyping, gene-expression measurement, and detection of allele-specific expression with oligonucleotide arrays. Genome Res. 15, 284–291 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lo, H. S. et al. Allelic variation in gene expression is common in the human genome. Genome Res. 13, 1855–1862 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Liljedahl, U., Fredriksson, M., Dahlgren, A. & Syvanen, A. C. Detecting imbalanced expression of SNP alleles by minisequencing on microarrays. BMC Biotechnol. 4, 24 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wang, Y. et al. Allele quantification using molecular inversion probes (MIP). Nucleic Acids Res. 33, e183 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Pant, P. V. et al. Analysis of allelic differential expression in human white blood cells. Genome Res. 16, 331–339 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Pastinen, T. et al. Mapping common regulatory variants to human haplotypes. Hum. Mol. Genet. 14, 3963–3971 (2005). An excellent review article that describes the origin, measurements and effects of cis -acting regulatory polymorphisms on transcription.

    Article  CAS  PubMed  Google Scholar 

  87. Drossman, H., Luckey, J. A., Kostichka, A. J., D'Cunha, J. & Smith, L. M. High-speed separations of DNA sequencing reactions by capillary electrophoresis. Anal. Chem. 62, 900–903 (1990).

    Article  CAS  PubMed  Google Scholar 

  88. Winzeler, E. A. et al. Direct allelic variation scanning of the yeast genome. Science 281, 1194–1197 (1998).

    Article  CAS  PubMed  Google Scholar 

  89. Albert, T. J. et al. Light-directed 5′–>3′ synthesis of complex oligonucleotide microarrays. Nucleic Acids Res. 31, e35 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Metzker, M. L. Emerging technologies in DNA sequencing. Genome Res. 15, 1767–1776 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. Mitra, R. D. & Church, G. M. In situ localized amplification and contact replication of many individual DNA molecules. Nucleic Acids Res. 27, e34 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Mitra, R. D., Shendure, J., Olejnik, J., Edyta Krzymanska, O. & Church, G. M. Fluorescent in situ sequencing on polymerase colonies. Anal. Biochem. 320, 55–65 (2003). References 91 and 92 describe the original polony approach and associated fluorescent in situ sequencing.

    Article  CAS  PubMed  Google Scholar 

  93. Pemov, A., Modi, H., Chandler, D. P. & Bavykin, S. DNA analysis with multiplex microarray-enhanced PCR. Nucleic Acids Res. 33, e11 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lizardi, P. M. et al. Mutation detection and single-molecule counting using isothermal rolling-circle amplification. Nature Genet. 19, 225–232 (1998).

    Article  CAS  PubMed  Google Scholar 

  95. Dressman, D., Yan, H., Traverso, G., Kinzler, K. W. & Vogelstein, B. Transforming single DNA molecules into fluorescent magnetic particles for detection and enumeration of genetic variations. Proc. Natl Acad. Sci. USA 100, 8817–8822 (2003). This paper describes the use of emulsion PCR for cloning on beads (BEAMing).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Reinartz, J. et al. Massively parallel signature sequencing (MPSS) as a tool for in-depth quantitative gene expression profiling in all organisms. Brief. Funct. Genomic. Proteomic. 1, 95–104 (2002).

    Article  CAS  PubMed  Google Scholar 

  97. Brenner, S. et al. Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nature Biotechnol. 18, 630–634 (2000).

    Article  CAS  Google Scholar 

  98. Velculescu, V. E., Zhang, L., Vogelstein, B. & Kinzler, K. W. Serial analysis of gene expression. Science 270, 484–487 (1995). The original paper that described serial analysis of gene expression (SAGE).

    Article  CAS  PubMed  Google Scholar 

  99. Wang, T. L. et al. Digital karyotyping. Proc. Natl Acad. Sci. USA 99, 16156–16161 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Shendure, J. et al. Accurate multiplex polony sequencing of an evolved bacterial genome. Science 309, 1728–1732 (2005).

    Article  CAS  PubMed  Google Scholar 

  101. Margulies, M. et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 376–380 (2005). References 100 and 101 were the first two papers to describe the sequencing of bacterial genomes using highly parallel array-based sequencing assays.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Tsien, R. Y., Ross, P., Fahnestock, M. & Johnston, A. J. DNA sequencing. PCT Patent WO 91/06678 (1991).

  103. Metzker, M. L. et al. Termination of DNA synthesis by novel 3′-modified-deoxyribonucleoside 5′-triphosphates. Nucleic Acids Res. 22, 4259–4267 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Braslavsky, I., Hebert, B., Kartalov, E. & Quake, S. R. Sequence information can be obtained from single DNA molecules. Proc. Natl Acad. Sci. USA 100, 3960–3964 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ronaghi, M., Uhlen, M. & Nyren, P. A sequencing method based on real-time pyrophosphate. Science 281, 363–365 (1998).

    Article  CAS  PubMed  Google Scholar 

  106. Bennett, S. T., Barnes, C., Cox, A., Davies, L. & Brown, C. Toward the $1000 human genome. Pharmacogenomics 6, 373–382 (2005).

    Article  CAS  PubMed  Google Scholar 

  107. Tebbutt, S. J. et al. Deoxynucleotides can replace dideoxynucleotides in minisequencing by arrayed primer extension. Biotechniques 40, 331–338 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Macevicz, S. C. DNA sequencing by parallel oligonucleotide extensions. US Patent 6,306,597 (2001).

  109. Vogelstein, B. & Kinzler, K. W. Digital PCR. Proc. Natl Acad. Sci. USA 96, 9236–9241 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Pohl, G. & Shih I.-M. Principle and applications of digital PCR. Expert Rev. Mol. Diagn. 4, 41–47 (2004).

    Article  CAS  PubMed  Google Scholar 

  111. Matsumura, H. et al. Gene expression analysis of plant host–pathogen interactions by SuperSAGE. Proc. Natl Acad. Sci. USA 100, 15718–15723 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Matsumura, H. et al. SuperSAGE. Cell. Microbiol. 7, 11–18 (2005).

    Article  CAS  PubMed  Google Scholar 

  113. Tengs, T. et al. Genomic representations using concatenates of Type IIB restriction endonuclease digestion fragments. Nucleic Acids Res. 32, e121 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Lu, C. et al. Elucidation of the small RNA component of the transcriptome. Science 309, 1567–1569 (2005).

    Article  CAS  PubMed  Google Scholar 

  115. Li, M., Diehl, F., Dressman, D., Vogelstein, B. & Kinzler, K. W. BEAMing up for detection and quantification of rare sequence variants. Nature Methods 3, 95–97 (2006).

    Article  CAS  PubMed  Google Scholar 

  116. Diehl, F. et al. Detection and quantification of mutations in the plasma of patients with colorectal tumors. Proc. Natl Acad. Sci. USA 102, 16368–16373 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Jing, J. et al. Automated high resolution optical mapping using arrayed, fluid-fixed DNA molecules. Proc. Natl Acad. Sci. USA 95, 8046–8051 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Aston, C., Mishra, B. & Schwartz, D. C. Optical mapping and its potential for large-scale sequencing projects. Trends Biotechnol. 17, 297–302 (1999).

    Article  CAS  PubMed  Google Scholar 

  119. Ramanathan, A., Pape, L. & Schwartz, D. C. High-density polymerase-mediated incorporation of fluorochrome-labeled nucleotides. Anal. Biochem. 337, 1–11 (2005).

    Article  CAS  PubMed  Google Scholar 

  120. Dimalanta, E. T. et al. A microfluidic system for large DNA molecule arrays. Anal. Chem. 76, 5293–5301 (2004).

    Article  CAS  PubMed  Google Scholar 

  121. Zody, M. C. et al. DNA sequence of human chromosome 17 and analysis of rearrangement in the human lineage. Nature 440, 1045–1049 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. The ENCODE Project Consortium. The ENCODE (ENCyclopedia Of DNA Elements) Project. Science 306, 636–640 (2004).

  123. Crawford, G. E. et al. Genome-wide mapping of DNase hypersensitive sites using massively parallel signature sequencing (MPSS). Genome Res. 16, 123–131 (2005).

    Article  CAS  PubMed  Google Scholar 

  124. Ng, P. et al. Gene identification signature (GIS) analysis for transcriptome characterization and genome annotation. Nature Methods 2, 105–111 (2005).

    Article  CAS  PubMed  Google Scholar 

  125. Shoemaker, D. D. et al. Experimental annotation of the human genome using microarray technology. Nature 409, 922–927 (2001).

    Article  CAS  PubMed  Google Scholar 

  126. Cheng, J. et al. Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution. Science 308, 1149–1154 (2005).

    Article  CAS  PubMed  Google Scholar 

  127. Kapranov, P. et al. Large-scale transcriptional activity in chromosomes 21 and 22. Science 296, 916–919 (2002).

    Article  CAS  PubMed  Google Scholar 

  128. Kim, T. H. et al. Direct isolation and identification of promoters in the human genome. Genome Res. 15, 830–839 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Ren, B. et al. Genome-wide location and function of DNA binding proteins. Science 290, 2306–2309 (2000). The first study that used a ChIP-on-chip approach for genome-wide mapping and functional analysis of DNA-binding proteins.

    Article  CAS  PubMed  Google Scholar 

  130. Kim, T. H. et al. A high-resolution map of active promoters in the human genome. Nature 436, 876–880 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Carninci, P. et al. The transcriptional landscape of the mammalian genome. Science 309, 1559–1563 (2005).

    Article  CAS  PubMed  Google Scholar 

  132. Carroll, J. S. et al. Chromosome-wide mapping of estrogen receptor binding reveals long-range regulation requiring the forkhead protein FoxA1. Cell 122, 33–43 (2005).

    Article  CAS  PubMed  Google Scholar 

  133. Cheng, A. S. et al. Combinatorial analysis of transcription factor partners reveals recruitment of c-MYC to estrogen receptor-α responsive promoters. Mol. Cell 21, 393–404 (2006).

    Article  CAS  PubMed  Google Scholar 

  134. Li, Z. et al. A global transcriptional regulatory role for c- Myc in Burkitt's lymphoma cells. Proc. Natl Acad. Sci. USA 100, 8164–8169 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Plass, C. Cancer epigenomics. Hum. Mol. Genet. 11, 2479–2488 (2002).

    Article  CAS  PubMed  Google Scholar 

  136. van Steensel, B. Mapping of genetic and epigenetic regulatory networks using microarrays. Nature Genet. 37, S18–S24 (2005).

    Article  CAS  PubMed  Google Scholar 

  137. Pokholok, D. K. et al. Genome-wide map of nucleosome acetylation and methylation in yeast. Cell 122, 517–527 (2005).

    Article  CAS  PubMed  Google Scholar 

  138. Bernstein, B. E. et al. Genomic maps and comparative analysis of histone modifications in human and mouse. Cell 120, 169–181 (2005).

    Article  CAS  PubMed  Google Scholar 

  139. van Steensel, B. & Henikoff, S. Epigenomic profiling using microarrays. Biotechniques 35, 346–357 (2003).

    Article  CAS  PubMed  Google Scholar 

  140. Rakyan, V. K. et al. DNA methylation profiling of the human major histocompatibility complex: a pilot study for the human epigenome project. PLoS Biol. 2, e405 (2004). This work represents the first large-scale bisulphite sequencing effort for a large genomic region.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Jones, P. A. & Martienssen, R. A blueprint for a Human Epigenome Project: The AACR Human Epigenome Workshop. Cancer Res 65, 11241–11246 (2005).

    Article  CAS  PubMed  Google Scholar 

  142. Murrell, A., Rakyan, V. K. & Beck, S. From genome to epigenome. Hum. Mol. Genet. 14, R3–R10 (2005).

    Article  CAS  PubMed  Google Scholar 

  143. Bestor, T. H. Gene silencing. Methylation meets acetylation. Nature 393, 311–312 (1998).

    Article  CAS  PubMed  Google Scholar 

  144. Herman, J. G. & Baylin, S. B. Gene silencing in cancer in association with promoter hypermethylation. N. Engl. J. Med. 349, 2042–2054 (2003).

    Article  CAS  PubMed  Google Scholar 

  145. Gitan, R. S., Shi, H., Chen, C. M., Yan, P. S. & Huang, T. H. Methylation-specific oligonucleotide microarray: a new potential for high-throughput methylation analysis. Genome Res. 12, 158–164 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Adorjan, P. et al. Tumour class prediction and discovery by microarray-based DNA methylation analysis. Nucleic Acids Res. 30, e21 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Bibikova, M. et al. High-throughput DNA methylation profiling using universal bead arrays. Genome Res. 16, 383–393 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Cheng, Y. W., Shawber, C., Notterman, D., Paty, P. & Barany, F. Multiplexed profiling of candidate genes for CpG island methylation status using a flexible PCR/LDR/Universal Array assay. Genome Res. 16, 282–289 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Lippman, Z., Gendrel, A. V., Colot, V. & Martienssen, R. Profiling DNA methylation patterns using genomic tiling microarrays. Nature Methods 2, 219–224 (2005).

    Article  CAS  PubMed  Google Scholar 

  150. Schumacher, A. et al. Microarray-based DNA methylation profiling: technology and applications. Nucleic Acids Res. 34, 528–542 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Heisler, L. E. et al. CpG Island microarray probe sequences derived from a physical library are representative of CpG Islands annotated on the human genome. Nucleic Acids Res. 33, 2952–2961 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Weber, M. et al. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nature Genet. 37, 853–862 (2005).

    Article  CAS  PubMed  Google Scholar 

  153. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  154. Rhodes, D. R. & Chinnaiyan, A. M. Integrative analysis of the cancer transcriptome. Nature Genet. 37, S31–S37 (2005).

    Article  CAS  PubMed  Google Scholar 

  155. Rhodes, D. R. et al. Mining for regulatory programs in the cancer transcriptome. Nature Genet. 37, 579–583 (2005).

    Article  CAS  PubMed  Google Scholar 

  156. Gunderson, K. L. et al. Decoding randomly ordered DNA arrays. Genome Res. 14, 870–877 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Illumina, Infinium and GoldenGate are registered trademarks or trademarks of Illumina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin L. Gunderson.

Ethics declarations

Competing interests

All authors are either employees of Illumina or have an equity interest in Illumina, or both.

Related links

Related links

FURTHER INFORMATION

Cancer Genome Atlas Pilot Project

ENCODE international consortium

Human Epigenome Project

Glossary

Cancer staging

Classification of cancer types into groups that reflect their localization, metastasis, prognosis, recommended treatment regimen and predicted clinical outcome.

Linkage disequilibrium

The property of two polymorphic loci in a population such that the polymorphic states at the two loci are not independent of one another, and as a result the state of the polymorphism at one locus has a higher probability of being associated with a particular state at the second locus. This association is usually measured with a metric called r2 that ranges between zero (no linkage) and one (complete linkage).

Ligase chain reaction

A cyclic amplification method for amplifying a target sequence that is similar in approach to PCR except that repeated rounds of thermally controlled denaturation, annealing and ligation of a pair of adjacent oligonucleotides are carried out.

Padlock-probe amplification

A ligation-mediated bimolecular assay for a target sequence in which the two query oligonuceotides (5′ and 3′ sequences) are derived from the two ends of a contiguous oligonucleotide. Ligation of the two ends creates a circular structure that is intertwined with the target sequence.

Primer dimer

A parasitic product that is formed during PCR reactions and is caused by multiple primers interacting and extending upon themselves. Appropriate design of primer sequences can reduce this effect.

Universal PCR

A multiplex PCR reaction using a single or pair of universal primer sequences to amplify a broad range of target sequences that all contain common invariant 5′ and 3′ tail sequences

Whole-genome representation

A representation with a sequence complexity that is similar to that of the entire genome from which it was derived.

Reduced-complexity genomic representation

A representation with a sequence complexity that is a fraction of the original sample nucleic-acid complexity. In its simplest version, PCR of adaptor-ligated or restriction-enzyme-digested genomic DNA intrinsically generates a reduced-complexity representation.

DNA-array feature

An individual resolvable element of a DNA array that contains a defined sequence. This element can be created in several ways such as spotting, in situ synthesis or deposition of beads that harbour immobilized DNA sequences.

Tag SNP and tagging SNP

A tag SNP is defined as a SNP that proxies for a set of SNPs in linkage disequilibrium with itself (that is, they are in the same linkage disequilibrium bin). A haplotype tagging SNP, by contrast, is based on the haplotype block concept, in which a set of tagging SNPs are used to uniquely define the variation of all SNPs that reside in the haplotype block.

Uniparental disomy

This rare genetic condition can arise constitutionally through non-disjunction during meiosis that ultimately leads to a duplication of a segment or of the entire maternal or paternal chromosome in the affected individual. A form of apparent uniparental disomy can arise in the course of normal cell division (mitosis) through mitotic recombination (a rare crossover event during mitosis).

Polony

Contraction of 'polymerase colony' that is created by growing DNA colonies from single DNA 'seed' molecules through the use of a PCR reaction on DNA molecules that are diffusely imbedded in a polymer matrix that contains DNA polymerase, primers and appropriate reagents.

BEAMing

A process of cloning on beads in which a library of clones is grown on beads through the use of compartmentalized emulsion PCR. DNA and beads are diluted such that, on average, only a single bead and a single target molecule co-occupy a single compartment. PCR amplification grows a clonal population of molecules on the bead starting from the single target sequence.

Massively parallel signature sequencing

This enables digital transcript counting in a cDNA sample. It is accomplished by cloning a 17–20 base signature sequence tag onto micro-beads that are subsequently fixed in a single layer array in a flow cell. The sequence on the bead is then read out using a ligation-based cycle-sequencing assay.

Type IIS restriction enzyme

Restriction enzymes that primarily exist as monomers and require only Mg2+ as a cofactor. Recognition sites are nonpalindromic, nearly always contiguous and without ambiguities; at least one strand is cleaved outside the recognition sequence.

ChIP-on-chip

Chromatin immunoprecipitation (ChIP) combined with microarray detection. Usually, cells are treated with a crosslinking reagent (for example, formaldehyde), which is used to covalently link protein complexes in situ to DNA. The crosslinked chromatin is then isolated and fragmented. An immunoprecipitation step is used to enrich the protein of interest together with crosslinked DNA fragments. To identify and quantify these DNA fragments, the crosslinks are reversed and the DNA fragments are usually labelled with a fluorescent dye and hybridized to microarrays with probes that correspond to genomic regions of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, JB., Chee, M. & Gunderson, K. Highly parallel genomic assays. Nat Rev Genet 7, 632–644 (2006). https://doi.org/10.1038/nrg1901

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg1901

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing