Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Transcriptional architecture of the mammalian circadian clock

Key Points

  • The mammalian circadian clock mechanism is cell autonomous and composed of a transcription–translation negative-feedback loop. These clocks are distributed throughout the body and regulate tissue-specific rhythmic functions.

  • The core circadian transcriptional regulators drive gene expression rhythms in thousands of genes. The targets of the CLOCK–BMAL1 complex in the mouse liver regulate genes in all fundamental metabolic pathways, thus indicating that the clock system is closely embedded in cellular metabolism.

  • Circadian activators and repressors recruit a wide array of chromatin modifiers that mediate dynamic changes in the poising of the genome with time of day.

  • RNA polymerase II is recruited and initiated genome-wide in a circadian manner in the mouse liver, leading to genome-wide circadian changes in histone modifications.

  • Circadian CLOCK–BMAL1 gene targets are directly linked to metabolism, immune function, cell proliferation, cancer and signalling.

Abstract

Circadian clocks are endogenous oscillators that control 24-hour physiological and behavioural processes in organisms. These cell-autonomous clocks are composed of a transcription–translation-based autoregulatory feedback loop. With the development of next-generation sequencing approaches, biochemical and genomic insights into circadian function have recently come into focus. Genome-wide analyses of the clock transcriptional feedback loop have revealed a global circadian regulation of processes such as transcription factor occupancy, RNA polymerase II recruitment and initiation, nascent transcription, and chromatin remodelling. The genomic targets of circadian clocks are pervasive and are intimately linked to the regulation of metabolism, cell growth and physiology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Circadian rhythms are adaptations of organismal physiology to resonate with the daily solar energetic cycle on earth.
Figure 2: The circadian gene network in mammals.
Figure 3: The circadian cistrome of the mouse liver.
Figure 4: Whole-transcriptome RNA sequencing analysis of circadian gene expression in the mouse liver.
Figure 5: Circadian chromatin states in the mouse liver.
Figure 6: Circadian transcriptional landscape in the mouse liver.
Figure 7: Circadian transcriptional regulation at enhancer and promoter sites during the CLOCK–BMAL1 activation phase during the daytime.

Similar content being viewed by others

References

  1. Pittendrigh, C. S. Temporal organization: reflections of a Darwinian clock-watcher. Annu. Rev. Physiol. 55, 16–54 (1993).

    Article  CAS  PubMed  Google Scholar 

  2. Dunlap, J. C. Molecular bases for circadian clocks. Cell 96, 271–290 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Alon, U. Network motifs: theory and experimental approaches. Nat. Rev. Genet. 8, 450–461 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Young, M. W. & Kay, S. A. Time zones: a comparative genetics of circadian clocks. Nat. Rev. Genet. 2, 702–715 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Bell-Pedersen, D. et al. Circadian rhythms from multiple oscillators: lessons from diverse organisms. Nat. Rev. Genet. 6, 544–556 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rosbash, M. The implications of multiple circadian clock origins. PLoS Biol. 7, e62 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Doherty, C. J. & Kay, S. A. Circadian control of global gene expression patterns. Annu. Rev. Genet. 44, 419–444 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Greenham, K. & McClung, C. R. Integrating circadian dynamics with physiological processes in plants. Nat. Rev. Genet. 16, 598–610 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Rutter, J., Reick, M. & McKnight, S. L. Metabolism and the control of circadian rhythms. Annu. Rev. Biochem. 71, 307–331 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Tu, B. P. & McKnight, S. L. Metabolic cycles as an underlying basis of biological oscillations. Nat. Rev. Mol. Cell Biol. 7, 696–701 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Bass, J. Circadian topology of metabolism. Nature 491, 348–356 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Takahashi, J. S. Finding new clock components: past and future. J. Biol. Rhythms 19, 339–347 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lowrey, P. & Takahashi, J. Mammalian circadian biology: elucidating genome-wide levels of temporal organization. Annu. Rev. Genomics Hum. Genet. 5, 407–441 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Takahashi, J. S., Hong, H. K., Ko, C. H. & McDearmon, E. L. The genetics of mammalian circadian order and disorder: implications for physiology and disease. Nat. Rev. Genet. 9, 764–775 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hastings, M. H., Reddy, A. B. & Maywood, E. S. A clockwork web: circadian timing in brain and periphery, in health and disease. Nat. Rev. Neurosci. 4, 649–661 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Welsh, D. K., Takahashi, J. S. & Kay, S. A. Suprachiasmatic nucleus: cell autonomy and network properties. Annu. Rev. Physiol. 72, 551–577 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dibner, C., Schibler, U. & Albrecht, U. The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu. Rev. Physiol. 72, 517–549 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Mohawk, J. A., Green, C. B. & Takahashi, J. S. Central and peripheral circadian clocks in mammals. Annu. Rev. Neurosci. 35, 445–462 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Albrecht, U. Timing to perfection: the biology of central and peripheral circadian clocks. Neuron 74, 246–260 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Gerber, A. et al. Blood-borne circadian signal stimulates daily oscillations in actin dynamics and SRF activity. Cell 152, 492–503 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Kornmann, B., Schaad, O., Bujard, H., Takahashi, J. S. & Schibler, U. System-driven and oscillator-dependent circadian transcription in mice with a conditionally active liver clock. PLoS Biol. 5, e34 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang, R., Lahens, N. F., Ballance, H. I., Hughes, M. E. & Hogenesch, J. B. A circadian gene expression atlas in mammals: implications for biology and medicine. Proc. Natl Acad. Sci. USA 45, 16219–16224 (2014). This paper shows that 43% of protein-coding genes in the genome show circadian oscillation in at least one tissue. The authors also estimate that 56% of the best-selling drugs directly target the products of rhythmic genes.

    Article  CAS  Google Scholar 

  23. Lim, C. & Allada, R. Emerging roles for post-transcriptional regulation in circadian clocks. Nat. Neurosci. 16, 1544–1550 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Kojima, S. & Green, C. B. Circadian genomics reveal a role for post-transcriptional regulation in mammals. Biochemistry 54, 124–133 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Allada, R. & Chung, B. Y. Circadian organization of behavior and physiology in Drosophila. Annu. Rev. Physiol. 72, 605–624 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hardin, P. E. Molecular genetic analysis of circadian timekeeping in Drosophila. Adv. Genet. 74, 141–173 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kramer, A. & Merrow, M. (eds) Circadian Clocks (Springer, 2013).

    Book  Google Scholar 

  28. Eckel-Mahan, K. & Sassone-Corsi, P. Metabolism and the circadian clock converge. Physiol. Rev. 93, 107–135 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Scheiermann, C., Kunisaki, Y. & Frenette, P. S. Circadian control of the immune system. Nat. Rev. Immunol. 13, 190–198 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Curtis, A. M., Bellet, M. M., Sassone-Corsi, P. & O'Neill, L. A. J. Circadian clock proteins and immunity. Immunity 40, 178–186 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Johnson, C. H. & Egli, M. Metabolic compensation and circadian resilience in prokaryotic cyanobacteria. Annu. Rev. Biochem. 83, 221–247 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. LeGates, T. A., Fernandez, D. C. & Hattar, S. Light as a central modulator of circadian rhythms, sleep and affect. Nat. Rev. Neurosci. 15, 443–454 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Reddy, A. B. & Rey, G. Metabolic and nontranscriptional circadian clocks: eukaryotes. Annu. Rev. Biochem. 83, 165–189 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Asher, G. & Sassone-Corsi, P. Time for food: the intimate interplay between nutrition, metabolism, and the circadian clock. Cell 161, 84–92 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Cha, J., Zhou, M. & Liu, Y. Mechanism of the Neurospora circadian clock, a FREQUENCY-centric view. Biochemistry 54, 150–156 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. Hurley, J., Loros, J. J. & Dunlap, J. C. Dissecting the mechanisms of the clock in Neurospora. Methods Enzymol. 551, 29–52 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. Shultzaberger, R. K., Boyd, J. S., Diamond, S., Greenspan, R. J. & Golden, S. S. Giving time purpose: the Synechococcus elongatus clock in a broader network context. Annu. Rev. Genet. 49, 485–505 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. King, D. P. et al. Positional cloning of the mouse circadian Clock gene. Cell 89, 641–653 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gekakis, N. et al. Role of the CLOCK protein in the mammalian circadian mechanism. Science 280, 1564–1569 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Kume, K. et al. mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell 98, 193–205 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Shearman, L. P. et al. Interacting molecular loops in the mammalian circadian clock. Science 288, 1013–1019 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Lee, C., Etchegaray, J. P., Cagampang, F. R., Loudon, A. S. & Reppert, S. M. Posttranslational mechanisms regulate the mammalian circadian clock. Cell 107, 855–867 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Gallego, M. & Virshup, D. M. Post-translational modifications regulate the ticking of the circadian clock. Nat. Rev. Mol. Cell Biol. 8, 139–148 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Lowrey, P. L. & Takahashi, J. S. Genetics of circadian rhythms in mammalian model organisms. Adv. Genet. 74, 175–230 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Preussner, M. & Heyd, F. Post-transcriptional control of the mammalian circadian clock: implications for health and disease. Pflugers Arch. 468, 983–991 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Toh, K. et al. An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science 291, 1040–1043 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Xu, Y. et al. Functional consequences of a CKI δ mutation causing familial advanced sleep phase syndrome. Nature 434, 640–644 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Preitner, N. et al. The orphan nuclear receptor REV-ERBα controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110, 251–260 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Sato, T. et al. A functional genomics strategy reveals Rora as a component of the mammalian circadian clock. Neuron 43, 527–537 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Zhang, Y. et al. Discrete functions of nuclear receptor Rev-erbα couple metabolism to the clock. Science 348, 1488–1492 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Novak, B. & Tyson, J. J. Design principles of biochemical oscillators. Nat. Rev. Mol. Cell Biol. 9, 981–991 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mitsui, S., Yamaguchi, S., Matsuo, T., Ishida, Y. & Okamura, H. Antagonistic role of E4BP4 and PAR proteins in the circadian oscillatory mechanism. Genes Dev. 15, 995–1006 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gachon, F. et al. The loss of circadian PAR bZip transcription factors results in epilepsy. Genes Dev. 18, 1397–1412 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ueda, H. R. et al. System-level identification of transcriptional circuits underlying mammalian circadian clocks. Nat. Genet. 37, 187–192 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Etchegaray, J. P., Lee, C., Wade, P. A. & Reppert, S. M. Rhythmic histone acetylation underlies transcription in the mammalian circadian clock. Nature 421, 177–182 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Curtis, A. M. et al. Histone acetyltransferase-dependent chromatin remodeling and the vascular clock. J. Biol. Chem. 279, 7091–7097 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Lee, J. et al. Dual modification of BMAL1 by SUMO2/3 and ubiquitin promotes circadian activation of the CLOCK/BMAL1 complex. Mol. Cell. Biol. 28, 6056–6065 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hosoda, H. et al. CBP/p300 is a cell type-specific modulator of CLOCK/BMAL1-mediated transcription. Mol. Brain 2, 34 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Doi, M., Hirayama, J. & Sassone-Corsi, P. Circadian regulator CLOCK is a histone acetyltransferase. Cell 125, 497–508 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Hirayama, J. et al. CLOCK-mediated acetylation of BMAL1 controls circadian function. Nature 450, 1086–1090 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Nakahata, Y. et al. The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 134, 329–340 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Asher, G. et al. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 134, 317–328 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Nakahata, Y., Sahar, S., Astarita, G., Kaluzova, M. & Sassone-Corsi, P. Circadian control of the NAD+ salvage pathway by CLOCK–SIRT1. Science 324, 654–657 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ramsey, K. M. et al. Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science 324, 651–654 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Katada, S. & Sassone-Corsi, P. The histone methyltransferase MLL1 permits the oscillation of circadian gene expression. Nat. Struct. Mol. Biol. 17, 1414–1421 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Aguilar-Arnal, L., Katada, S., Orozco-Solis, R. & Sassone-Corsi, P. NAD+–SIRT1 control of H3K4 trimethylation through circadian deacetylation of MLL1. Nat. Struct. Mol. Biol. 22, 312–318 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Valekunja, U. K. et al. Histone methyltransferase MLL3 contributes to genome-scale circadian transcription. Proc. Natl Acad. Sci. USA 110, 1554–1559 (2013).

    Article  PubMed  Google Scholar 

  68. Ditacchio, L. et al. Histone lysine demethylase JARID1a activates CLOCK–BMAL1 and influences the circadian clock. Science 333, 1881–1885 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nam, H. J. et al. Phosphorylation of LSD1 by PKCα is crucial for circadian rhythmicity and phase resetting. Mol. Cell 53, 791–805 (2014).

    Article  CAS  PubMed  Google Scholar 

  70. Lande-Diner, L., Boyault, C., Kim, J. Y. & Weitz, C. J. A positive feedback loop links circadian clock factor CLOCK–BMAL1 to the basic transcriptional machinery. Proc. Natl Acad. Sci. USA 110, 16021–16026 (2013).

    Article  PubMed  Google Scholar 

  71. Koike, N. et al. Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. Science 338, 349–354 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Le Martelot, G. et al. Genome-wide RNA polymerase II profiles and RNA accumulation reveal kinetics of transcription and associated epigenetic changes during diurnal cycles. PLoS Biol. 10, e1001442 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Brown, S. A. et al. PERIOD1-associated proteins modulate the negative limb of the mammalian circadian oscillator. Science 308, 693–696 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Padmanabhan, K., Robles, M., Westerling, T. & Weitz, C. Feedback regulation of transcriptional termination by the mammalian circadian clock PERIOD complex. Science 337, 599–602 (2012).

    Article  CAS  PubMed  Google Scholar 

  75. Kim, J. Y., Kwak, P. B. & Weitz, C. J. Specificity in circadian clock feedback from targeted reconstitution of the NuRD corepressor. Mol. Cell 56, 738–748 (2014).

    Article  CAS  PubMed  Google Scholar 

  76. Etchegaray, J. P. et al. The polycomb group protein EZH2 is required for mammalian circadian clock function. J. Biol. Chem. 281, 21209–21215 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Nguyen, K. D. et al. Circadian gene Bmal1 regulates diurnal oscillations of Ly6Chi inflammatory monocytes. Science 341, 1483–1488 (2013).

    Article  CAS  PubMed  Google Scholar 

  78. Tamayo, A. G., Duong, H. A., Robles, M. S., Mann, M. & Weitz, C. J. Histone monoubiquitination by Clock–Bmal1 complex marks Per1 and Per2 genes for circadian feedback. Nat. Struct. Mol. Biol. 22, 759–766 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Duong, H., Robles, M., Knutti, D. & Weitz, C. A molecular mechanism for circadian clock negative feedback. Science 332, 1436–1439 (2011).

    Article  CAS  PubMed  Google Scholar 

  80. Duong, H. A. & Weitz, C. J. Temporal orchestration of repressive chromatin modifiers by circadian clock Period complexes. Nat. Struct. Mol. Biol. 21, 126–132 (2014). References 73–75 and 78–80 describe the PER repressor complex.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lowrey, P. L. et al. Positional syntenic cloning and functional characterization of the mammalian circadian mutation tau. Science 288, 483–492 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Shirogane, T., Jin, J., Ang, X. & Harper, J. SCFβ-TRCP controls clock-dependent transcription via casein kinase 1-dependent degradation of the mammalian period-1 (Per1) protein. J. Biol. Chem. 280, 26863–26872 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Reischl, S. et al. β-TrCP1-mediated degradation of PERIOD2 is essential for circadian dynamics. J. Biol. Rhythms 22, 375–386 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Meng, Q. J. et al. Setting clock speed in mammals: the CK1ɛ tau mutation in mice accelerates circadian pacemakers by selectively destabilizing PERIOD proteins. Neuron 58, 78–88 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Busino, L. et al. SCFFbxl3 controls the oscillation of the circadian clock by directing the degradation of cryptochrome proteins. Science 316, 900–904 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Siepka, S. et al. Circadian mutant Overtime reveals F-box protein FBXL3 regulation of Cryptochrome and Period gene expression. Cell 129, 1011–1023 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Godinho, S. et al. The after-hours mutant reveals a role for Fbxl3 in determining mammalian circadian period. Science 316, 897–900 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Lamia, K. A. et al. AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science 326, 437–440 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Etchegaray, J. P. et al. Casein kinase 1 delta regulates the pace of the mammalian circadian clock. Mol. Cell. Biol. 29, 3853–3866 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lee, H. M. et al. The period of the circadian oscillator is primarily determined by the balance between casein kinase 1 and protein phosphatase 1. Proc. Natl Acad. Sci. USA 108, 16451–16456 (2011).

    Article  PubMed  Google Scholar 

  91. Lee, Y., Chen, R., Lee, H. M. & Lee, C. Stoichiometric relationship among clock proteins determines robustness of circadian rhythms. J. Biol. Chem. 286, 7033–7042 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. D'Alessandro, M. et al. A tunable artificial circadian clock in clock-defective mice. Nat. Commun. 6, 8587 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zhou, M., Kim, J. K., Eng, G. W. L., Forger, D. B. & Virshup, D. M. A Period2 phosphoswitch regulates and temperature compensates circadian period. Mol. Cell 60, 1–13 (2015).

    Article  CAS  Google Scholar 

  94. Hirano, A. et al. FBXL21 regulates oscillation of the circadian clock through ubiquitination and stabilization of cryptochromes. Cell 152, 1106–1118 (2013).

    Article  CAS  PubMed  Google Scholar 

  95. Yoo, S.-H. et al. Competing E3 ubiquitin ligases govern circadian periodicity by degradation of CRY in nucleus and cytoplasm. Cell 152, 1091–1105 (2013). References 94 and 95 identify FBXL21 as a component of a second E3 ubiquitin ligase complex for the CRY circadian repressor proteins.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Maywood, E. S. et al. Tuning the period of the mammalian circadian clock: additive and independent effects of CK1ɛTau and Fbxl3Afh mutations on mouse circadian behavior and molecular pacemaking. J. Neurosci. 31, 1539–1544 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Rey, G. et al. Genome-wide and phase-specific DNA-binding rhythms of BMAL1 control circadian output functions in mouse liver. PLoS Biol. 9, e1000595 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Menet, J. S., Rodriguez, J., Abruzzi, K. C. & Rosbash, M. Nascent-seq reveals novel features of mouse circadian transcriptional regulation. eLife 1, e00011 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Vollmers, C. et al. Circadian oscillations of protein-coding and regulatory RNAs in a highly dynamic mammalian liver epigenome. Cell Metab. 16, 833–845 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Yoshitane, H. et al. CLOCK-controlled polyphonic regulation of circadian rhythms through canonical and noncanonical E-boxes. Mol. Cell. Biol. 34, 1776–1787 (2014). References 71, 72 and 97–100 define the circadian transcriptome, cistrome and epigenome in the mouse liver.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ripperger, J. A. & Schibler, U. Rhythmic CLOCK–BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions. Nat. Genet. 38, 369–374 (2006).

    Article  CAS  PubMed  Google Scholar 

  102. Stratmann, M., Suter, D. M., Molina, N., Naef, F. & Schibler, U. Circadian Dbp transcription relies on highly dynamic BMAL1–CLOCK interaction with E boxes and requires the proteasome. Mol. Cell 48, 277–287 (2012).

    Article  CAS  PubMed  Google Scholar 

  103. Thomas, D. & Tyers, M. Transcriptional regulation: kamikaze activators. Curr. Biol. 10, R341–R343 (2000).

    Article  CAS  PubMed  Google Scholar 

  104. Ukai-Tadenuma, M. et al. Delay in feedback repression by Cryptochrome 1 is required for circadian clock function. Cell 144, 268–281 (2011).

    Article  CAS  PubMed  Google Scholar 

  105. Shimomura, K. et al. Usf1, a suppressor of the circadian Clock mutant, reveals the nature of the DNA-binding of the CLOCK:BMAL1 complex in mice. eLife 2, e00426 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Stashi, E. et al. SRC-2 is an essential coactivator for orchestrating metabolism and circadian rhythm. Cell Rep. 6, 633–645 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Perelis, M. et al. Pancreatic β cell enhancers regulate rhythmic transcription of genes controlling insulin secretion. Science 350, aac4250 (2015). This paper defines the circadian cistrome in pancreatic β-cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Hardison, R. C. & Taylor, J. Genomic approaches towards finding cis-regulatory modules in animals. Nat. Rev. Genet. 13, 469–483 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lamia, K. et al. Cryptochromes mediate rhythmic repression of the glucocorticoid receptor. Nature 480, 552–556 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Cho, H. et al. Regulation of circadian behaviour and metabolism by REV-ERB-α and REV-ERB-β. Nature 485, 123–127 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Feng, D. et al. A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism. Science 331, 1315–1319 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Zhu, B. et al. Coactivator-dependent oscillation of chromatin accessibility dictates circadian gene amplitude via REV-ERB loading. Mol. Cell 60, 769–783 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Ameur, A. et al. Total RNA sequencing reveals nascent transcription and widespread co-transcriptional splicing in the human brain. Nat. Struct. Mol. Biol. 18, 1435–1440 (2011).

    Article  CAS  PubMed  Google Scholar 

  114. Gaidatzis, D., Burger, L., Florescu, M. & Stadler, M. B. Analysis of intronic and exonic reads in RNA-seq data characterizes transcriptional and post-transcriptional regulation. Nat. Biotechnol. 33, 722–729 (2015).

    Article  CAS  PubMed  Google Scholar 

  115. Hughes, M. E. et al. Harmonics of circadian gene transcription in mammals. PLoS Genet. 5, e1000442 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Du, N.-H., Arpat, A. B., De Matos, M. & Gatfield, D. MicroRNAs shape circadian hepatic gene expression on a transcriptome-wide scale. eLife 3, e02510 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Core, L. J., Waterfall, J. J. & Lis, J. T. Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science 322, 1845–1848 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kim, T.-K. & Shiekhattar, R. Architectural and functional commonalities between enhancers and promoters. Cell 162, 948–959 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Fang, B. et al. Circadian enhancers coordinate multiple phases of rhythmic gene transcription in vivo. Cell 159, 1140–1152 (2014). This paper identifies circadian eRNAs using GRO-seq.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Anafi, R. C. et al. Machine learning helps identify CHRONO as a circadian clock component. PLoS Biol. 12, e1001840 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Annayev, Y. et al. Gene model 129 (Gm129) encodes a novel transcriptional repressor that modulates circadian gene expression. J. Biol. Chem. 289, 5013–5024 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Goriki, A. et al. A novel protein, CHRONO, functions as a core component of the mammalian circadian clock. PLoS Biol. 12, e1001839 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Preußner, M. et al. Rhythmic U2af26 alternative splicing controls PERIOD1 stability and the circadian clock in mice. Mol. Cell 54, 651–662 (2014).

    Article  CAS  PubMed  Google Scholar 

  124. Kojima, S., Sher-Chen, E. L. & Green, C. B. Circadian control of mRNA polyadenylation dynamics regulates rhythmic protein expression. Genes Dev. 26, 2724–2736 (2012). This paper presents an important example of circadian post-transcriptional regulation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Janich, P., Arpat, A. B., Castelo-Szekely, V., Lopes, M. & Gatfield, D. Ribosome profiling reveals the rhythmic liver translatome and circadian clock regulation by upstream open reading frames. Genome Res. 25, 1848–1859 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Jang, C., Lahens, N. F., Hogenesch, J. B. & Sehgal, A. Ribosome profiling reveals an important role for translational control in circadian gene expression. Genome Res. 25, 1836–1847 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Sims, R. J. III, Belotserkovskaya, R. & Reinberg, D. Elongation by RNA polymerase II: the short and long of it. Genes Dev. 18, 2437–2468 (2004).

    Article  CAS  PubMed  Google Scholar 

  128. Fuda, N., Ardehali, M. & Lis, J. Defining mechanisms that regulate RNA polymerase II transcription in vivo. Nature 461, 186–192 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Jonkers, I. & Lis, J. T. Getting up to speed with transcription elongation by RNA polymerase II. Nat. Rev. Mol. Cell Biol. 16, 167–177 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Jones, J. C. et al. C-terminal repeat domain kinase I phosphorylates Ser2 and Ser5 of RNA polymerase II C-terminal domain repeats. J. Biol. Chem. 279, 24957–24964 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Chapman, R. D. et al. Transcribing RNA polymerase II is phosphorylated at CTD residue serine-7. Science 318, 1780–1782 (2007).

    Article  CAS  PubMed  Google Scholar 

  132. Kim, T. H. et al. A high-resolution map of active promoters in the human genome. Nature 436, 876–880 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Guenther, M. G., Levine, S. S., Boyer, L. A., Jaenisch, R. & Young, R. A. A chromatin landmark and transcription initiation at most promoters in human cells. Cell 130, 77–88 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell 129, 823–837 (2007).

    Article  CAS  PubMed  Google Scholar 

  135. Li, B., Carey, M. & Workman, J. L. The role of chromatin during transcription. Cell 128, 707–719 (2007).

    Article  CAS  PubMed  Google Scholar 

  136. Creyghton, M. P. et al. Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc. Natl Acad. Sci. USA 107, 21931–21936 (2010).

    Article  PubMed  Google Scholar 

  137. Ong, C. T. & Corces, V. G. Enhancer function: new insights into the regulation of tissue-specific gene expression. Nat. Rev. Genet. 12, 283–293 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Rada-Iglesias, A. et al. A unique chromatin signature uncovers early developmental enhancers in humans. Nature 470, 279–283 (2011).

    Article  CAS  PubMed  Google Scholar 

  139. Bernstein, B. E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326 (2006).

    Article  CAS  PubMed  Google Scholar 

  140. Rahl, P. B. et al. c-Myc regulates transcriptional pause release. Cell 141, 432–445 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Menet, J. S., Pescatore, S. & Rosbash, M. CLOCK:BMAL1 is a pioneer-like transcription factor. Genes Dev. 28, 8–13 (2014). This paper shows that CLOCK and BMAL1 act as pioneer transcription factors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Adelman, K. & Lis, J. T. Promoter-proximal pausing of RNA polymerase II: emerging roles in metazoans. Nat. Rev. Genet. 13, 720–731 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Wang, G.-Z. et al. Cycling transcriptional networks reduce the synthetic cost of genomes. Cell Rep. 13, 1868–1880 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Aguilar-Arnal, L. et al. Cycles in spatial and temporal chromosomal organization driven by the circadian clock. Nat. Struct. Mol. Biol. 20, 1206–1213 (2013). This paper is the first to provide evidence for circadian rhythms in chromosomal conformation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Chen, H. et al. Functional organization of the human 4D nucleome. Proc. Natl Acad. Sci. USA 112, 8002–8007 (2015).

    Article  CAS  PubMed  Google Scholar 

  146. Zhao, H. et al. PARP1- and CTCF-mediated interactions between active and repressed chromatin at the lamina promote oscillating transcription. Mol. Cell 59, 984–997 (2015). This paper shows that there is a circadian rhythm of recruitment of circadian loci to the nuclear envelope that is dependent on PARP1 and CTCF.

    Article  CAS  PubMed  Google Scholar 

  147. Aguilar-Arnal, L. & Sassone-Corsi, P. Chromatin landscape and circadian dynamics: spatial and temporal organization of clock transcription. Proc. Natl Acad. Sci. USA 112, 6863–6870 (2015).

    Article  CAS  PubMed  Google Scholar 

  148. Xu, Y. et al. Long-range chromosome interactions mediated by cohesin shape circadian gene expression. PLoS Genet. 12, e1005992 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Feng, D. & Lazar, M. A. Clocks, metabolism, and the epigenome. Mol. Cell 47, 158–167 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Sancar, A. et al. Circadian clock, cancer, and chemotherapy. Biochemistry 54, 110–123 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Masri, S., Kinouchi, K. & Sassone-Corsi, P. Circadian clocks, epigenetics, and cancer. Curr. Opin. Oncol. 27, 50–56 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Papagiannakopoulos, T. et al. Circadian rhythm disruption promotes lung tumorigenesis. Cell Metab. 24, 324–331 (2016). This paper demonstrates that circadian disruption promotes tumorigenesis in a well-validated genetically engineered mouse model of lung cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Schibler, U. et al. Clock-talk: interactions between central and peripheral circadian oscillators in mammals. Cold Spring Harb. Symp. Quant. Biol. 80, 223–232 (2015).

    Article  PubMed  Google Scholar 

  154. Crane, B. R. & Young, M. W. Interactive features of proteins composing eukaryotic circadian clocks. Annu. Rev. Biochem. 83, 191–219 (2014).

    Article  CAS  PubMed  Google Scholar 

  155. Gustafson, C. L. & Partch, C. L. Emerging models for the molecular basis of mammalian circadian timing. Biochemistry 54, 134–149 (2015).

    Article  CAS  PubMed  Google Scholar 

  156. Huang, N. et al. Crystal structure of the heterodimeric CLOCK:BMAL1 transcriptional activator complex. Science 337, 189–194 (2012). This paper is the first to describe the crystal structure of a heterodimeric bHLH–PAS transcription factor.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Hennig, S. et al. Structural and functional analyses of PAS domain interactions of the clock proteins Drosophila PERIOD and mouse PERIOD2. PLoS Biol. 7, e1000094 (2009).

    Article  CAS  PubMed Central  Google Scholar 

  158. Kucera, N. et al. Unwinding the differences of the mammalian PERIOD clock proteins from crystal structure to cellular function. Proc. Natl Acad. Sci. USA 109, 3311–3316 (2012).

    Article  PubMed  Google Scholar 

  159. Czarna, A. et al. Structures of Drosophila cryptochrome and mouse cryptochrome1 provide insight into circadian function. Cell 153, 1394–1405 (2013).

    Article  CAS  PubMed  Google Scholar 

  160. Xing, W. et al. SCFFBXL3 ubiquitin ligase targets cryptochromes at their cofactor pocket. Nature 496, 64–68 (2013). This study reports the crystal structure of CRY2 in complex with FBXL3, revealing a novel mode of substrate recognition for an SCF E3 ubiquitin ligase complex.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Schmalen, I. et al. Interaction of circadian clock proteins CRY1 and PER2 Is modulated by zinc binding and disulfide bond formation. Cell 157, 1203–1215 (2014).

    Article  CAS  PubMed  Google Scholar 

  162. Nangle, S. N. et al. Molecular assembly of the period–cryptochrome circadian transcriptional repressor complex. eLife 3, e03674 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Chen, R. et al. Rhythmic PER abundance defines a critical nodal point for negative feedback within the circadian clock mechanism. Mol. Cell 36, 417–430 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Wu, D., Potluri, N., Lu, J., Kim, Y. & Rastinejad, F. Structural integration in hypoxia-inducible factors. Nature 524, 303–308 (2015).

    Article  CAS  PubMed  Google Scholar 

  165. Wu, D. & Rastinejad, F. Structural characterization of mammalian bHLH–PAS transcription factors. Curr. Opin. Struct. Biol. 43, 1–9 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Wang, Z., Wu, Y., Li, L. & Su, X.-D. Intermolecular recognition revealed by the complex structure of human CLOCK–BMAL1 basic helix–loop–helix domains with E-box DNA. Cell Res. 23, 213–224 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Nangle, S., Xing, W. & Zheng, N. Crystal structure of mammalian cryptochrome in complex with a small molecule competitor of its ubiquitin ligase. Cell Res. 23, 1417–1419 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Hirota, T. et al. Identification of small molecule activators of cryptochrome. Science 337, 1094–1097 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Ye, R., Selby, C., Ozturk, N., Annayev, Y. & Sancar, A. Biochemical analysis of the canonical model for the mammalian circadian clock. J. Biol. Chem. 286, 25891–25902 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Chiou, Y. Y. et al. Mammalian Period represses and de-represses transcription by displacing CLOCK–BMAL1 from promoters in a cryptochrome-dependent manner. Proc. Natl Acad. Sci. USA 113, E6072–E6079 (2016).

    Article  CAS  PubMed  Google Scholar 

  171. Menet, J. S., Abruzzi, K. C., Desrochers, J., Rodriguez, J. & Rosbash, M. Dynamic PER repression mechanisms in the Drosophila circadian clock: from on-DNA to off-DNA. Genes Dev. 24, 358–367 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Ye, R. et al. Dual modes of CLOCK:BMAL1 inhibition mediated by cryptochrome and Period proteins in the mammalian circadian clock. Genes Dev. 28, 1989–1998 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Jones, C. R., Huang, A. L., Ptacek, L. J. & Fu, Y. H. Genetic basis of human circadian rhythm disorders. Exp. Neurol. 243, 28–33 (2013).

    Article  PubMed  Google Scholar 

  174. Bouatia-Naji, N. et al. A variant near MTNR1B is associated with increased fasting plasma glucose levels and type 2 diabetes risk. Nat. Genet. 41, 89–94 (2009).

    Article  CAS  PubMed  Google Scholar 

  175. Lyssenko, V. et al. Common variant in MTNR1B associated with increased risk of type 2 diabetes and impaired early insulin secretion. Nat. Genet. 41, 82–88 (2009).

    Article  CAS  PubMed  Google Scholar 

  176. Prokopenko, I. et al. Variants in MTNR1B influence fasting glucose levels. Nat. Genet. 41, 77–81 (2009).

    Article  CAS  PubMed  Google Scholar 

  177. Dupuis, J. et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat. Genet. 42, 105–116 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Pevet, P. & Challet, E. Melatonin: both master clock output and internal time-giver in the circadian clocks network. J. Physiol. Paris 105, 170–182 (2011).

    Article  PubMed  Google Scholar 

  179. Bonnefond, A. et al. Rare MTNR1B variants impairing melatonin receptor 1B function contribute to type 2 diabetes. Nat. Genet. 44, 297–301 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Tuomi, T. et al. Increased melatonin signaling is a risk factor for type 2 diabetes. Cell Metab. 23, 1067–1077 (2016).

    Article  CAS  PubMed  Google Scholar 

  181. Bonnefond, A., Karamitri, A., Jockers, R. & Froguel, P. The difficult journey from genome-wide association studies to pathophysiology: the melatonin receptor 1B (MT2) paradigm. Cell Metab. 24, 345–347 (2016).

    Article  CAS  PubMed  Google Scholar 

  182. Hu, Y. et al. GWAS of 89,283 individuals identifies genetic variants associated with self-reporting of being a morning person. Nat. Commun. 7, 10448 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Jones, S. E. et al. Genome-wide association analyses in 128,266 individuals identifies new morningness and sleep duration loci. PLoS Genet. 12, e1006125 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Lane, J. M. et al. Genome-wide association analysis identifies novel loci for chronotype in 100,420 individuals from the UK Biobank. Nat. Commun. 7, 10889 (2016). References 182–184 report genome-wide association loci, including known circadian genes, for morningness or early chronotype.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Doi, M. et al. Circadian regulation of intracellular G-protein signalling mediates intercellular synchrony and rhythmicity in the suprachiasmatic nucleus. Nat. Commun. 2, 327 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Aton, S. J., Colwell, C. S., Harmar, A. J., Waschek, J. & Herzog, E. D. Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons. Nat. Neurosci. 8, 476–483 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Chabas, D., Taheri, S., Renier, C. & Mignot, E. The genetics of narcolepsy. Annu. Rev. Genomics Hum. Genet. 4, 459–483 (2003).

    Article  CAS  PubMed  Google Scholar 

  188. Gottlieb, D. J. et al. Novel loci associated with usual sleep duration: the CHARGE Consortium genome-wide association study. Mol. Psychiatry 20, 1232–1239 (2015).

    Article  CAS  PubMed  Google Scholar 

  189. Spada, J. et al. Genome-wide association analysis of actigraphic sleep phenotypes in the LIFE Adult Study. J. Sleep Res. http://dx.doi.org/10.1111/jsr.12421 (2016).

  190. Levine, M., Cattoglio, C. & Tjian, R. Looping back to leap forward: transcription enters a new era. Cell 157, 13–25 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Dekker, J. & Mirny, L. The 3D genome as moderator of chromosomal communication. Cell 164, 1110–1121 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Bonev, B. & Cavalli, G. Organization and function of the 3D genome. Nat. Rev. Genet. 17, 661–678 (2016).

    Article  CAS  PubMed  Google Scholar 

  193. Cremer, T. et al. The 4D nucleome: evidence for a dynamic nuclear landscape based on co-aligned active and inactive nuclear compartments. FEBS Lett. 589, 2931–2943 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author thanks three anonymous reviewers for their constructive comments. Apologies to those whose work was not cited owing to content and length constraints. The author thanks N. Koike and T.-K. Kim for critical contributions to the research presented here. This work was supported by the Howard Hughes Medical Institute and US National Institutes of Health (NIH) grants R01AG045795 (to J.S.T.) and R21MH107672 (to G. Konopka and J.S.T.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph S. Takahashi.

Ethics declarations

Competing interests

The author is a co-founder and scientific advisory board member of Reset Therapeutics.

Related links

PowerPoint slides

Glossary

Convergent evolution

The process by which unrelated organisms independently evolve similar traits as a result of adapting to similar environments or selective pressures.

Network motif

As defined by Uri Alon, a small set of recurring regulatory patterns in a network.

Oscillations

Repetitive variations of variables over time with a stable frequency or period.

E-boxes

Also known as enhancer boxes, these are short DNA regulatory elements in some eukaryotic promoters that act as binding sites for transcription factors and have thus been found to regulate gene expression. For CLOCK–BMAL1, the consensus sequence for this cis-regulatory element is CACGTG.

RevDR2 and retinoic acid-related orphan receptor (ROR)-binding elements

(ROREs). The cis-regulatory elements for the nuclear receptors REV-ERB and ROR. The consensus sequence of RevDR2/RORE motifs involve RGGTCA half-sites preceded by an (A/T)-rich region.

D-boxes

Short cis-regulatory elements for the PAR-zip transcription factors DBP (D-box binding protein), HLF (hepatic leukaemia factor) and TEF (thyrotroph embryonic factor). The common sequence of a D-box is TTATG(C/T)AA.

Phases of expression

The time of the day when peak gene expression occurs.

Period

The length of the circadian rhythm measured from specific phase points in each cycle; for example, the peak-to-peak interval.

Phosphoswitch

In the case of the PER2 protein, a phosphoswitch model is proposed whereby two competing phosphorylation sites (one for the FASPD site and one for the β-TrCP binding site) determine whether PER2 has a fast or slow degradation rate.

Cistrome

The in vivo genome-wide location of transcription factor-binding sites.

'Kamikaze' model of transcriptional activation

Describes the ubiquitin-dependent proteolysis of transcriptional activators, which suggests a role for activator degradation in RNA polymerase II elongation and the requirement for reloading of newly synthesized activators.

Circadian time

(CT). A standard of time based on the free-running period of a rhythm (oscillation). By convention, CT0 is the beginning of the subjective day and CT12 is the beginning of the subjective night.

Global Run-On sequencing

(GRO-seq). A nuclear run-on assay method that captures nascent transcripts from initiated RNA polymerase II followed by next-generation sequencing.

Zeitgeber time

(ZT). A standard of time based on the period of an environmental synchronizer or zeitgeber, such as the 24-hour diurnal cycle of light and darkness. Under standard light–dark cycles, the time of 'lights on' usually defines zeitgeber time zero (ZT0) for diurnal organisms and the time of 'lights off' defines ZT12 for nocturnal animals.

Nascent-seq

Next-generation sequencing of nascent RNA transcripts based on chromatin-associated RNA transcripts, nuclear run-on global transcripts, such as GRO-seq or PRO-seq, or RNA sequencing of transcripts immunoprecipitated with RNA polymerase II.

Laplacian analysis

A framework used in many disciplines to quantify topologies in which autonomous entities reach a consensus without a central direction. In the 4D nucleome, it is used to describe the underlying topology of genome-wide chromosome conformation capture interactions in the genome.

Lamina-associated domains

Regions of condensed chromatin that are bound by the nuclear lamina and are enriched for repressive histone marks such as H3K9me2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takahashi, J. Transcriptional architecture of the mammalian circadian clock. Nat Rev Genet 18, 164–179 (2017). https://doi.org/10.1038/nrg.2016.150

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg.2016.150

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research