Key Points
-
The emergence of new, high-throughput data-collection techniques increasingly allows us to simultaneously interrogate the status of a cell's components and to determine how and when these molecules interact with each other.
-
Various types of molecular interaction webs (including protein–protein interaction, metabolic, signaling and transcription-regulatory networks) emerge from the sum of these interactions that together are principal determinants of the system-scale behaviour of the cell.
-
A major challenge of contemporary biology is to embark on an integrated theoretical and experimental programme to map out, understand and model in quantifiable terms the topological and dynamical properties of the various networks that control the behaviour of the cell.
-
Here, we review the present knowledge of the design principles for the structure and system-scale function of cellular networks, and the evolutionary mechanisms that might have shaped their development.
-
A key insight is that the architectural features of molecular interaction networks within a cell are shared to a large degree by other complex systems, such as the Internet, computer chips or society. This unexpected universality suggests that similar laws govern the development and function of most complex networks in nature.
-
Providing that sufficient formalism will be developed this new conceptual framework could potentially revolutionize our view and practice of molecular cell biology.
Abstract
A key aim of postgenomic biomedical research is to systematically catalogue all molecules and their interactions within a living cell. There is a clear need to understand how these molecules and the interactions between them determine the function of this enormously complex machinery, both in isolation and when surrounded by other cells. Rapid advances in network biology indicate that cellular networks are governed by universal laws and offer a new conceptual framework that could potentially revolutionize our view of biology and disease pathologies in the twenty-first century.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
References
Hartwell, L. H., Hopfield, J. J., Leibler, S. & Murray, A. W. From molecular to modular cell biology. Nature 402, C47–C52 (1999). This influential concept paper strongly argues for the modular organization of biological functions.
Hasty, J., McMillen, D. & Collins, J. J. Engineered gene circuits. Nature 420, 224–230 (2002).
Kitano, H. Computational systems biology. Nature 420, 206–210 (2002).
Koonin, E. V., Wolf, Y. I. & Karev, G. P. The structure of the protein universe and genome evolution. Nature 420, 218–223 (2002).
Oltvai, Z. N. & Barabási, A. -L. Life's complexity pyramid. Science 298, 763–764 (2002).
Wall, M. E., Hlavacek, W. S. & Savageau, M. A. Design of gene circuits: lessons from bacteria. Nature Rev. Genet. 5, 34–42 (2004).
Bray, D. Molecular networks: the top-down view. Science 301, 1864–1865 (2003).
Alon, U. Biological networks: the tinkerer as an engineer. Science 301, 1866–1867 (2003).
Albert, R. & Barabási, A. -L. Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2002).
Dorogovtsev, S. N. & Mendes, J. F. Evolution of Networks: from Biological Nets to the Internet and WWW. (Oxford University Press, Oxford, 2003).
Bornholdt, S. & Schuster, H. G. Handbook of Graphs and Networks: from the Genome to the Internet (Wiley-VCH, Berlin, Germany, 2003).
Strogatz, S. H. Exploring complex networks. Nature 410, 268–276 (2001).
Bollobas, B. Random Graphs (Academic Press, London, 1985).
Erdös, P. & Rényi, A. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci. 5, 17–61 (1960).
Barabási, A. -L. & Albert, R. Emergence of scaling in random networks. Science 286, 509–512 (1999). This paper introduced the concept of scale-free networks and proposed a mechanism for their emergence.
Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N. & Barabási, A. -L. The large-scale organization of metabolic networks. Nature 407, 651–654 (2000).
Wagner, A. & Fell, D. A. The small world inside large metabolic networks. Proc. R. Soc. Lond. B 268, 1803–1810 (2001). References 16 and 17 provide the first report on the large-scale organization of metabolic networks, showing its scale-free nature.
Jeong, H., Mason, S. P., Barabási, A. -L. & Oltvai, Z. N. Lethality and centrality in protein networks. Nature 411, 41–42 (2001).
Wagner, A. The yeast protein interaction network evolves rapidly and contains few redundant duplicate genes. Mol. Biol. Evol. 18, 1283–1292 (2001).
Giot, L. et al. A protein interaction map of Drosophila melanogaster. Science 302, 1727–1736 (2003).
Li, S. et al. A map of the interactome network of the metazoan, C. elegans. Science 2 Jan 2004 (doi:10.1126/science.1091403)
Yook, S. -H., Oltvai, Z. N. & Barabási, A. -L. Functional and topological characterization of protein interaction networks. Proteomics (in the press).
Uetz, P. et al. A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae. Nature 403, 623–627 (2000).
Ito, T. et al. A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Natl Acad. Sci. USA 98, 4569–4574 (2001).
Featherstone, D. E. & Broadie, K. Wrestling with pleiotropy: genomic and topological analysis of the yeast gene expression network. Bioessays 24, 267–274 (2002).
Agrawal, H. Extreme self-organization in networks constructed from gene expression data. Phys. Rev. Lett. 89, 268702 (2002).
Wuchty, S. Scale-free behavior in protein domain networks. Mol. Biol. Evol. 18, 1694–1702 (2001).
Apic, G., Gough, J. & Teichmann, S. A. An insight into domain combinations. Bioinformatics 17, S83–S89 (2001).
Shen-Orr, S. S., Milo, R., Mangan, S. & Alon, U. Network motifs in the transcriptional regulation network of Escherichia coli. Nature Genet. 31, 64–68 (2002).
Milo, R., Shen-Orr, S. S., Itzkovitz, S., Kashtan, N. & Alon, U. Network motifs: simple building blocks of complex networks. Science 298, 824–827 (2002). References 29 and 30 introduce the concept of motifs in biological and non-biological networks.
Vogelstein, B., Lane, D. & Levine, A. J. Surfing the p53 network. Nature 408, 307–310 (2000).
Milgram, S. The small world problem. Psychol. Today 2, 60 (1967).
Watts, D. J. & Strogatz, S. H. Collective dynamics of 'small-world' networks. Nature 393, 440–442 (1998).
Chung, F. & Lu, L. The average distances in random graphs with given expected degrees. Proc. Natl Acad. Sci. USA 99, 15879–15882 (2002).
Cohen, R. & Havlin, S. Scale-free networks are ultra small. Phys. Rev. Lett. 90, 058701 (2003).
Maslov, S. & Sneppen, K. Specificity and stability in topology of protein networks. Science 296, 910–913 (2002). This paper reports that in protein interaction networks the highly connected nodes tend to link to less connected proteins, which is the so-called disassortative property.
Pastor-Satorras, R., Vázquez, A. & Vespignani, A. Dynamical and correlation properties of the Internet. Phys. Rev. Lett. 87, 258701 (2001).
Newman, M. E. J. Assortative mixing in networks. Phys. Rev. Lett. 89, 208701 (2002).
Rzhetsky, A. & Gomez, S. M. Birth of scale-free molecular networks and the number of distinct DNA and protein domains per genome. Bioinformatics 17, 988–996 (2001).
Qian, J., Luscombe, N. M. & Gerstein, M. Protein family and fold occurrence in genomes: power-law behaviour and evolutionary model. J. Mol. Biol. 313, 673–681 (2001).
Bhan, A., Galas, D. J. & Dewey, T. G. A duplication growth model of gene expression networks. Bioinformatics 18, 1486–1493 (2002).
Pastor-Satorras, R., Smith, E. & Sole, R. Evolving protein interaction networks through gene duplication. J. Theor. Biol. 222, 199–210 (2003).
Vazquez, A., Flammini, A., Maritan, A. & Vespignani, A. Modeling of protein interaction networks. ComPlexUs 1, 38–44 (2003).
Kim, J., Krapivsky, P. L., Kahng, B. & Redner, S. Infinite-order percolation and giant fluctuations in a protein interaction network. Phys. Rev. E. Stat. Nonlin. Soft Matter Phys. 66, 055101 (2002).
Wagner, A. How the global structure of protein interaction networks evolves. Proc. R. Soc. Lond. B 270, 457–466 (2003).
Eisenberg, E. & Levanon, E. Y. Preferential attachment in the protein network evolution. Phys. Rev. Lett. 91, 138701 (2003).
Ravasz, E. & Barabási, A. -L. Hierarchical organization in complex networks. Phys. Rev. E. Stat. Nonlin. Soft Matter Phys. 67, 026112 (2003).
Alberts, B. The cell as a collection of protein machines: preparing the next generation of molecular biologists. Cell 92, 291–294 (1998).
Simon, I. et al. Serial regulation of transcriptional regulators in the yeast cell cycle. Cell 106, 697–708 (2001).
Tyson, J. J., Csikasz-Nagy, A. & Novak, B. The dynamics of cell cycle regulation. Bioessays 24, 1095–1109 (2002).
McAdams, H. H. & Shapiro, L. A bacterial cell-cycle regulatory network operating in time and space. Science 301, 1874–1877 (2003).
Bhalla, U. S., Ram, P. T. & Iyengar, R. MAP kinase phosphatase as a locus of flexibility in a mitogen-activated protein kinase signaling network. Science 297, 1018–1023 (2002).
Ravasz, E., Somera, A. L., Mongru, D. A., Oltvai, Z. N. & Barabási, A. -L. Hierarchical organization of modularity in metabolic networks. Science 297, 1551–1555 (2002). This paper introduced the concept of hierarchical networks, specifically in the context of metabolism.
Itzkovitz, S., Milo, R., Kashtan, N., Ziv, G. & Alon, U. Subgraphs in random networks. Phys. Rev. E. Stat. Nonlin. Soft Matter Phys. 68, 026127 (2003).
Wuchty, S., Oltvai, Z. N. & Barabási, A. -L. Evolutionary conservation of motif constituents within the yeast protein interaction network. Nature Genet. 35, 176–179 (2003).
Conant, G. C. & Wagner, A. Convergent evolution of gene circuits. Nature Genet. 34, 264–246 (2003).
Hinman, V. F., Nguyen, A. T., Cameron, R. A. & Davidson, E. H. Developmental gene regulatory network architecture across 500 million years of echinoderm evolution. Proc. Natl Acad. Sci. USA 100, 13356–13361 (2003).
Dorogovtsev, S. N., Goltsev, A. V. & Mendes, J. F. F. Pseudofractal scale-free web. Phys. Rev. E. Stat. Nonlin. Soft Matter Phys. 65, 066122 (2002).
Schuster, S., Pfeiffer, T., Moldenhauer, F., Koch, I. & Dandekar, T. Exploring the pathway structure of metabolism: decomposition into subnetworks and application to Mycoplasma pneumoniae. Bioinformatics. 18, 351–361 (2002).
Snel, B., Bork, P. & Huynen, M. A. The identification of functional modules from the genomic association of genes. Proc. Natl Acad. Sci. USA 99, 5890–5895 (2002).
Girvan, M. & Newman, M. E. J. Community structure in social and biological networks. Proc. Natl Acad. Sci. USA 99, 7821–7826 (2002).
Holme, P., Huss, M. & Jeong, H. Subnetwork hierarchies of biochemical pathways. Bioinformatics 19, 532–538 (2003).
Rives, A. W. & Galitski, T. Modular organization of cellular networks. Proc. Natl Acad. Sci. USA 100, 1128–1133 (2003).
Spirin, V. & Mirny, L. A. Protein complexes and functional modules in molecular networks. Proc. Natl Acad. Sci. USA 100, 12123–12128 (2003).
Ihmels, J. et al. Revealing modular organization in the yeast transcriptional network. Nature Genet. 31, 370–377 (2002).
Bader, G. D. & Hogue, C. W. Analyzing yeast protein-protein interaction data obtained from different sources. Nature Biotechnol. 20, 991–997 (2002).
Stuart, J. M., Segal, E., Koller, D. & Kim, S. K. A gene-coexpression network for global discovery of conserved genetic modules. Science 302, 249–255 (2003).
Tornow, S. & Mewes, H. W. Functional modules by relating protein interaction networks and gene expression. Nucleic Acids Res. 31, 6283–6289 (2003).
Jansen, R. et al. A Bayesian networks approach for predicting protein–protein interactions from genomic data. Science 302, 449–453 (2003).
Bar-Joseph, Z. et al. Computational discovery of gene modules and regulatory networks. Nature Biotechnol. 21, 1337–1342 (2003).
Albert, R., Jeong, H. & Barabási, A. -L. Error and attack tolerance of complex networks. Nature 406, 378–382 (2000). This paper addresses the topological robustness and vulnerability of complex networks.
Winzeler, E. A. et al. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285, 901–906 (1999).
Giaever, G. et al. Functional profiling of the Saccharomyces cerevisiae genome. Nature 418, 387–391 (2002).
Gerdes, S. Y. et al. Experimental determination and system-level analysis of essential genes in Escherichia coli MG1655. J. Bacteriol. 185, 5673–5684 (2003).
Yu, B. J. et al. Minimization of the Escherichia coli genome using a Tn5-targeted Cre/loxP excision system. Nature Biotechnol. 20, 1018–1023 (2002).
Kolisnychenko, V. et al. Engineering a reduced Escherichia coli genome. Genome Res. 12, 640–647 (2002).
Fraser, H. B., Hirsh, A. E., Steinmetz, L. M., Scharfe, C. & Feldman, M. W. Evolutionary rate in the protein interaction network. Science 296, 750–752 (2002).
Krylov, D. M., Wolf, Y. I., Rogozin, I. B. & Koonin, E. V. Gene loss, protein sequence divergence, gene dispensability, expression level, and interactivity are correlated in eukaryotic evolution. Genome Res. 13, 2229–2235 (2003).
Dezso, Z., Oltvai, Z. N. & Barabási, A. -L. Bioinformatics analysis of experimentally determined protein complexes in the yeast, Saccharomyces cerevisiae. Genome Res. 13, 2450–2454 (2003).
Barkai, N. & Leibler, S. Robustness in simple biochemical networks. Nature 387, 913–917 (1997).
Alon, U., Surette, M. G., Barkai, N. & Leibler, S. Robustness in bacterial chemotaxis. Nature 397, 168–171 (1999). References 80 and 81 represents the first theoretical/experimental study on the functional robustness of a cellular sub-network, focusing on the bacterial chemotaxis receptor module.
von Dassow, G., Meir, E., Munro, E. M. & Odell, G. M. The segment polarity network is a robust developmental module. Nature 406, 188–192 (2000).
Albert, R. & Othmer, H. G. The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster. J. Theor. Biol. 223, 1–18 (2003).
Kirschner, M. & Gerhart, J. Evolvability. Proc. Natl Acad. Sci. USA 95, 8420–8427 (1998).
Savageau, M. Biochemical Systems Analysis: a Study of Function and Design in Molecular Biology (Addison-Wesley, Reading, 1976).
Fell, D. A. Understanding the Control of Metabolism (Portland, London, 1997).
Schilling, C. H. & Palsson, B. O. The underlying pathway structure of biochemical reaction networks. Proc. Natl Acad. Sci. USA 95, 4193–4198 (1998).
Segre, D., Vitkup, D. & Church, G. M. Analysis of optimality in natural and perturbed metabolic networks. Proc. Natl Acad. Sci. USA 99, 15112–15117 (2002).
Edwards, J. S., Ibarra, R. U. & Palsson, B. O. In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nature Biotechnol. 19, 125–130 (2001).
Ibarra, R. U., Edwards, J. S. & Palsson, B. O. Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth. Nature 420, 186–189 (2002). After their theoretical work on flux–balance analysis, the authors of references 89 and 90 show its relevance to predicting experimentally observable metabolic flux values.
Almaas, E., Kovács, B., Vicsek, T., Oltvai, Z. N. & Barabási, A. -L. Global organization of metabolic fluxes in E. coli. Nature, (in the press).
de la Fuente, A., Brazhnik, P. & Mendes, P. Linking the genes: inferring quantitative gene networks from microarray data. Trends Genet. 18, 395–398 (2002).
Kuznetsov, V. A., Knott, G. D. & Bonner, R. F. General statistics of stochastic processes of gene expression in eucaryotic cells. Genetics 161, 1321–1332 (2002).
Farkas, I. J., Jeong, H., Vicsek, T., Barabási, A. -L. & Oltvai, Z. N. The topology of the transcription regulatory network in the yeast, Saccharomyces cerevisiae. Physica A 318, 601–612 (2003).
Grigoriev, A. A relationship between gene expression and protein interactions on the proteome scale: analysis of the bacteriophage T7 and the yeast Saccharomyces cerevisiae. Nucleic Acids Res. 29, 3513–3519 (2001).
Ge, H., Liu, Z., Church, G. M. & Vidal, M. Correlation between transcriptome and interactome mapping data from Saccharomyces cerevisiae. Nature Genet. 29, 482–486 (2001).
Jansen, R., Greenbaum, D. & Gerstein, M. Relating whole-genome expression data with protein-protein interactions. Genome Res. 12, 37–46 (2002).
Goh, K. I., Kahng, B. & Kim, D. Fluctuation-driven dynamics of the internet topology. Phys. Rev. Lett. 88, 108701 (2002).
Braunstein, L. A., Buldyrev, S. V., Cohen, R., Havlin, S. & Stanley, H. E. Optimal paths in disordered complex networks. Phys. Rev. Lett. 91, 168701 (2003).
Menezes, M. A. & Barabási, A. -L. Fluctuations in network dynamics. Phys. Rev. Lett. (in the press).
Elowitz, M. B., Levine, A. J., Siggia, E. D. & Swain, P. S. Stochastic gene expression in a single cell. Science 297, 1183–1186 (2002).
Zeitlinger, J. et al. Program-specific distribution of a transcription factor dependent on partner transcription factor and MAPK signaling. Cell 113, 395–404 (2003).
Ideker, T. et al. Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 292, 929–934 (2001).
Danial, N. N. et al. BAD and glucokinase reside in a mitochondrial complex that integrates glycolysis and apoptosis. Nature 424, 952–956 (2003).
Alizadeh, A. A. et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403, 503–511 (2000).
Emmerling, M. et al. Metabolic flux responses to pyruvate kinase knockout in Escherichia coli. J Bacteriol 184, 152–164 (2002).
Acknowledgements
We thank two anonymous reviewers for their comments and M. Vidal for sharing unpublished work. This research was supported by grants from the National Institutes of Health, Department of Energy (to A.-L.B. and Z.N.O.) and the National Science Foundation (to A.-L.B.)
Author information
Authors and Affiliations
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Related links
Glossary
- PROTEIN CHIPS
-
Similar to cDNA microarrays, this evolving technology involves arraying a genomic set of proteins on a solid surface without denaturing them. The proteins are arrayed at a high enough density for the detection of activity, binding to lipids and so on.
- YEAST TWO-HYBRID SCREEN
-
A genetic approach for the identification of potential protein–protein interactions. Protein X is fused to the site-specific DNA-binding domain of a transcription factor and protein Y to its transcriptional-activation domain — interaction between the proteins reconstitutes transcription-factor activity and leads to expression of reporter genes with recognition sites for the DNA-binding domain.
- microRNA
-
A class of small, non-coding RNAs that are important for development and cell homeostasis, with possible roles in several human disease pathologies.
Rights and permissions
About this article
Cite this article
Barabási, AL., Oltvai, Z. Network biology: understanding the cell's functional organization. Nat Rev Genet 5, 101–113 (2004). https://doi.org/10.1038/nrg1272
Issue Date:
DOI: https://doi.org/10.1038/nrg1272