Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

RNAi-mediated pathways in the nucleus

Key Points

  • There is increasing evidence that RNA interference (RNAi)-mediated pathways have important roles in gene regulation at the nuclear-genome level. Key proteins of the RNAi machinery (Dicer, Argonaute, RNA-dependent RNA polymerase) function together with small RNAs to target epigenetic modifications and silencing of homologous regions of the genome.

  • RNA-directed DNA methylation has been well documented in plants and recent reports indicate that it might occur in mammalian cells. RNA-directed DNA methylation can target DNA sequences that are as short as 30 bp for dense cytosine methylation, in contrast to histone modifications, which take place in the context of nucleosomes and comprise 147 bp of DNA.

  • RNAi-mediated heterochromatin formation is important for centromere stucture and function in fission yeast, Drosophila melanogaster, mammals and perhaps other organisms. RNAi-mediated heterochromatin can also be induced at non-centromeric, interstitial regions to silence retrotransposons and regulate endogenous genes.

  • In Neurospora crassa, unpaired DNA can be silenced during meiosis by an RNAi-related pathway. This process might silence new transposon inserts. A similar pathway operates during meiosis in Caenorhabditis elegans.

  • Pairing-sensitive silencing in D. melanogaster, which involves greater silencing of somatically paired transgenes than unpaired copies, is intensified by mutations in the RNAi pathway.

  • RNAi-mediated heterochromatin marks internal eliminated sequences for deletion in developing macronuclei of Tetrahymena thermophila, perhaps to remove transposons that have invaded the germline genome of micronuclei.

  • Transposable elements and related repeats are primary targets for RNAi-mediated pathways in the nucleus, consistent with a role for RNAi in host defence against invasive sequences.

  • Despite the importance of RNAi-mediated pathways in establishing epigenetic modifications, not all DNA methylation and heterochromatin formation is induced by RNA. For example, N. crassa, which has the machinery for RNAi, does not seem to use the RNAi pathway for heterochromatin formation or DNA methylation.

  • Important questions for future research concern the universality of various RNAi-mediated nuclear pathways and the molecular composition of nuclear silencing-effector complexes.

Abstract

RNA interference (RNAi) is an evolutionarily conserved mechanism that uses short antisense RNAs that are generated by 'dicing' dsRNA precursors to target corresponding mRNAs for cleavage. However, recent developments have revealed that there is also extensive involvement of RNAi-related processes in regulation at the genome level. dsRNA and proteins of the RNAi machinery can direct epigenetic alterations to homologous DNA sequences to induce transcriptional gene silencing or, in extreme cases, DNA elimination. Furthermore, in some organisms RNAi silences unpaired DNA regions during meiosis. These mechanisms facilitate the directed silencing of specific genomic regions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: RNA-directed DNA methylation.
Figure 2: RNA interference-mediated heterochromatin assembly.
Figure 3: RNA interference (RNAi) and DNA elimination in Tetrahymena thermophila.
Figure 4: Silencing of unpaired DNA during meiosis.

Similar content being viewed by others

References

  1. Carmell, M. A. & Hannon, G. J. RNase III enzymes and the initiation of gene silencing. Nature Struc. Mol. Biol. 11, 214–218 (2004).

    CAS  Google Scholar 

  2. Schramke, V. & Allshire, R. Those interfering little RNAs! Silencing and eliminating chromatin. Curr. Opin. Genet. Devel. 14, 174–180 (2004).

    CAS  Google Scholar 

  3. Matzke, M. & Matzke, A. J. M. Planting the seeds of a new paradigm. PLoS Biol. 2, E133 (2004).

    PubMed  PubMed Central  Google Scholar 

  4. Grewal, S. I. S. & Rice, J. C. Regulation of heterochromatin by histone methylation and small RNAs. Curr. Opin. Cell Biol. 16, 230–238 (2004).

    CAS  PubMed  Google Scholar 

  5. Yan, K. S. et al. Structure and conserved RNA binding of the PAZ domain. Nature 426, 468–474 (2003).

    PubMed  Google Scholar 

  6. Liu, J. et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science 305, 1437–1441 (2004).

    CAS  PubMed  Google Scholar 

  7. Meister, G. et al. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol. Cell 15, 185–197 (2004).

    CAS  PubMed  Google Scholar 

  8. Sijen, T. et al. On the role of RNA amplification in dsRNA-triggered gene silencing. Cell 107, 465–476 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Martienssen, R. Maintenance of heterochromatin by RNA interference of tandem repeats. Nature Genet. 35, 213–214 (2004).

    Google Scholar 

  10. Hamilton, A., Voinnet, O., Chappell, L. & Baulcombe, D. Two classes of short interfering RNA in RNA silencing. EMBO J. 21, 4671–4679 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Vastenhouw, N. L. & Plasterk, R. H. RNAi protects the Caenorhabditis elegans germline against transposition. Trends Genet. 20, 314–319 (2004).

    CAS  PubMed  Google Scholar 

  12. Aravin, A. A. et al. The small RNA profile during Drosophila melanogaster development. Dev. Cell 5, 337–350 (2003).

    CAS  PubMed  Google Scholar 

  13. Lippman, Z., May, B., Yordan, C., Singer, T. & Martienssen, R. Distinct mechanisms determine transposons inheritance and methylation via small interfering RNA and histone modification. PLoS Biol. 1, E67(2003).

    PubMed  PubMed Central  Google Scholar 

  14. Zilberman, D., Cao, X. & Jacobsen, S. E. ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation. Science 299, 716–719 (2003). ARGONAUTE 4 is the first protein of the RNAi machinery that was shown to be required for histone and DNA methylation in a higher organism.

    CAS  PubMed  Google Scholar 

  15. Xie, Z. et al. Genetic and functional diversification of small RNA pathways in plants. PLoS Biol. 2, E104(2004). The authors report on functional diversification and nuclear localization of proteins of the RNAi machinery that produce small RNAs which are involved in DNA and histone methylation.

    PubMed  PubMed Central  Google Scholar 

  16. Volpe, T. A. et al. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297, 1833–1837 (2002). This article describes the discovery of a role for the RNAi machinery in histone methylation and heterochromatin formation at fission-yeast centromeres.

    Article  CAS  PubMed  Google Scholar 

  17. Aravin, A. A. et al. Dissection of a natural RNA silencing process in the Drosophila melanogaster germ line. Mol. Cell Biol. 24, 6742–6750 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Ambros, V., Lee, R. C., Lavanway, A., Williams, P. T. & Jewell, D. MicroRNAs and other tiny endogenous RNAs inC. elegans. Curr. Biol. 13, 807–818 (2003).

    CAS  PubMed  Google Scholar 

  19. Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).

    CAS  PubMed  Google Scholar 

  20. He, L. & Hannon, G. J. MicroRNAs: small RNAs with a big role in gene regulation. Nature Rev. Genet. 5, 522–531 (2004).

    CAS  PubMed  Google Scholar 

  21. Pfeffer, S. et al. Identification of virus-encoded microRNAs. Science 304, 734–736 (2004).

    CAS  PubMed  Google Scholar 

  22. Lund, A. M. & van Lohuizen, M., Epigenetics and cancer. Genes Dev. 18, 2315–2335 (2004).

    CAS  PubMed  Google Scholar 

  23. Hall, I. M. et al. Establishment and maintenance of a heterochromatin domain. Science 297, 2232–2237 (2002).

    CAS  PubMed  Google Scholar 

  24. Freitag, M. et al. DNA methylation is independent of RNA interference in Neurospora. Science 304, 1939(2004).

    CAS  PubMed  Google Scholar 

  25. Chicas, A., Cogoni, C. & Macino, G. RNAi-dependent and RNAi-independent mechanisms contribute to the silencing of RIPed sequences in Neurospora crassa. Nucl. Acids Res. 32, 4237–4243 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Wassenegger, M., Heimes, S., Riedel, L. & Sänger, H. RNA-directed de novo methylation of genomic sequences in plants. Cell 76, 567–576 (1994). This article reports the discovery of RNA-directed DNA methylation.

    CAS  PubMed  Google Scholar 

  27. Mette, M. F., Aufsatz, W., van der Winden, J., Matzke, M. A. & Matzke, A. J. M. Transcriptional silencing and promoter methylation triggered by double stranded RNA. EMBO J. 19, 5194–5201 (2000). This article shows that RNA-directed DNA methylation requires a dsRNA that is processed to small RNAs, reinforcing a mechanistic link with RNAi, and shows that this pathway can target promoter regions.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Jones, L., Ratcliff, F. & Baucombe, D. C. RNA-directed transcriptional gene silencing in plants can be inherited independently of the RNA trigger and requires Met1 for maintenance. Curr. Biol. 11, 747–757 (2001).

    CAS  PubMed  Google Scholar 

  29. Sijen, T. et al. Transcriptional and posttranscriptional gene silencing are mechanistically related. Curr. Biol. 11, 436–440 (2001).

    CAS  PubMed  Google Scholar 

  30. Melquist, S. & Bender, J. Transcription from an upstream promoter controls methylation signaling from an inverted repeat of endogenous genes in Arabidopsis. Genes Dev. 17, 2036–2047 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Pélissier, T., Thalmeir, S., Kempe, D., Sänger, H. -L. & Wasseneger, M. Heavy de novo methylation at symmetrical and non-symmetrical sites is a hallmark of RNA-directed DNA methylation. Nucl. Acids Res. 27, 1625–1634 (1999).

    PubMed  PubMed Central  Google Scholar 

  32. Aufsatz, W., Mette, M. F., van der Winden, J., Matzke, A. J. M. & Matzke, M. RNA-directed DNA methylation in Arabidopsis. Proc. Natl Acad. Sci. USA 99, 16499–16506 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Schramke, V. & Allshire, R. Hairpin RNAs and retrotransposon LTRs effect RNAi and chromatin-based gene silencing. Science 301, 1069–1074 (2003). The authors demonstrate that genes that are normally euchromatic in fission yeast can be targeted for H3K9 methylation and silencing through the RNAi pathway.

    CAS  PubMed  Google Scholar 

  34. Pélissier, T. & Wassenegger, M. A DNA target of 30 bp is sufficient for RNA-directed DNA methylation. RNA 6, 55–65 (2000).

    PubMed  PubMed Central  Google Scholar 

  35. Cao, X. et al. Role of the DRM and CMT3 methyltransferases in RNA-directed DNA methylation. Curr. Biol. 13, 2212–2217 (2003).

    CAS  PubMed  Google Scholar 

  36. Aufsatz, W., Mette, M. F., Matzke, A. J. M. & Matzke, M. The role of MET1 in RNA-directed de novo and maintenance methylation of CG dinucleotides. Plant Mol. Biol. 54, 793–804 (2004).

    CAS  PubMed  Google Scholar 

  37. Aufsatz, W., Mette, M. F., van der Winden, J., Matzke, M. & Matzke, A. J. M. HDA6, a putative histone deacetylase needed to enhance DNA methylation induced by double stranded RNA. EMBO J. 21, 6832–6841 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Lindroth, A. M. et al. Requirement of CHROMOMETHYLASE3 for maintenance of CpXpG methylation. Science 292, 2077–2080 (2001).

    CAS  PubMed  Google Scholar 

  39. Bartee, L., Malagnac, F. & Bender, J. Arabidopsis cmt3 chromomethylase mutations block non-CG methylation and silencing of an endogenous gene. Genes Dev. 15, 1753–1758 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Malagnac, F., Bartee, L. & Bender, J. An Arabidopsis SET domain protein required for maintenance but not establishment of DNA methylation. EMBO J. 21, 6842–6852 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Jackson, J. P., Lindroth, A. M., Cao, X. & Jacobsen, S. E. Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferas. Nature 416, 556–560 (2002). References 40 and 41 report a connection between histone methylation and DNA methylation in plants.

    CAS  PubMed  Google Scholar 

  42. Tamuru, H. & Selker, E. U. A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature 414, 277–283 (2001).

    Google Scholar 

  43. Chan, S. W. L. et al. RNA silencing genes control de novo DNA methylation. Science 303, 1336 (2004).

    CAS  PubMed  Google Scholar 

  44. Zilberman, D. et al. Role of Arabidopsis ARGONAUTE4 in RNA-directed DNA methylation triggered by inverted repeats. Curr. Biol. 14, 1214–1220 (2004).

    CAS  PubMed  Google Scholar 

  45. Vaucheret, H., Vazquez, F., Crété, P. & Bartel, D. P. The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway a crucial for plant development. Genes Dev. 18, 1187–1197 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Lippman, Z. et al. Role of transposable elements in heterochromatin and epigenetic control. Nature 430, 471–476 (2004). The authors demonstrate a role for small RNAs that originate from transposable elements in mediating histone and DNA methylation in A. thaliana heterochromatin and the transposon-containing promoter of the FWA gene.

    CAS  PubMed  Google Scholar 

  47. Morel, J. B. et al. Fertile hypomorphic ARGONAUTE (ago1) mutants impaired in post-transcriptional gene silencing and virus resistance. Plant Cell 14, 629–639 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Kanno, T. et al. Involvement of putative SNF2 chromatin remodeling protein DRD1 in RNA-directed DNA methylation. Curr. Biol. 14, 810–805 (2004).

    Google Scholar 

  49. Dennis, K., Fan, T., Geiman, T., Yan, Q. & Muegge, K. Lsh, a member of the SNF2 family, is required for genome-wide methylation. Genes Dev. 15, 2940–2944 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Bartee, K. & Bender, J. Two Arabidopsis methylation-deficiency mutations confer only partial effects on a methylated endogenous gene family. Nucl. Acids Res. 29, 2127–2134 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Morel, J. B., Mourrain, P., Beclin, C. & Vaucheret, H. DNA methylation and chromatin structure affect transcriptional and post-transcriptional transgene silencing in Arabidopsis. Curr. Biol. 10, 1591–1594 (2000).

    CAS  PubMed  Google Scholar 

  52. Vongs, A., Kakutani, T., Martienssen, R. A. & Richards, E. J. Arabidopsis thaliana DNA methylation mutants. Science 260, 1926–1928 (1993).

    CAS  PubMed  Google Scholar 

  53. Soppe, W. J. J. et al. The late flowering phenotype of fwa mutants is caused by gain-of-function epigenetic alleles of a homeodomain gene. Mol. Cell 6, 791–802 (2000).

    CAS  PubMed  Google Scholar 

  54. Kinoshita, T. et al. One-way control of FWA imprinting in Arabidopsis endosperm by DNA methylation. Science 303, 521–523 (2004).

    CAS  PubMed  Google Scholar 

  55. Svoboda, P., Stein, P., Filipowicz, W. & Schultz, R. M. Lack of homologous sequence-specific DNA methylation in response to stable dsRNA expression in mouse oocytes. Nucl. Acids Res. 32, 3601–3606 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Morris, K. V., Chan, S. W. L., Jacobsen, S. E. & Looney, D. J. Small interfering RNA-induced transcriptional gene silencing in human cells. Science 305, 1289–1292 (2004).

    CAS  PubMed  Google Scholar 

  57. Kawasaki, H. & Taira, K. Induction of DNA methylation and gene silencing by short interfering RNAs in human cells. Nature 431, 211–217 (2004). Together with reference 56, this paper demonstrates that siRNAs can direct promoter methylation and transcriptional silencing in human cells.

    CAS  PubMed  Google Scholar 

  58. Morey, C. & Avner, P. Employment opportunities for non-coding RNAs. FEBS Lett. 567, 27–43 (2004).

    CAS  PubMed  Google Scholar 

  59. Wallrath, L. L. & Elgin, S. C. R. Position effect variegation in Drosophila is associated with an altered chromatin structure. Genes. Dev. 9, 1263–1277 (1995).

    CAS  PubMed  Google Scholar 

  60. Weiler, K. S. & Wakimoto, B. T. Heterochromatin and gene expression in Drosophila. Annu. Rev. Genetics 29, 577–605 (1995).

    CAS  Google Scholar 

  61. Dorer, D. R. & Henikoff, S. Expansions of transgene repeats cause heterochromatin formation and gene silencing in Drosophila. Cell 77, 993–1002 (1994).

    CAS  PubMed  Google Scholar 

  62. Muchardt, C. et al. Coordinated methyl and RNA binding is required for heterochromatin localization of mammalian HP1a. EMBO Rep. 3, 975–981 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Lachner, M., O'Carroll, D., Rea, S., Mechtler, K. & Jenuwein, T. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410, 116–120 (2001).

    CAS  PubMed  Google Scholar 

  64. Bannister, A. J. et al. Selective recognition of methylated lysine 9 in histone H3 by the HP1 chromo domain. Nature 410, 120–124 (2001).

    CAS  PubMed  Google Scholar 

  65. Schotta, G. et al. Central role of Drosophila Su(VAR)3-9 in histone H3-K9 methylation and heterochromatic gene silencing. EMBO J. 21, 1121–1131 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Provost, P. et al. Dicer is required for chromosome segregation and gene silencing in fission yeast cells. Proc. Natl Acad. Sci. USA 99, 16648–16653 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Volpe, T. et al. RNA interference is required for normal centromere function in fission yeast. Chromosome Res. 11, 137–146 (2003).

    CAS  PubMed  Google Scholar 

  68. Hall, I. M., Noma, K. -i. & Grewal, S. I. S. RNA interference machinery regulates chromosome dynamics during mitosis and meiosis in fission yeast. Proc. Natl Acad. Sci. USA 100, 193–198 (2003).

    CAS  PubMed  Google Scholar 

  69. Ekwall, K. The roles of histone modifications and small RNA in centromere function. Chromosome Res. 12, 535–542 (2004).

    CAS  PubMed  Google Scholar 

  70. Verdel, A. et.al RNAi-mediated targeting of heterochromatin by the RITS complex. Science 303, 672–676 (2004). This paper describes the characterization of a nuclear protein complex that is thought to use siRNAs to guide chromatin modifications.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Noma, K. et al. RITS acts in cis to promote RNA interference-mediated transcriptional and post-transcriptional silencing. Nature Genet. 36, 1174–1180 (2004).

    CAS  PubMed  Google Scholar 

  72. Kennerdell, J. R., Yamaguchi, S. & Carthew, R. W. RNAi is activated during Drosophila oocyte maturation in a manner dependent on aubergine and spindle-E. Genes Dev. 16, 1884–1889 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Stapleton, W., Das, S. & McKee, B. D. A role of the Drosophila homeless gene in repression of Stellate in male meiosis. Chromosoma 110, 228–240 (2001).

    CAS  PubMed  Google Scholar 

  74. Aravin, A. A., Naumova, N. M., Tulin, A. A., Rozovsky, Y. M. & Gvozdev, V. A. Double stranded RNA-mediated silencing of genomic tandem repeats and transposable elements in Drosophila melanogaster germline. Curr. Biol. 11, 1017–1027 (2001).

    CAS  PubMed  Google Scholar 

  75. Pal-Bhadra, M. et al. Heterochromatic silencing and HP1 localization in Drosophila are dependent on the RNAi machinery. Science 303, 669–672 (2004).

    CAS  PubMed  Google Scholar 

  76. Fukagawa, T. et al. Dicer is essential for formation of the heterochromatin structure in vertebrate cells. Nature Cell Biol. 6, 784–791 (2004). Together with reference 75, this paper demonstrates that the RNAi machinery participates in heterochromatin formation in multicellular eukaryotes.

    CAS  PubMed  Google Scholar 

  77. Pal-Bhadra, M., Bhadra, U. & Birchler, J. A. Cosuppression in Drosophila: gene silencing of Alcohol dehydrogenase by white-Adh transgenes is Polycomb dependent. Cell 90, 479–490 (1997).

    CAS  PubMed  Google Scholar 

  78. Pal-Bhadra, M., Bhadra, U. & Birchler, J. A. RNAi related mechanisms affects both transcriptional and posttranscriptional transgene silencing in Drosophila. Mol. Cell 9, 315–327 (2002). References 77 and 78 show that the RNAi machinery is required for transcriptional silencing that results from chromatin modifications.

    CAS  PubMed  Google Scholar 

  79. Mochizuki, K. & Gorovsky, M. A. Small RNAs in genome rearrangement in Tetrahymena. Curr. Opin. Genet. Dev. 14, 181–187 (2004). An up-to-date review covering all key papers about the role of RNAi in DNA elimination in ciliates.

    CAS  PubMed  Google Scholar 

  80. Garnier, O., Serrano, V., Duharcourt, S. & Meyer, E. RNA-mediated programming of developmental genome rearrangements in Paramecium. Mol. Cell Biol. 24, 7370–7379 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Chalker, D. L. & Yao, M. -C. Nongenic, bidirectional transcription precedes and may promote developmental DNA deletion in Tetrahymena thermophila. Genes Dev. 15, 1287–1298 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Meyer, E. & Garnier, O. Non-Mendelian inheritance and homology-dependent effects in ciliates. Adv. Genet. 46, 305–337 (2002).

    CAS  PubMed  Google Scholar 

  83. Mochizuki, K., Fine, N. A., Fujisawa, T. & Gorovsky, M. A. Analysis of a piwi-related gene implicates small RNAs in genome rearrangements in Tetrahymena. Cell 110, 689–699 (2002).

    CAS  PubMed  Google Scholar 

  84. Liu, Y., Mochizuki, K. & Gorovsky, M. A. Histone H3 lysine 9 methylation is required for DNA elimination in developing macronuclei in Tetrahymena. Proc. Natl Acad. Sci. USA 101, 1679–1684 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Taverna, S. D., Coyne, R. S. & Allis, C. D. Methylation of histone H3 at lysine 9 targets programmed DNA elimination in Tetrahymena. Cell 110, 701–711 (2002).

    CAS  PubMed  Google Scholar 

  86. Selker, E. U. A self-help guide for a trim genome. Science 300, 1517–1518 (2003).

    CAS  PubMed  Google Scholar 

  87. Mochizuki, K. & Gorovsky, M. A. Conjugation-specific small RNAs in Tetrahymena have predicted properties of scan (scn) RNAs involved in genome arrangement. Genes Dev. 18, 2068–2073 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Yao, M. -C., Fuller, P. & Xi, X. Programmed DNA deletion as an RNA-guided system of genome defense. Science 300, 1581–1584 (2003).

    CAS  PubMed  Google Scholar 

  89. Colot, V., Maloisel, L. & Rossignol, J. L. Interchromosomal transfer of epigenetic states in Ascobolus: transfer of DNA methylation is mechanistically related to homologous recombination. Cell 86, 855–864 (1996).

    CAS  PubMed  Google Scholar 

  90. Aramayo, R. & Metzenberg, R. L. Meiotic transvection in fungi. Cell 86, 103–113 (1996).

    CAS  PubMed  Google Scholar 

  91. Shiu, P. K., Raju, N. B., Zickler, D. & Metzenberg, R. L. Meiotic silencing by unpaired DNA. Cell 107, 905–916 (2001). This is the first demonstration of an involvement of genes that encode components of the RNAi machinery in meiotic silencing by unpaired DNA.

    CAS  PubMed  Google Scholar 

  92. Shiu, P. K. & Metzenberg, R. L. Meiotic silencing by unpaired DNA: properties, regulation and suppression. Genetics 161, 1483–1495 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Lee, D. W., Pratt, R. J., McLaughlin, M. & Aramayo, R. An Argonaute-like protein is required for meiotic silencing. Genetics 164, 821–828 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Pratt, R. J., Lee, D. W. & Aramayo, R. DNA methylation affects meiotic trans-sensing, not meiotic silencing. Genetics (in the press).

  95. Lee, D. W., Seong, K. -Y., Pratt, R. J., Baker, K. & Aramayo, R. Properties of unpaired DNA required for efficient silencing in Neurospora crassa. Genetics 167, 131–150 (2004). A thorough characterization of the requirements for meiotic silencing.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Kutil, B. L., Seong, K. -Y. & Aramayo, R. Unpaired genes do not silence their paired neighbors. Curr. Genet. 43, 425–432 (2003).

    CAS  PubMed  Google Scholar 

  97. Bean, C. J., Schaner, C. E. & Kelly, W. G. Meiotic pairing and imprinted X chromatin assembly in Caenorhabditis elegans. Nature Genet. 36, 100–105 (2004).

    CAS  PubMed  Google Scholar 

  98. Kassis, J. A. Unusual properties of regulatory DNA from the Drosophila engrailed gene: three 'pairing sensitive' sites within a 1.6 kb region. Genetics 136, 1025–1038 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Kassis, J. A., VanSickle, E. P. & Sensabaugh, S. M. A fragment of engrailed regulatory DNA can mediate transvection of the white gene in Drosophila. Genetics 128, 751–761 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Pal-Bhadra, M., Bhadra, U. & Birchler, J. A. Interrelationship of RNAi and transcriptional gene silencing in Drosophila. Cold Spring Harb. Symp. Quant. Biol. (in the press).

  101. Jia, S., Noma, K. & Grewal, S. I. S. RNAi-independent heterochromatin nucleation by the stress-activated ATF/CREB family proteins. Science 304, 1971–1975 (2004).

    CAS  PubMed  Google Scholar 

  102. Laayoun, A. & Smith, S. S. Methylation of slipped duplexes, snapbacks and cruciforms by human DNA (cytosine-5) methyltransferase. Nucl. Acids Res. 23, 1584–1589 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Tamaru, H. & Selker, E. Synthesis of signals for de novo DNA methylation in Neurospora crassa. Mol. Cell Biol. 23, 2379–2394 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Groll, M. G. & Bestor, T. H. Eukaryotic cytosine methyltransferases. Ann. Rev. Biochem. (in the press).

  105. Matzke, M. A., Mette, M. F. & Matzke, A. J. M. Transgene silencing by the host genome defense: implications for the evolution of epigenetic control mechanisms in plants and vertebrates. Plant Mol. Biol. 43, 401–415 (2000).

    CAS  PubMed  Google Scholar 

  106. Carmell, M. A., Xuan, Z., Zhang, M. Q. & Hannon, G. J. The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. Genes Dev. 16, 2733–2742 (2002).

    CAS  PubMed  Google Scholar 

  107. Papp, I. et al. Evidence for nuclear processing of plant microRNA and short interfering RNA precursors. Plant Physiol. 132, 1382–1390 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Lee, Y. S. et al. Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell 117, 69–81 (2004).

    CAS  PubMed  Google Scholar 

  109. Catalanotto, C. et al. Redundancy of the two dicer genes in transgene-induced posttranscriptional gene silencing in Neurospora crassa. Mol. Cell Biol. 24, 2536–2545 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Baulcombe, D. RNA silencing in plants. Nature 431, 356–363 (2004).

    CAS  PubMed  Google Scholar 

  111. Okamura, K., Ishizuka, A., Siomi, H. & Siomi, M. C. Distinct roles for Argonaute proteins in small RNA-directed RNA cleavage pathways. Genes Dev. 18, 1655–1666 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Kress, C., Thomassin, H. & Grange, T. Local DNA demethylation in vertebrates: how could it be performed and targeted?. FEBS Lett. 494, 135–140 (2001).

    CAS  PubMed  Google Scholar 

  113. Jost, J. P. & Jost, Y. C. Transient DNA demethylation in differentiating mouse myoblasts correlates with higher activity of 5-methyldeoxycytidine excision repair. J. Biol. Chem. 269, 10040–10043 (1994).

    CAS  PubMed  Google Scholar 

  114. Zhu, B. et al. Overexpression of 5-methylcytosine DNA glycosylase in human embryonic kidney cells EcR293 demethylates the promoter of a hormone-regulated reporter gene. Proc. Natl Acad. Sci. USA 98, 5031–5036 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Gong, Z. et al. ROS1, a repressor of transcriptional gene silencing in Arabidopsis, encodes a DNA glycosylase/lyase. Cell 111, 803–814 (2002).

    CAS  PubMed  Google Scholar 

  116. Choi, Y. et al. DEMETER, a DNA glycosylase domain protein, is required for endosperm gene imprinting and seed viability in Arabidopsis. Cell 110, 33–42 (2002).

    CAS  PubMed  Google Scholar 

  117. Xiao, W. et al. Imprinting of the MEA polycomb gene is controlled by antagonism between MET1 methyltransferase and DME glycosylase. Dev. Cell 5, 891–901 (2003).

    CAS  PubMed  Google Scholar 

  118. Choi, Y., Harada, J. J., Goldberg, R. L. & Fischer, R. L. An invariant aspartic acid in the DNA glycosylase domain of DEMETER is necessary for transcriptional activation of the imprintedMEDEA gene. Proc. Natl Acad. Sci. USA 101, 7481–7486 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Jost, J. -P., Frémont, M., Siegmann, M. & Hofsteenge, J. The RNA moiety of chick embryo 5-methylcytosine-DNA glycosylase targets DNA demethylation. Nucl. Acids Res. 25, 4545–4550 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Jost, J. P. et al. A chicken embryo protein related to the mammalian DEAD box protein p68 is tightly associated with the highly purified protein-RNA complex of 5-MeC-DNA glycosylase. Nucl. Acids Res. 27, 3245–3252 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Ishizuka, A., Siomi, M. C. & Siomi, H. A Drosophila fragile X protein interacts with components of RNAi and ribosomal proteins. Genes Dev. 16, 2497–2508 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Ramsahoye, B. H. et al. Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a. Proc. Natl Acad. Sci. USA 97, 5237–5242 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Woodcock, D. M., Lawler, C. B., Linsensmeyer, M. E., Doherty, J. P. & Warren, W. D. Asymmetric methylation in the hypermethylated CpG promoter region of the human L1 retrotansposon. J. Biol. Chem. 272, 7810–7816 (1997).

    CAS  PubMed  Google Scholar 

  124. Gibbons, R. J. et al. Mutations in ATRX, encoding a SWI/SNF-like protein, cause diverse changes in the pattern of DNA methylation. Nature Genet. 24, 368–371 (2000).

    CAS  PubMed  Google Scholar 

  125. Jones, L. et al. RNA–DNA interactions and DNA methylation in post-transcriptional gene silencing. Plant Cell 11, 2291–2301 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Billy, E., Brondani, V., Zhang, H., Muller, U. & Filipowicz, W. Specific interference with gene expression induced by long, double stranded RNA in mouse embryonal teratocarcinoma cell lines. Proc. Natl Acad. Sci. USA 98, 14428–14433 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Lippman, Z. & Martienssen, R. The role of RNA interference in heterochromatic silencing. Nature 431, 364–370 (2004).

    CAS  PubMed  Google Scholar 

  128. Grewal, S. I. S. & Moazed, D. Heterochromatin and epigenetic control of gene expression. Science 301, 798–802 (2003).

    CAS  PubMed  Google Scholar 

  129. Bao, N., Lye, K. W. & Barton, M. K. MicroRNA binding sites in Arabidopsis class III AD-ZIP mRNAs are required for methylation of the template chromosome. Dev. Cell 7, 653–662 (2004).

    CAS  PubMed  Google Scholar 

  130. Mpoke, S. & Wolfe, J. DNA digestion and chromatin condensation during nuclear death in Tetrahymena. Exp. Cell Res. 225, 357–365 (1996).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Kathy Barton, Rodolfo Aramayo, Tim Bestor and Mary Groll for preprints and Rodolfo Aramayo, Maarten Koornneef, Tim Bestor, Chris Schaefer, Thomas Tuschl and Antonius Matzke for helpful comments. We are grateful to Eric Meyer for valuable discussions and advice on DNA elimination in ciliates. We acknowledge the financial support of the Austrian Fonds zur Förderung der wissenschaftlichen Forschung and the European Union (M.A.M.) and the US National Science Foundation (J.A.B.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marjori A. Matzke or James A. Birchler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Gene

FWA

piwi

aubergine

homeless

white

NCBI Taxonomy

Neurospora crassa

Arabidopsis thaliana

Drosophila melanogaster

Tetrahymena thermophila

Paramecium tetraurelia

Ascobolus immersus

Caenorhabditis elegans

FURTHER INFORMATION

Arabidopsis small RNA Project

ChromDB: The Plant Chromatin Database

The miRNA registry

Glossary

EPIGENETIC

Refers to mitotically and/or meiotically heritable changes in gene expression that do not involve a change in DNA sequence.

VIROIDS

These are tiny plant pathogens consisting solely of a non-protein-coding, circular rod-shaped RNA that is several hundred base pairs in length.

NUCLEOSOME

The basic unit of chromatin. The nucleosome core consists of an octamer made up of two copies of each of the histones H2A, H2B, H3 and H4, around which 147 bp of DNA is wrapped approximately twice. The histone N-terminal tails protrude from the core and are targets of various post-translational covalent modifications, such as methylation and acetylation.

ENDOSPERM

The seeds of flowering plants contain two fertilization products: the diploid embryo and the triploid endosperm, a terminally differentiated tissue that serves as a nutrient source for the developing embryo.

BASE-EXCISION REPAIR

(BER). The replacement of DNA bases that are altered by small chemical modifications through the excision of only the damaged nucleotide (short-patch BER) or through the removal of 2–13 nucleotides containing the damaged nucleotide (long-patch BER).

SNF2-CHROMATIN-LIKE REMODELLING PROTEINS

First identified in budding yeast as sucrose non-fermenter, or mating type switching defective (Swi) mutants, these proteins use energy from ATP breakdown to enhance the accessibility of nucleosomal DNA to regulatory factors.

CHROMODOMAIN

(Chromatin organization modifier domain). Initially identified in the Drosophila melanogaster HP1 and polycomb proteins, this is an 50-amino-acid domain that binds to histone tails that are methylated at certain lysine residues.

KINETOCHORE

A large protein complex that mediates the attachment of chromosomes to the meiotic and mitotic spindles.

SILENT MATING TYPE

The unexpressed copy of the mating-type locus.

POLYCOMB COMPLEX

A group of repressive chromatin proteins that maintain states of gene expression throughout development.

GENE CONVERSION

The non-reciprocal transfer of DNA-sequence information during meiotic recombination owing to heteroduplex formation.

HERMAPHRODITE

Individuals with both male and female sexual organs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matzke, M., Birchler, J. RNAi-mediated pathways in the nucleus. Nat Rev Genet 6, 24–35 (2005). https://doi.org/10.1038/nrg1500

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg1500

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing