Key Points
-
Mitochondrial DNA (mtDNA) is generally packaged into nucleoids, the heritable units of mtDNA, by the Abf2/TFAM (transcription factor A, mitochondrial)-family of HMG (high mobility group)-box proteins, which are conserved from yeast to humans. However, recent studies have also revealed several metabolic enzymes that are associated with mtDNA in both yeast and vertebrates.
-
The metabolic proteins that are found in yeast mitochondrial nucleoids can substitute for Abf2 in mtDNA packaging and protection when their expression is increased in response to metabolic cues. These findings indicate that the structural organization of mitochondrial nucleoids is subject to remodelling by these metabolically regulated bifunctional proteins.
-
Mitochondrial nucleoid (mt-nucleoid) division can be directly observed by microscopy. The yeast Hsp60 (heat shock protein 60) chaperonin is a bifunctional protein that is involved in this process.
-
Proteins that are involved in mtDNA recombination affect mt-nucleoid number and mtDNA transmissibility. Genes that are involved in mtDNA concatemerization could accelerate the establishment of homoplasmy in dividing cells.
-
Extensive mitochondrial fission leads to the production of mitochondria that are devoid of mt-nucleoids, and transmission of those mitochondria to progeny cells can eventually lead to the loss of mtDNA. Yeast mitochondria are equipped with a membrane-spanning device that physically links mt-nucleoids to the actin cytoskeleton, which provides a mechanism for coupling mitochondrial movement and mtDNA segregation during cell division.
-
mtDNA mutations have causative roles in neuromuscular diseases and cellular ageing. Studies of the organization and inheritance of mt-nucleoids could help us to understand how the mitochondrial genetic system is affected under these conditions.
Abstract
Mitochondrial DNA (mtDNA) encodes essential components of the cellular energy-producing apparatus, and lesions in mtDNA and mitochondrial dysfunction contribute to numerous human diseases. Understanding mtDNA organization and inheritance is therefore an important goal. Recent studies have revealed that mitochondria use diverse metabolic enzymes to organize and protect mtDNA, drive the segregation of the organellar genome, and couple the inheritance of mtDNA with cellular metabolism. In addition, components of a membrane-associated mtDNA segregation apparatus that might link mtDNA transmission to mitochondrial movements are beginning to be identified. These findings provide new insights into the mechanisms of mtDNA maintenance and inheritance.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
References
Nass, M. M. K. & Nass, S. Intramitochondrial fibres with DNA characteristics. I. Fixation and elctron staining reactions. J. Cell Biol. 19, 593–611 (1963).
Schatz, G., Haslbrunner, E. & Tuppy, H. Deoxyribonucleic acid associated with yeast mitochondria. Biochem. Biophys. Res. Commun. 15, 127–132 (1964).
Chen, X. J., Wang, X., Kaufman, B. A. & Butow, R. A. Aconitase couples metabolic regulation to mitochondrial DNA maintenance. Science 307, 714–717 (2005). This paper shows that the mitochondrial aconitase is an mt-nucleoid component that is essential for mtDNA maintenance, and its overexpression can suppress mtDNA loss from cells that lack Abf2. It also proposes that the bifunctional metabolic enzymes in mt-nucleoids might remodel nucleoid organization in response to physiological cues.
Kaufman, B. A. et al. In organello formaldehyde crosslinking of proteins to mtDNA: identification of bifunctional proteins. Proc. Natl Acad. Sci. USA 97, 7772–7777 (2000). This work revealed the association of numerous metabolic proteins with mtDNA by in organello formaldehyde crosslinking.
Bogenhagen, D. F., Wang, Y., Shen, E. L. & Kobayashi, R. Protein components of mitochondrial DNA nucleoids in higher eukaryotes. Mol. Cell. Proteomics 2, 1205–1216 (2003). The paper describes the identification of several metabolic proteins that are associated with mtDNA in X. laevis oocyte mitochondria and is the most comprehensive analysis of mt-nucleoids in a metazoan species.
Azpiroz, R. & Butow, R. A. Patterns of mitochondrial sorting in yeast zygotes. Mol. Biol. Cell 4, 21–36 (1993). Using pedigree studies of yeast zygotic cells and their first buds, these authors showed that mtDNA movement is controlled separately from the movement of bulk mitochondrial matrix constituents.
Boldogh, I. R. et al. A protein complex containing Mdm10p, Mdm12p, and Mmm1p links mitochondrial membranes and DNA to the cytoskeleton-based segregation machinery. Mol. Biol. Cell 14, 4618–4627 (2003).
Nunnari, J. et al. Mitochondrial transmission during mating in Saccharomyces cerevisiae is determined by mitochondrial fusion and fission and the intramitochondrial segregation of mitochondrial DNA. Mol. Biol. Cell 8, 1233–1242 (1997).
Okamoto, K., Perlman, P. S. & Butow, R. A. The sorting of mitochondrial DNA and mitochondrial proteins in zygotes: preferential transmission of mitochondrial DNA to the medial bud. J. Cell Biol. 142, 613–623 (1998).
Williamson, D. H. & Fennell, D. J. The use of fluorescent DNA-binding agent for detecting and separating yeast mitochondrial DNA. Methods Cell Biol. 12, 335–351 (1975).
Williamson, D. H. & Fennell, D. J. Visualization of yeast mitochondrial DNA with the fluorescent stain 'DAPI'. Methods Enzymol. 56, 728–733 (1979).
Miyakawa, I., Sando, N., Kawano, K., Nakamura, S. & Kuroiwa, T. Isolation of morphologically intact mitochondrial nucleoids from the yeast, Saccharomyces cerevisiae. J. Cell Sci. 88, 431–439 (1987).
Meeusen, S. et al. Mgm101p is a novel component of the mitochondrial nucleoid that binds DNA and is required for the repair of oxidatively damaged mitochondrial DNA. J. Cell Biol. 145, 291–304 (1999).
Spelbrink, J. N. et al. Human mitochondrial DNA deletions associated with mutations in the gene encoding Twinkle, a phage T7 gene 4-like protein localized in mitochondria. Nature Genet. 28, 223–231 (2001). The first demonstration that human mt-nucleoids can be specifically visualized by GFP tagging of the mitochondrial Twinkle helicase.
Landsman, D. & Bustin, M. A signature for the HMG-1 box DNA-binding proteins. BioEssays 15, 1–8 (1993).
Antoshechkin, I. & Bogenhagen, D. F. Distinct roles for two purified factors in transcription of Xenopus mitochondrial DNA. Mol. Cell. Biol. 15, 7032–7042 (1995).
Antoshechkin, I., Bogenhagen, D. F. & Mastrangelo, I. A. The HMG-box mitochondrial transcription factor xl-mtTFA binds DNA as a tetramer to activate bidirectional transcription. EMBO J. 16, 3198–3206 (1997).
Dequard-Chablat, M. & Allandt, C. Two copies of mthmg1, encoding a novel mitochondrial HMG-like protein, delay accumulation of mitochondrial DNA deletions in Podospora anserina. Eukaryot. Cell 1, 503–513 (2002).
Larsson, N. G., Garman, J. D., Oldfors, A., Barsh, G. S. & Clayton, D. A. A single mouse gene encodes the mitochondrial transcription factor A and a testis-specific nuclear HMG-box protein. Nature Genet 13, 296–302 (1996).
Parisi, M. A. & Clayton, D. A. Similarity of human mitochondrial trancription factor 1 to high mobility group proteins. Science 252, 965–969 (1991).
Pierro, P., Capaccio, L. & Gadaleta, G. The 25 kDa protein recognizing the rat curved region upstream of the origin of the L-strand replication is the rat homologue of the human mitochondrial transcription factor A. FEBS Lett. 457, 307–310 (1999).
Sasaki, N. et al. Glom is a novel mitochondrial DNA packaging protein in Physarum polycephalum and causes intense chromatin condensation without suppressing DNA functions. Mol. Biol. Cell 14, 4758–4769 (2003).
Takata, K. et al. Drosophila mitochondrial transcription factor A: characterization of its cDNA and expression pattern during development. Biochem. Biophys. Res. Commun. 287, 474–483 (2001).
Caron, F., Jacq, C. & Rouviere-Yaniv, J. Characterization of a histone-like protein extracted from yeast mitochondria. Proc. Natl Acad. Sci. USA 76, 4265–4269 (1979).
Certa, U., Colavito-Shepanski, M. & Grunstein, M. Yeast may not contain histone H1: the only known 'histone H1-like' protein in Saccharomyces cerevisiae is a mitochondrial protein. Nucleic Acids Res. 12, 7975–7985 (1984).
Diffley, J. F. & Stillman, B. A close relative of the nuclear, chromosomal high-mobility group protein HMG1 in yeast mitochondria. Proc. Natl Acad. Sci. USA. 88, 7864–7868 (1991). The study identified the yeast ABF2 gene and showed that it is required for mtDNA maintenance on media that contain glucose as the carbon source.
Diffley, J. F. X. & Stillman, B. DNA binding properties of an HMG1-related protein from yeast mitochondria. J. Biol. Chem. 267, 3368–3374 (1992).
Friddle, R. W. et al. Mechanism of DNA compaction by yeast mitochondrial protein Abf2p. Biophys. J. 86, 1632–1639 (2004).
Brewer, L. R. et al. Packaging of single DNA molecules by the yeast mitochondrial protein Abf2p. Biophys. J. 85, 2519–2524 (2003).
O'Rourke, T. W., Doudican, N. A., Mackereth, M. D., Doetsch, P. W. & Shadel, G. S. Mitochondrial dysfunction due to oxidative mitochondrial DNA damage is reduced through cooperative actions of diverse proteins. Mol. Cell. Biol. 22, 4086–4093 (2002).
Fisher, R. P. & Clayton, D. A. Purification and characterization of human mitochondrial transcription factor 1. Mol. Cell. Biol. 8, 3496–3509 (1988).
Parisi, M. A., Xu, B. J. & Clayton, D. A. A human mitochondrial transcriptional activator can functionally replace a yeast mitochondrial HMG-box protein both in vivo and in vitro. Mol. Cell. Biol. 13, 1951–1961 (1993). The authors showed that the human TFAM can functionally substitute for the yeast Abf2 in the maintenance of mtDNA.
Ekstrand, M. I. et al. Mitochondrial transcription factor A regulates mtDNA copy number in mammals. Hum. Mol. Genet. 13, 935–944 (2004).
Takamatsu, C. et al. Regulation of mitochondrial D-loops by transcription factor A and single-stranded DNA-binding protein. EMBO Rep. 3, 451–456 (2002).
Fisher, R. P., Lisowsky, T., Breen, G. A. & Clayton, D. A. A rapid, efficient method for purifying DNA-binding proteins. Denaturation–renaturation chromatography of human and yeast mitochondrial extracts. J. Biol. Chem. 266, 9153–9160 (1991).
Maniura-Weber, K., Goffart, S., Garstka, H. L., Montoya, J. & Wiesner, R. J. Transient overexpression of mitochondrial transcription factor A (TFAM) is sufficient to stimulate mitochondrial DNA transcription, but not sufficient to increase mtDNA copy number in cultured cells. Nucleic Acids Res. 32, 6015–6027 (2004).
McCulloch, V. & Shadel, G. S. Human mitochondrial transcription factor B1 interacts with the C-terminal activation region of h-mtTFA and stimulates transcription independently of its RNA methyltransferase activity. Mol. Cell. Biol. 23, 5816–5824 (2003).
Fisher, R. P., Topper, J. N. & Clayton, D. A. Promoter selection in human mitochondria involves binding of a transcription factor to orientation-independent upstream regulatory elements. Cell 50, 247–258 (1987).
Ghivizzani, S. C., Madsen, C. S., Nelen, M. R., Ammini, C. V. & Hauswirth, W. W. In organello footprint analysis of human mitochondrial DNA: human mitochondrial transcription factor A interactins at the origin of replication. Mol. Cell. Biol. 14, 7717–7730 (1994).
Yoshida, Y. et al. P53 physically interacts with mitochondrial transcription factor A and differentially regulates binding to damaged DNA. Cancer Res. 63, 3729–3734 (2003).
Yoshida, Y. et al. Human mitochondrial transcription factor A binds preferentially to oxidatively damaged DNA. Biochem. Biophys. Res. Commun. 295, 945–951 (2002).
Zelenaya-Troitskaya, O., Newman, S. M., Okamoto, K., Perlman, P. S. & Butow, R. A. Functions of the HMG box protein, Abf2p, in mitochondrial DNA segregation, recombination and copy number in Saccharomyces cerevisiae. Genetics 148, 1763–1776 (1998).
Hansson, A. et al. A switch in metabolism precedes increased mitochondrial biogenesis in respiratory chain-deficient mouse hearts. Proc. Natl Acad. Sci. USA 101, 3136–3141 (2004).
Larsson, N. G. et al. Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice. Nature Genet. 18, 231–236 (1998). In this study, the use of a mouse model showed that the disruption of mammalian TFAM leads to mtDNA depletion and embryonic death.
Matsushima, Y. et al. Functional domains of chicken mitochondrial transcription factor A for the maintenance of mitochondrial DNA copy number in lymphoma cell line DT40. J. Biol. Chem. 278, 31149–31158 (2003).
Goto, A., Matsushima, Y., Kadowaki, T. & Kitagawa, Y. Drosophila mitochondrial transcription factor A (d-TFAM) is dispensable for the transcription of mitochondrial DNA in Kc167 cells. Biochem. J. 354, 243–248 (2001).
Matsushima, Y., Garesse, R. & Kaguni, L. S. Drosophila mitochondrial transcription factor B2 regulates mitochondrial DNA copy number and transcription in schneider cells. J. Biol. Chem. 279, 26900–26905 (2004).
Dairaghi, D., Shadel, G. & Clayton, D. Addition of a 29 residue carboxyl-terminal tail converts a simple HMG box-containing protein into a transcriptional activator. J. Mol. Biol. 249, 11–28 (1995). This study showed that a 29-residue carboxyl-terminal tail of human TFAM is important for specific DNA binding and is essential for transcriptional activation. This sequence is absent in the yeast Abf2, which is not required for mitochondrial transcription.
Newman, S. M., Zelenaya-Troitskaya, O., Perlman, P. S. & Butow, R. A. Analysis of mitochondrial DNA nucleoids in wild-type and a mutant strain of Saccharomyces cerevisiae that lacks the mitochondrial HMG-box protein, Abf2p. Nucleic Acids Res. 24, 386–393 (1996).
McCammon, M. T., Epstein, C. B., Przybyla-Zawislak, B., McAlister-Henn, L. & Butow, R. A. Global transcription analysis of Krebs tricarboxylic acid cycle mutants reveals an alternating pattern of gene expression and effects on hypoxic and oxidative genes. Mol. Biol. Cell 14, 958–972 (2003).
Zelenaya-Troitskaya, O., Perlman, P. S. & Butow, R. A. ILV5 encodes a bifunctional mitochondrial protein involved in branched chain amino acid biosynthesis and maintenance of mitochondrial DNA. EMBO J. 14, 3268–3276 (1995).
Petersen, J. G. L. & Holmberg, S. The ILV5 gene of Saccharomyces cerevisiae is highly expressed. Nucleic Acids. Res. 14, 9631–9651 (1986).
Bateman, J. M., Perlman, P. S. & Butow, R. A. Mutational bisection of the mitochondrial DNA stability and amino acid biosynthetic functions of Ilv5p of budding yeast. Genetics 161, 1043–1052 (2002).
MacAlpine, D. M., Perlman, P. S. & Butow, R. A. The number of individual mitochondrial DNA molecules and mitochondrial DNA nucleoids in yeast are co-regulated by the general amino acid control pathway. EMBO J. 19, 767–775 (2000).
Hirling, H., Henderson, B. R. & Kuhn, L. C. Mutational analysis of the [4Fe–4S]-cluster converting iron regulatory factor from its RNA-binding form to cytoplasmic aconitase. EMBO J. 13, 453–461 (1994).
Hentze, M. W., Muckenthaler, M. U. & Andrews, N. C. Balancing acts: molecular control of mammalian iron metabolism. Cell 117, 285–297 (2004).
Alen, C. & Sonenshein, A. L. Bacillus subtilis aconitase is an RNA-binding protein. Proc. Natl Acad. Sci. USA 96, 10412–10417 (1999).
Nanda, S. K. & Leibowitz, J. L. Mitochondrial aconitase binds to the 3′ untranslated region of the mouse hepatitis virus genome. J. Virol. 75, 3352–3362 (2001).
Shadel, G. S. Mitochondrial DNA, aconitase 'wraps' it up. TIBS 30, 294–296 (2005).
DeRisi, J. L., Iyer, V. R. & Brown, P. O. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278, 680–686 (1997).
Butow, R. A. & Avadhani, N. G. Mitochondrial signaling: the retrograde response. Mol. Cell 14, 1–15 (2004).
Liu, Z. & Butow, R. A. A transcriptional switch in the expression of yeast tricarboxylic acid cycle genes in response to a reduction or loss of respiratory function. Mol. Cell. Biol. 19, 6720–6728 (1999).
Kuroiwa, T., Kawano, S. & Hizume, M. Studies of mitochondrial structure and function in Physarum polycephalum. V. Behavior of mitochondrial nucleoids throughout mitochondrial division cycle. J. Cell Biol. 72, 687–694 (1977).
Garrido, N. et al. Composition and dynamics of human mitochondrial nucleoids. Mol. Biol. Cell 14, 1583–1596 (2003). The authors provide a detailed description of human mt-nucleoids and a direct observation of nucleoid division.
Kaufman, B. A., Kolesar, J. E., Perlman, P. S. & Butow, R. A. A function for the mitochondrial chaperonin Hsp60 in the structure and transmission of mitochondrial DNA nucleoids in Saccharomyces cerevisiae. J. Cell Biol. 163, 457–461 (2003).
Cheng, M. Y. et al. Mitochondrial heat shock protein hsp60 is essential for assembly of proteins imported into yeast mitochondria. Nature 337, 620–625 (1989).
Boldogh, I., Fehrenbacher, K., Yang, H. C. & Pon, L. A. Mitochondrial movement and inheritance in budding yeast. Gene 18 July 2005 (10.1016/j.gene.2005.03.049).
Yaffe, M. B. The machinery of mitochondrial inheritance and behavior. Science 283, 1493–1497 (1999).
Strausberg, R. L. & Perlman, P. S. The effect of zygotic bud position on the transmission of mitochondrial genes in Saccharomyces cerevisiae. Mol. Gen. Genet. 163, 131–144 (1978).
Zinn, A. R., Pohlman, J. K., Perlman, P. S. & Butow, R. A. Kinetic and segregational analysis of mitochondrial DNA recombination in yeast. Plasmid 17, 248–256 (1987).
Dujon, B. in The Molecular Biology of the Yeast Saccharomyces (eds Strathern, J. N., Jones, E. W. & Broach, J. R.) 505–635 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1981).
Bendich, A. J. Structural analysis of mitochondrial DNA molecules from fungi and plants using moving pictures and pulsed-field gel electrophoresis. J. Mol. Biol. 255, 564–588 (1996).
Lockshon, D. et al. A role for recombination junctions in the segregation of mitochondrial DNA in yeast. Cell 81, 947–955 (1995). The authors show that mutations in the recombination-junction-resolving enzyme Mgt1 result in the reduction of mt-nucleoid number and consequently impair the inheritance of mtDNA.
Ling, F. & Shibata, T. Recombination-dependent mtDNA partitioning: in vivo role of Mhr1p to promote pairing of homologous DNA. EMBO J. 21, 4730–4740 (2002).
Ling, F., Makishima, F., Morishima, N. & Shibata, T. A nuclear mutation defective in mitochondrial recombination in yeast. EMBO J. 14, 4090–4101 (1995).
Ling, F. & Shibata, T. Mhr1p-dependent concatemeric mitochondrial DNA formation for generating yeast mitochondrial homoplasmic cells. Mol. Biol. Cell 15, 310–322 (2004).
Maleszka, M. R., Skelly, P. J. & Clark-Walker, G. D. Rolling circle replicaton of DNA in yeast mitochondria. EMBO J. 10, 3923–3929 (1991).
MacAlpine, D. M., Kolesar, J., Okamoto, K., Butow, R. A. & Perlman, P. S. Replication and preferential inheritance of hypersuppressive petite mitochondrial DNA. EMBO J. 20, 1807–1817 (2001).
Shaw, J. M. & Nunnari, J. Mitochondrial dynamics and division in budding yeast. Trends Cell. Biol. 12, 178–184 (2002).
Westermann, B. & Prokisch, H. Mitochondrial dynamics in filamentous fungi. Fungal Genet. Biol. 36, 91–97 (2002).
Scott, S. V., Cassidy-Stone, A., Meeusen, S. L. & Nunnari, J. Staying in aerobic shape: how the structural integrity of mitochondria and mitochondrial DNA is maintained. Curr. Opin. Cell Biol. 15, 482–488 (2003).
Sesaki, H. & Jensen, R. E. UGO1 encodes an outer membrane protein required for mitochondrial fusion. J. Cell Biol. 152, 1123–1134 (2001).
Hales, K. G. & Fuller, M. T. Developmentally regulated mitochondrial fusion mediated by a conserved, novel, predicted GTPase. Cell 90, 121–129 (1997).
Sesaki, H. & Jensen, R. E. Ugo1p links the Fzo1p and Mgm1p GTPases for mitochondrial fusion. J. Biol. Chem. 279, 28298–28303 (2004).
Sesaki, H., Southard, S. M., Yaffe, M. P. & Jensen, R. E. Mgm1p, a dynamin-related GTPase, is essential for fusion of the mitochondrial outer membrane. Mol. Biol. Cell 14, 2342–2356 (2003).
Wong, E. D. et al. The intramitochondrial dynamin-related GTPase, Mgm1p, is a component of a protein complex that mediates mitochondrial fusion. J. Cell Biol. 160, 303–311 (2003).
Arimura, S., Yamamoto, J., Aida, G. P., Nakazono, M. & Tsutsumi, N. Frequent fusion and fission of plant mitochondria with unequal nucleoid distribution. Proc. Natl Acad. Sci. USA 101, 7805–7808 (2004).
Nowikovsky, K. et al. The LETM1/YOL027 gene family encodes a factor of the mitochondrial K+ homeostasis with a potential role in the Wolf–Hirschhorn syndrome. J. Biol. Chem. 279, 30307–30315 (2004).
Kucejova, B., Kucej, M., Petrezselyova, S., Abelovska, L. & Tomaska, L. A screen for nigericin-resistant yeast mutants revealed genes controlling mitochondrial volume and mitochondrial cation homeostasis. Genetics 14 July 2005 (10.1534/genetics.105.046540).
Albring, M., Griffith, J. & Attardi, G. Association of a protein structure of probable membrane derivation with HeLa cell mitochondrial DNA near its origin of replicaton. Proc. Natl Acad. Sci. USA 74, 1348–1352 (1977).
Burgess, S. M., Delannoy, M. & Jensen, R. E. MMM1 encodes a mitochondrial outer membrane protein essential for establishing and maintaining the structure of yeast mitochondria. J. Cell Biol. 126, 1375–1391 (1994).
Berger, K. H., Sogo, L. F. & Yaffe, M. P. Mdm12p, a component required for mitochondrial inheritance that is conserved between budding and fission yeast. J. Cell Biol. 136, 545–553 (1997).
Hobbs, A. E., Srinivasan, M., McCaffery, J. M. & Jensen, R. E. Mmm1p, a mitochondrial outer membrane protein, is connected to mitochondrial DNA (mtDNA) nucleoids and required for mtDNA stability. J. Cell Biol. 152, 401–410 (2001).
Sogo, L. F. & Yaffe, M. P. Regulation of mitochondrial morphology and inheritance by Mdm10p, a protein of the mitochondrial outer membrane. J. Cell Biol. 126, 1361–1373 (1994).
Boldogh, I., Vojtov, N., Karmon, S. & Pon, L. A. Interaction between mitochondria and the actin cytoskeleton in budding yeast requires two integral mitochondrial outer membrane proteins, Mmm1p and Mdm10p. J. Cell Biol. 141, 1371–1381 (1998).
Berger, K. H. & Yaffe, M. P. Mitochondrial DNA inheritance in Saccharomyces cerevisiae. Trends Microbiol. 8, 508–513 (2000).
Hanekamp, T. et al. Maintenance of mitochondrial morphology is linked to maintenance of the mitochondrial genome in Saccharomyces cerevisiae. Genetics 162, 1147–1156 (2002).
Meisinger, C. et al. The mitochondrial morphology protein Mdm10 functions in assembly of the preprotein translocase of the outer membrane. Dev. Cell 7, 61–71 (2004).
Kondo-Okamoto, N., Shaw, J. M. & Okamoto, K. Mmm1p spans both the outer and inner mitochondrial membranes and contains distinct domains for targeting and foci formation. J. Biol. Chem. 278, 48997–49005 (2003).
Dimmer, K. S., Jakobs, S., Vogel, F., Altmann, K. & Westermann, B. Mdm31 and Mdm32 are inner membrane proteins required for maintenance of mitochondrial shape and stability of mitochondrial DNA nucleoids in yeast. J. Cell Biol. 168, 103–115 (2005).
Youngman, M. J., Hobbs, A. E., Burgess, S. M., Srinivasan, M. & Jensen, R. E. Mmm2p, a mitochondrial outer membrane protein required for yeast mitochondrial shape and maintenance of mtDNA nucleoids. J. Cell Biol. 164, 677–688 (2004).
Meeusen, S. & Nunnari, J. Evidence for a two membrane-spanning autonomous mitochondrial DNA replisome. J. Cell Biol. 163, 503–510 (2003). The authors observed that mtDNA replication exclusively takes place in discrete membrane-spanning structures — mitochondrial replisomes. These structures are proposed to provide a mechanism for linking mtDNA replication and inheritance.
Taylor, R. W. & Turnbull, D. M. Mitochondrial DNA mutations in human disease. Nature Rev. Genet. 6, 389–402 (2005).
Wallace, D. C. Mitochondrial diseases in man and mouse. Science 283, 1482–1488 (1999).
Chomyn, A. & Attardi, G. mtDNA mutations in aging and apoptosis. Biochem. Biophys. Res. Commun. 304, 519–529 (2003).
Trifunovic, A. et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429, 417–423 (2004).
Kaukonen, J. et al. Role of adenine nucleotide translocator 1 in mtDNA maintenance. Science 289, 782–785 (2000).
Van Goethem, G., Dermaut, B., Lofgren, A., Martin, J. J. & Van Broeckhoven, C. Mutation of POLG is associated with progressive external ophthalmoplegia characterized by mtDNA deletions. Nature Genet. 28, 211–212 (2001).
DiMauro, S. & Schon, E. A. Mitochondrial DNA mutations in human disease. Am. J. Med. Genet. 106, 18–26 (2001).
Shoubridge, E. A. Mitochondrial DNA segregation in the developing embryo. Hum. Reprod. 15 (Suppl. 2), 229–234 (2000).
Cho, J. H., Ha, S. J., Kao, L. R., Megraw, T. L. & Chae, C. -B. A novel DNA-binding protein bound to the mitochondrial inner membrane restores the null mutation of mitochondrial histone Abf2p in Saccharomyces cerevisiae. Mol. Cell. Biol. 18, 5712–5723 (1998).
Sato, H. & Miyakawa, I. A 22 kDa protein specific for yeast mitochondrial nucleoids is an unidentified putative ribosomal protein encoded in open reading frame YGL068W. Protoplasma 223, 175–182 (2004).
Hall, D. A. et al. Regulation of gene expression by a metabolic enzyme. Science 306, 482–484 (2004).
Cohen, G., Rapatz, W. & Ruis, H. Sequence of the Saccharomyces cerevisiae CTA1 gene and amino acid sequence of catalase A derived from it. Eur. J. Biochem. 176, 150–163 (1988).
Liu, T. et al. DNA and RNA binding by the mitochondrial lon protease is regulated by nucleotide and protein substrate. J. Biol. Chem. 279, 13902–13910 (2004).
Shiiba, D., Fumoto, S. I., Miyakawa, I. & Sando, N. Isolation of giant mitochondrial nucleoids from the yeast Saccharomyces cerevisiae. Protoplasma 198, 177–185 (1997).
Kuroiwa, T. Mitochondrial nuclei. Int. Rev. Cytol. 75, 1–59 (1982).
Moriyama, Y. & Kawano, S. Rapid, selective digestion of mitochondrial DNA in accordance with the matA hierarchy of multiallelic mating types in the mitochondrial inheritance of Physarum polycephalum. Genetics 164, 963–975 (2003).
Klingbeil, M. M. & Englund, P. T. Closing the gaps in kinetoplast DNA network replication. Proc. Natl Acad. Sci. USA 101, 4333–4334 (2004).
Lukes, J. et al. Kinetoplast DNA network: evolution of an improbable structure. Eukaryot. Cell 1, 495–502 (2002).
Ashley, N., Harris, D. & Poulton, J. Detection of mitochondrial DNA depletion in living human cells using PicoGreen staining. Exp. Cell Res. 303, 432–446 (2005).
Iborra, F. J., Kimura, P. R. & Cook, P. R. The functional organization of mitochondrial genomes in human cells. BMC Biol. 2, 9 (2004).
Legros, F., Malka, F., Frachon, P., Lombes, A. & Rojo, M. Organization and dynamics of human mitochondrial DNA. J. Cell Sci. 117, 2653–2662 (2004).
Magnusson, J., Orth, M., Lestienne, P. & Taanman, J. W. Replication of mitochondrial DNA occurs throughout the mitochondria of cultured human cells. Exp. Cell Res. 289, 133–142 (2003).
Margineantu, D. H. et al. Cell cycle dependent morphology changes and associated mitochondrial DNA redistribution in mitochondria of human cell lines. Mitochondrion 1, 425–435 (2002).
Acknowledgements
X.J.C. is supported by the US National Institutes of Health (NIH) and American Heart Association and R.A.B is supported by the NIH and The Robert A. Welch Foundation. We are grateful to our colleagues for their helpful discussions and a critical reading of the manuscript.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Glossary
- HIGH MOBILITY GROUP (HMG) PROTEINS
-
A family of non-histone proteins that contain DNA-binding HMG-box domains.
- ATOMIC FORCE MICROSCOPY
-
A method that is used to image materials at the atomic level.
- PETITE MUTANTS
-
Respiratory-deficient mutants. These either contain a highly repeated, random fragment of the wild-type mitochondrial genome (ρ−) or completely lack mtDNA (ρ°).
- FOOTPRINT ANALYSIS
-
A technique for identifying sites where proteins bind to DNA at a single-nucleotide resolution.
- REDUCTIONAL RECOMBINATION
-
Recombination within the highly repeated sequences of ρ−-petite genomes, which produces shorter mtDNA molecules with a reduced number of repeat units.
- KREBS CYCLE
-
Also known as the tricarboxylic acid (or TCA) cycle. A metabolic pathway in mitochondria that breaks down the products of carbohydrate, fat and protein metabolism into carbon dioxide and water to generate energy. It also provides precursors for other compounds, such as certain amino acids.
- CHAPERONIN
-
A protein complex that is required for correct protein folding.
- DECONVOLUTION MICROSCOPY
-
Microscopy using computer image-processing techniques to reconstruct cross-sectional images from several focal planes, which yields high-resolution images.
- ROLLING-CIRCLE REPLICATION
-
A form of DNA replication in which a circular DNA molecule produces linear daughter molecules.
- HOMOPLASMY
-
The state of the mitochondrial genetic system in which all copies of the mitochondrial genome within a cell are identical.
- HETEROPLASMY
-
The state of the mitochondrial genetic system in which a cell contains mitochondrial genomes that are genetically different.
- FLUORESCENCE IN SITU HYBRIDIZATION
-
A microscopic technique that uses fluorescently tagged DNA probes to detect the cytological localization of specific DNAs by in situ hybridization.
- PRE-PROTEIN TRANSLOCASE
-
A complex of proteins that function in the import of nuclear-encoded mitochondrial proteins that were synthesized on cytoplasmic ribosomes.
- REPLISOME
-
A DNA-replicating structure that is located at the replication fork, which consists of DNA-replication enzymes and associated proteins.
Rights and permissions
About this article
Cite this article
Chen, X., Butow, R. The organization and inheritance of the mitochondrial genome. Nat Rev Genet 6, 815–825 (2005). https://doi.org/10.1038/nrg1708
Published:
Issue Date:
DOI: https://doi.org/10.1038/nrg1708